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Intersections between innate immune response and gastric cancer development

INTRODUCTION

Globally, gastric cancer (GC) is the fifth most commonly diagnosed malignancy.
Although there has been a reduction in its incidence, its poor prognosis makes it the
fourth leading cause of cancer related deaths per year[!], and around 86% of all GC cases
in 2018 occurred in countries with a high or very high Human Development Index, where
60% of the total cases occurred in Eastern and South-Eastern Asial2l. GC development is
a multistep process initiﬁd by the transition of normal mucosa to non-atrophic gastritis.
This superficial gastritis may progress to atrophic gastritis, then intestinal metaplasia and
finally to dysplasia and adenocarcinomal®. Overall, GC is viewed as the consequence of
a multifactorial process involving environmental factors (socioeconomic status, smoking
and alcohol consumption), dietary habits (diet rich in salt and poor in antioxidants) and
intrinsic factors (ethnicity, genetic background, age and gender)#%l. Recently, a meta-
analysis and prospective cohort study demonstrated in the Chinese population, that
healthy lifestyle factors such as abstention from smoking, non-consumption of alcohol,
low consumption of preserved foods, and frequent intake of fresh fruits and vegetables -
all of them in combination- reduce significantly the relative and absolute risk of incident
GC although the individual carries a high polygenic risk of GC based on the presence of
112 single-nucleotide polymorphismsl®l. This observation suggests that some intrinsic
host factors, like the genetic background, may be secondary to external or environmental
aspects during GC onset.
Most of the malignant gastric tumors correspond to the histological type of

adenocarcinoma (approximately 90%), with a lower percentage of lymphomas of the
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mucosa-associated lymphoid tissue, leiomyosarcomas and other rarer tumorsl7. The

adenocarcinomas have been divided classically into two histological subtypes: diffuse
and intestinal, each of which have differences in their presentations depending on the
anatomic subsite, age when diagnosed, sex, race, demographical distribution and socio-
economic situation(’-?l. More recent molecular and genomic classifications have defined
four major genomic subtypes of GC: The Epstein-Barr virus (EBV) infected tumors;
genomically stable tumors; chromosomally unstable tumors; and tumors with
microsatellite instability (MSI)Pl, all of them with a poor prognosis and different
molecular profiles.

It is very well documented that GC is strongly associated with infectiQus agents such
as the bacterium Helicobacter pylori (H. pylori) and, recently, the EBVIPl. Approximately
15%-20% of human cancers are provoked by cancer-causing virusesll?l; however, the
specific role of EBV in GC development is not clear as yet. Although the World Health
Organization has categorized H. pylori as a group 1 carcinogenl!!ll, the role of other
bacteria in causing cancer is controversial; studies have shown that some bacteria, such
as Fusobacterium nucleatum!2l, and Porphyromonas spp.[314 play a role in the development
of colon, oral and other digestive cancers. Nevertheless, all those microorganisms can
promote a local inflammatory status and a parallel activation of protumgral pathways.

Innate immunity represents the first barrier against pathogens, and epithelial cells of
the gastric mucosa are the first line of immunity against, for example, a H. pylori infection.
&response to an infection, many physiological adaptations are observed, such as an
increase in vascular diameter and permeability along with an overexpression of cell-
adhesion molecules on endothelial cells, promoting the extravasation of myeloid cells
into the inflamed site of infection. The characterﬁcs of an inflamed microenvironment
are low levels of glucose and a scarcity of oxygen due to an altered metabolism, increased
oxygen consumption by neutrophils, and reduced oxygen supply due to disrupted
perfusionl’®l. It is within such a hypoxic microenvironment that immune cells kill and
prevent the spread of invading microorganisms. Accumulating evidence suggests that

chronic inflammation, either non-infectious such as in autoimmune disorders or, as a
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result of pathogen infection, is connected to cancer development. At the same time, the
crosstalk between innate and adaptive immunity is critical for the successful eradication
of different pathogens and tumor cells.

The aim of this review is to provide an overview of innate immune activation in the
context of gastrointestinal malignancies, focusing on the premalignant lesions of the
epithelium and the gastric tumor microenvironment. During the transition from atrophic
gastritis to the final carcinoma, some microorganisms will play a determinant role
promoting the neoplastic transformation or contributing with a particular tumor
phenotype. This work compiles studies related to Toll-like receptors (TLRs), neutrophils,
cytokines and pathogens, as crucial players during the precancerous cascade and the
cancer onset (Figure 1), allowing the correlation of those aspects with clinical and

socioeconomic variables.

STARTERS AND MEDIATORS OF THE INNATE IMMUNE RESPONSE IN
GASTRIC TISSUE

Gastro-intestinal epithelial cells express several TLRs, that can respond to exogenous
infectious ligands or pathogen-associated molecular patterns (PAMPs). TLRs are the
most important class of pattern recognition receptors (PRRs), these transmembrane
proteins present a distinctivg_Leucine-Rich Repeat extracellular domain that confers
specificity to their ligandsl'®], and a cytoplasmic signaling domain homologous to that of
the interleukin 1 receptor (IL-1R), termed the toll/ IL-1R homology domain!(*7l. Up to now,
the TLR family consists of ten (TLR1-TLR10) and twelve (TLR1-TLR9 anELR]]-TLR]B)
members identified in humans and mice respectively[18l. These receptors are expressed in
various immune cells, including macrophages, Dendritic cells (DCs), B cells, specific

pes of T cells, and even in non-immune cells such as fibroblasts and epithelial cells;
their activation leads to the induction of inflammatory cytokines, chemokines, antigen-

presenting molecules, and costimulatory molecules!!>17.19],
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Epithelial cells from the gastric mucosa are considered as the first line of innate

immunity against gastrointestinal pathogens, including H. pylori infection, and the PRRs
haée shown a wide range of expression in normal and pathological tissue (Table 1).

Human gastric epithelial cells and tumor cells were found to express both TLR2 and
TLR4 and both receptors are described as responsible for the H. pylori lipopolysaccharides
(LPS) recognition. However, the results are contradictory and have not accurately probed
the role of those receptors due both to the diversity of the host’s immune system and the
pathogenicity of the H. pylori strain/22ll. TLR2 is the most extensively expressed gene
among all the TLRs in gastric tumors and high levels of TLR4 are associated with a higher
risk of GCl22-24],

On the other hand, TLR3 and TLR4 have been implicated in several disorders related
to the gastroesophageal reflux disease spectrum and largely documented, including the
expression of both receptors and expression of their downstream products, such as
cyclooxygenase-2, IL-8, nuclear factor-xB (NF-kB), and nitric oxide in human tissue
samples and ex vivo cell cultures from the esophagus, the esophageal-gastric junction and
the stomach(®).

TLR5 is expressed within the esophageal epithelium and has been shown to increase
in a stepwise manner with progression from normal to dysplastic and eventually
neoplastic states/?l. In addition, it is well documented that TLR5 is present in both
primary gastric epithelial cells and gastric tumor cell lines[222427]; however, the role of
TLR5 during the gastric precancerous cascade is not clear yet.

TLR5 isresponsible for flagellin recognition, H. pylori flagellin seems to be a less potent
stimulator compared with other flagellins(®®! but has a significant role in long-term
bacterial persistence. The lack of TLR5 activity in response to H. pylori flagellin is caused
mainly by the amino acid residues variation R89, L93, and E114 described as hotspots for
binding TLR5 which, replaced with threonine (R89T), lysine (L93K), and aspartate
(E114D) in H. pylori flagellin, lead to receptor evasion(?’l. TLR5 instead recognizes CagL
and CagY, two proteins from the type IV secretion system (T4SS) of H. pylori, and both

have immunoregulatory propertiesi®31l, A high TLR5 expression has been suggested to
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have a better prognosis amongst young GC patients in an early stage of disease, and this
better outcome may be associated with a non-distant metastasis and an intestinal-type
capgerB.

TLRY, the only TLR with both anti- and pro-inflammatory roles, is involved in the
recognition of H. pylori DNA, and the promotion or suppression role of TLR9 will depend
on the gastric environment/?2l, TLR9 expression has been shown to be up-regulated in H.
pylori infected gastric tissue compared with non-infected tissue, and it was not related to
the presence of tumor cells, suggesting that increased TLR9 expression was specifically
associated with H. pylori infection[3l. It is reported that TLR9 interaction with H. pylori
and H. pylori DNA, triggers an IL-8 secretion response mediated by the NF-«xB
pathway!3.

The role of TLRY in cancer is not absolutely clear, but patients with stage II of GC and
a high TLR9 expression had a better prognosis than cases with lower levelg®2l.

Other TLRs have been described, TLR1, TLR7, TLRS, and TLR10, but further studies
are required in order to understand their role in GC and in H. pylori infected individuals,
as well as other pathogens!22335, However, high levels of TLR10 expression have been
observed in gastric biopsy samples from subjects with H. pylori and, when NCI-N87
gastric cells were co-cultured with the bacteria, both TLR10 and TLR2 mRNA levels were
upregulated®!l. Those results suggest that TLR10 is a functional receptor and that
TLR2/TLR10 heterodimer functions in H. pylori LPS recognition[35l.

From a cellular perspective, neutrophils are the most abundant white blood cells in
human blood and also considered as part of the first line of defense against infections by
pathogensP®l, These cells have the ability to capture and destroy invading
microorganisms and participate as mediators of inflammation. Phagocytosis and
formation of neutrophil extracellular traps are part of the cellular mechanisms for
pathogen elimination, as well as granules releasing!3-3l.

Neutrophils extracellular traps (NETs) formation, known as NETosis is a process of
releasing extracellular web-like structures, and is described as a coat consisting of

decondensed chromatin filaments, histones and antimicrobial proteins®’l. NETosis is a
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mechanism of innate immunity to contain and prevent microbial spread, and eliminate
bacterialt0l.

H. pylori can activate different cells of innate immunity, including neutrophils, and
these activated cells recognize H. pylori infection through different receptors, such as
TLR2, TLR4, and TLR9(4.42). TLR5 has not been detected in neutrophils localized in the
lamina propria during H. pylori gastritis(®!]. The activation and recruitment of neutrophils
is stimulated by H. pylori neutrophil-activating protein, or HP-NAPB743. TLR2 interacts
with HP-NAP for the secretion of IL-8). However, the interaction between neutrophils
and H. pylori appears to be complex and contradictory and shows the development of
different mechanisms of immune evasion, including NET degradation, the increase in
bacterial resistance mediated by the modification of proteins or surface polysaccharides,
or the suppression of NET formationf4.

H. pylori has shown a selective alteration of neutrophils function mediated by the
inactivation of NADPH Oxidase and superoxide releasel*3l. In addition, the bacterium
performs lipid A modification mediated by lipid A phosphatases to resist the polymyxin,
an antimicrobial peptidel*]. Another study remarked on the presence of an outer
membrane-associated nuclease that can degrade extracellular DNA, where the ability to
degrade exogenous DNA was originally proposed as a purine source uptake
mechanisml*7), but it could also have the potential role of degrading NETs/43).

Although NETosis was described as an antimicrobial process, it has been described in
other pathologies, including cancer. The first study that provided evidence on NET in
cancer was Berger-Achituv et all#] studying the Ewing sarcoma. The authors proposed
NET as a pro-tumor effect and the possibility of using this parameter as a poor prognostic
biomarker(#1.

Regarding GC, the first study was reported by Yang et all*), the authors found the
correlation of NET formation with TNM status and a significant increase in the formation
of fibrin and thrombin, however, the focus was on peripheral circulation. More recently,
the formation of NETs within the gastric tumor microenvironment including

immunofluorescent staining of Neutrophil Elastase (NE) and citrullinated-histone 351521
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showed that NETs are more abundant in the tumor core than in the adjacent non-tumor
tissuel5152], and the plasma from GC patients revealed the capacity of NET formation in
vitrol®2. NETs measured in peripheral blood have been shown to be significantly
correlated with GC and staging, and its levels decrease after surgery[>0-321.

A very recent report showed that abdominal infectious complications after
gastrectomy would stimulate neutrophils to release NETs both in peripheral blood and
abdominal cavity, facilitating GC metastasis in vitro and in vivo dependent on
transforming growth factor (TGF)-p signaling®l. The formation of NETs has an
important role in the epithelial-mesenchymal transition and gastric tumor progression,
because NETosis may induce proliferation, invasion, migration, and a mesenchymal
phenotype, in addition to its immune role, which makes it difficult to be therapeutically

targeted.

ACCOMPLICE CELLS AND MEDIATORS OF AN ANTI-TUMOR RESPONSE

Additionally, the macrophages have been demonstrated to be important cells for the
innate immune system in healthy and tumor tissue. Within the tumor microenvirogment
(TME), macrophages are known as tumor-associated macrophages (TAMs) and play a
key role in the recognition and clearance of foreign and damaged cells, as well as in tumor
development ang the response to several cancer therapies.

Macrophages can infiltrate solid tumors modulating T cell activity within the TME, and
often undergo phenotype polarization in response to stimuli or inhibitory factors, either
to pro-inflammatory (M1) or anti-inflammatory (M2) subfypes, which cause immune
response or immune escape of the tumors respectively!>57]. The general consensus is that
TAMs are usually pro-tumorigenic. These cells are recruited by tumor-derived
chemokines and produce low levels of inflammatory cytokines, promote Th2-T cell
response, favor wound healing, and increﬁe angiogenesis and metastases!555l.

IL-6 and tumor necrosis factor (TNF)-a are both pro-inflammatory cytokines, exerting
pro-tumoral functions, including the promotion of angiogenesis and metastasis, and

these molecules can be secreted by myeloid cells and leukocytes under different
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conditions and stimulil5+%l. In parallel to classic immunomodulators such as cytokines
and chemokines, some microRNAs (miR) have shown a significant impact on
macrophages activity™l. miR-125b, miR-127, miR-155, miR-181 and miR-451 are
significantly upregulated in M1 macrophages, whereas miR-125a-5p, miR-146a, miR-145-
5p,miR-143-3p are highly expressed in M2 macrophages!*85°l.

miR-155 directly targets the expression of the IL-13 receptor al, thereby inhibiting
STAT6 activation and promoting M1 polarization!*]. miR-155 knockdown in myeloid
cells induces faster tumor growth, reduction of M1-macrophages and enrichment of pro-
tumor cytokines within the TME®I In addition, miR-125b overexpression enhanced
responsiveness to interferons (IFN)-y, through the targeting of IRF4 and increased
expression of pro-inflammatory cytokines(>o1].

miR-187, miR-146a, let-7e, and miR-92a are considered anti-inflammatory miRs
because they downregulate IL-6 and TNF-a in human macrophages by targeting the
TLRs signaling!57.62. The NF-kB-dependent miR-146a expression is induced in monocytes
and macrophages upon triggering of TLR4 to act as a modulator of the inflammatory
responsel®ll. miR-155 is key to modulating genes related to M2/pro-Th2 phenotype in
macrophages, and includes CCL18, SERPINE, CD23 and DC-SIGN/5¢l. In addition, other
microRNAs will modulate directly or indirectly the NF-xB or TLR activity, such as miR9,
miR-21, miR-29b, and those_can be expressed and released by both TAMs and solid
tumors in exosomesl.6265], Due to the inflammatory microenvironment and oncogenic
mutations, a significant number of human cancers have constitutive miRs deregulation
affecting NF-kB activity, cytokine production and hallmarks of cancer such as apoptosis,
prgliferation and tumor survivall>6265],

Previous studies demonstrated that Gastric Epithelial Cells (GECgs) function as antigen
presenting cells by constitutively expressing MHC class IIl°¢l. Interestingly, H. pylori
infection induces up-regulation of costimulatory molecules (CD86 and CD80) among
GECsl#l, suggesting its potential to be used as a local bridge between innate and acquired
immunity; however, the capacity to play a role secreting cytokines and polarizing

macrophages requires further studies.
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The inhibition of the polarization of pro-inflammatory macrophaﬁs can accelerate the
development of precancerous lesions in GCI®7l. In addition, when TAMs spread in the
peritoneum of GC patients, these cells normally are polarized to an anti-inflammatory
subtype (M2), which can promote the growth and progression of GC when the tumor
existsl®8l. In fact, high densities of TAMs are associated with poor survival in GC

patients!68:6%,

INTRINSIC AND EXTRINSIC MODULATORS OF INFLAMMATION AND
PRECANCEROUS LESIONS

Currently, there is enough evidence based on epidemiological, molecular and
pathological studies that persistent infection with H. pylori is a risk factor for the
development of gastric adenocarcinomal’®73, estimatigg an increment in the relative risk
by 3-6 times in infected people which might represent over 80% of all distal GC cases and
some with proximal gastric tumors(}7#7l. The prevalence of H. pylori infection is
extraordinarily high, infecting 50% of the world’s population[1.76-78],

H. pylori is a Gram-negative bacterium which colonizes the human stomach and
promotes a full immune response locally and sustainably*7#l, Strains of H. pylori are
grouped into two broad families tentatively named type I and type II, which are based
on whether they express or not the vacuolating cytotoxin (VacA) and the CagA antigen
(cytotoxin-associated gene A)[51l.

One of the major determinants of H. pylori's virulence is the cag pathogenicity island
(cag PAI)E84 This cagPAI is a 40-kb DNA region surrounding the cagA gene that
contains about 27-31 genes that encode a bacterial type IV secretion system acting as a
syringe-like structure, which allows for the delivery of bacterial effector molecules into
host gastric epithelial cells®>l. During infection with H. pylori, CagA is translocated into
epithelial cells, and it is tyrosine-phosphorylated in the EPIYA motifs by the proto-
oncogene tyrosine-protein kinase Src and the members of the Abelson family of non-

receptor tyrosine kinasesl847], which results in the interaction with various intracellular
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signaling pathways, triggering changes in the cytoskeleton, in the morphology and in the
mobility of the host cells[847],

Compared with cagA - strains, H. pylori cagA+ strains significantly increase the risk of
develop&g severe gastritis, atrophic gastritis, peptic ulcer disease and distal GC. In fact,
people infected with cagA+ strains have higher degrees of gastric inflammation and
epithelial cell damage than people from whom cagA- strains have been isolated!®8].
People infected with cagA+ H. pylori strains have an enhanced expression of IL-1a, IL-1p,
and IL-8 in gastric biopsies compared to uninfected persons or patients infected with
cagA- strains[®?. Keeping that consideration in mind, proinflammatory cytokines will be
up-regulated by a local infection; however, the magnitude of that systemic response and
the profile of released cytokines and chemokines will depend also on host factors.

Regarding host factors, many polymorphisms in genes related to inflammation and
innate immunity, such as cytokines and MHC molecules, have been reported to be
associated with increased risk of GCI0-92l. Among the cytokines with polymorphisms that
have been associated with GC are IL-1p, IL-1Rp, IL-4, IL-6, IL-10, TNF-a, and TNF-p[%-
%71, Based on ethnic backgrounds, two sets of haplotypes for IL-1$ and IL-10 have been
related to increased risk for GCI%%; specifically, IL-1p-1464G/-511C/-31T and IL-10-
1082G/-819C/952C for Asians and IL-13-1464C/-511T/-31C and IL-10-1082A/-
819T/952T for Caucasians!®l,

Canedo et all%l found that IFN-y receptor 1 -56C/T polymorphism is a relevant host
susceptibility factor for GC development associated with H. pylori infection.
Polymorphism in the promoter region of the gene coding for IL-10 and TGF-f3_has been
also described in the Mexican population in relation to susceptibility to GCI7I. There is a
need for extended studies in different populations and in larger patient groups,
particularly in regions of Latin America where the burden of GC is more severe.
In recent years, NF-kB has been widely studied in inflammation, immunity and cancer,
but its roles are still unclear(%-100]. NF-xB is a master transcription factor activated
downstream of the TLR and cytokines such as TNF-a and IL-1p[%l. In contrast to the

canonical NF-xB pathway, the noncanonical NF-xB activation responds to specific
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stimuli, including ligands from the TNFR superfamily members such as LTR, BAFFR,
CD40 and RANKI®l.

In GC, H. pylori is associated with increased expression of the proinflammatory NF-
kB[101-14] Tt has been shown that the induction of NF-kB mediated by H. pylori induces
the expression of activation-induced cytidine deaminase, which has been demonstrated
to induce nucleotide modifications in TP53 gene in gastric cell models!'?l and suggests
that the accumulation of those TP53 gene alterations might contribute to the development
of gastric neoplasia.

As an example, in vitro studies showed that programmed death (PD)-1 is increased
among gastric epithelial cells after H. pylori infection its immunosuppressive
functions on T-cells may contribute to carcinogenesis!'’l. Evidence from small studies
observed an up-regulation of PD-1 and programmed cell death-ligand 1 (PD-L1) in
human H. pylori-related gastric carcinomall?,

In addition, H. pylori has shown other effects within the gastrointestinal epithelium not
associated with inflammation but compromising the genome stability, for example,
reduced levels of transcripts for DNA mismatch repair (MMR) proteins such as MutS,
MutL RAD51, FEN1, POLDI1, and LIG1[108-110] and this phenotype might be more severe
in cases cagA+ H. pyloril"°l. However, the deficiency MMR in gastric tumors was recently
shown to predict clinical response to pembrolizumabl'], demonstrating also the
expansion of antigen-specific T cells reactive to tumor-derived neoantigens, suggesting
that further studies are required to understand the interaction between pathogens and

genomic features as biomarkers.

CROSSTALK BETWEEN VIRAL INFECTION AND INNATE IMMUNITY
ACTIVATION

The EBV is a wubiquitous virus, member of the subfamily of human
Gammaherpesvirinael’?l and can infect several cell types, including B-lymphocytes,
epithelial cells, and fibroblasts(!3l. EBV is the main pathogenic factor for nasopharyngeal

carcinoma. However, studies find that EBV infection is also associated with the
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development of T-cell lymphoma and EBV-associated GCI'14l, Although the infection rate
of EBV is extraordinarily high, reaching over 90% of the adult population
worldwidel'>116], the incidence rate of EBV-positive GC remains low, representing
around 9% of characterized stomach adenocarcinomas!''7], these EBV-positive tumors
display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification
of JAK2 and both PD-L1 and PD-L205.

The EBV-positive GC has been characterized by an increased expression of PD-L1, and
a sustained immune-infiltration, which is indicative of the presence of stable T-cells and
supports the use of an immune checkpoint inhibitor for the treatment of this GC
subtypell18119]. In addition, most EBV-positive GCs show MSI which has also been
associated with inflammation and local immune activation2*1%l, Previous groups have
shown that high density of intra-tumoral or stromal CD8+ T cells with high percentage
of PD-L1 expression seems to be associated with a worse progression-free survival and
overall survivalll18120124] However, a recent study demonstrated that EBV-positive GC
patients treated with immunotherapy showed favorable responsesli23], suggesting that
viral status represents a potential predictive biomarker for using immune-checkpoint
inhibitors; however the balance between pro-inflammatory and immunosuppressive
signals together with a concomitant viral infection requires more studies to clarify its role
as @ biomarker.

Type I and type II IFN are central to both combating virus infection and modulating
the antiviral immune responsel'26l. The cytokine IFN-y is mainly produced by T Cell
CD4+ and natural killers to activate macrophages. The ligation to its receptor triggers an
activation of the Janus-Activated kinases, JAK1 and JAK2, and subsequently the
activation of STAT1 and interferon regulatory factor 1 (IRF1). STAT1 and IRF1 are
activated by phosphorylation and translocated to the nucleus to regulate the IFN-y gene
expression/1%7,

Crucial to the induction of type I IFN is the recognition of viral PAMPs by PRRs, among
which, the cyclic GMP-AMP synthase-stimulator of interferon genes modulates the

antiviral response triggered by DNA viruses and retroviruses!'2l. In addition, most
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viruses, including EBV, stimulate innate immune response during primary infection

predominantly by activating the expression of TLRs, such as TLR2, TLR3, TLR4, TLR7,
TLRS, and TLRI'ZI. TLR2 is likely activated by EBV surface glycoprotein gp350[13] and
the nonstructural protein dUTPasel!3ll, while EBV-encoded small RNAs released from
EBV-infected cells are detected by TLR3['32l. Furthermore, EBV can activate monocytes
arﬁ-lasmacytoid DCs through cooperative action of TLR9 and TLR2['%1,

Activation of PRRs by EBV-PAMPs triggers JAK-STAT-mediated IFN response and
different branches of innate immune signaling including NF-xB pathway; infl asome
activation; and programmed cell death such as apoptosis and necroptosis!'34. However,
innate immunity is a double-edge sword as the induction of pro-inflammatory responses
and activation of programmed cell death might release a burst of virions and may
therefore facilitate the spread of infectionl!31.

Recently, IFN-y has been the subject of studies due to its immune role in cancer
development, especially in GC. There are several signaling pathways of innate immunity
during GC development in which interferon is involved, such as in proliferation,
metastasis, and advancement of GC through the upregulation of integrin 33-mediated
NF-kB signalingl'3]. Serum levels of [FN-y are elevated in GC which may promote
systemic and local responses!'¥! at the same time, for example: peroxisome proliferator-
activated receptor delta, a ligand involved in physiologic processes in cell metabolism,
proliferation, and inflammation(3] together with IFN-y signaling creates an
inflammatory tumor-promoting microenvironment enabling villin-expressing gastric
progenitor cells transformation and gastric tumorigenesis!3]. Furthermore, natural killer
(NK) cells play a role in innate immunity against cancer cells. Lee ef all'*l reported that
IFN-y produced by the activated NK decreases in GC patients compared with healthy
donors. This low level of IFN-y-NK could be used as a non-invasive biomarker for
carcinogenesis in GCI140],

Some reports including latinamerican cohorts have shown that concentrations of IFN-
y and IL-10 are significantly higher in GC cancer than in non-oncological cases, and

within the GC group, IFN-y levels are increased at the early stages (I/II) and remain
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higher in late stage (IV)[4ll. Interestingly, increased levels of viral capsid antigen
antibodies are significantly associated with elevated serum levels of IFN-y, particularly
in the intestinal type of GC[142. Therefore, IFN-y is suggested as a biomarker for assessing
GC risk; however, this molecule is known to mediate gastric damage or immune
antipathogen responses, as well as the expression of some negative immune checkpoint
molecules.

The PD-L1 expression is activated by several cytokines, of which IFN-y is the
strongest!'#*]. In a melanoma cell line model, PD-L1 has shown to be mainly regulated by
the type Il interferon receptor signaling pathway through JAK1 and JAK2, several STATs
including STAT1/STAT2/STAT3, to converge on the binding of IRF1 to the PD-L1
promoter!'44l. Later, Chen et all'*] treated with IFN-y thirty-four cultured human tumor
lines, including 18 melanomas (MEL), 12 renal cell carcinomas (RCC), 3 squamous cell
carcinomas of the head and neck (SCCHN), and 1 non-small-cell lung carcinoma, and as
wildtype contrgl the authors considered isolated peripheral blood monocytes. The results
indicated that PD-L1 was constitutively expressed on 1/17 cultured MELs, 8/11 RCCs,
3/3 SCCHNSs, and on monocytes; however the inhibition of STAT1 but not STAT3 was
more critical to reduce IFN-y-induced PD-L1 protein expression on tumor cells(!45. Other
authors have provided evidence of a crosstalk between JAK2-STAT1 and PI3K-AKT
pathways in response to IFN-y in lung adenocarcinomal'#®l, Transcriptome analysis
demonstrated that tumor tissues expressing IFN-y display gene expression associated
with suppressed cgll cycle progression and expansion, which was not observed in PD-L1
negative tumors. In lung adenocarcinoma cells IFN-y induces the activation of JAK2-
STAT1 and PI3K-AKT pathways, showing that the activation of JAK2-STAT1 is
responsible for the anti-proliferative effect of IFN-y, and the inhibition of PI3K
downregulates PD-L1 expression and enhances the anti-proliferative effect of IFN-yl146].
In addition to the cytokine regulation, a IncRNA (long non-coding RNA) named
Interferon-stimulated non-coding RNA 1 (INCR1) has been described as a major
regulator of IFN-y signaling in tumors by post-transcriptional modulation of PD-L1 and

JAK2 expression'¥l. INCR1 is expressed as an antisense RNA from the PD-L1/PD-L2
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Locus and has been detected in human samples across multiple tumor types, and its
levels increase after IFN-y stimulation, correlating with PD-L1 but not PD-L2
expression!147].

Regarding GC, PD-L1 has shown a wide and very variable range of expression based
on technique and cutoff, however, it seems to be absent in non-tumor gastric tissuel'4%-
1511, Tmai et all'2 showed IFN-y treatments enhanced the expression of intracellular and
membranous PD-L1 expression in GC cell lines, this upregulation of PD-L1 induced by
IFN-y was associated with the JAK-STAT but not the MAPK and PI3K-AKT pathway
activationl152153]. PD-L1 overexpression mediated by IFN-y is also seen in GC with
positive EBVI3]. Polymorphism in PD-L1 related to GC has also been described. PD-
L1rs2297136 was positively correlated with a higher proportion of PD-L1 protein and
could be employed as a tool of prognosis in GC patients/!5515].

A recent study suggested the role of ISG12a as a tumor suppressor in gastroﬁestinal
tissuel1571581. ISG12 or interferon alpha-inducible protein 27 promotes [-catenin
proteasomal degradation by inhibiting the degradation of ubiquitinated Axin, thereby
suppressing the canonical Wnt/B-catenin signaling pathway!'?8. Reduced levels of
ISG12a were observed in gastrointestinal cancer, such as hepatocellular cancer and GC,
and it was as&iated with an immune-suppressive tumor microenvironment. The
authors argue that P-catenin is a transcription factor for PD-L1, and the inhibition of
Wnt/B-catenin signaling by ISG12a sensitives tumor cells to NK cell-mediated killing[1571.
Therefore, the balance between induction or suppression of IFN-stimulated genes('>],
such as ISG12a, may accelerate@ee malignant transformation of cancer cells and lead to a

poor prognosis in gastrointestinal cancer!>7160],

NON-BIOLOGICAL FEATURES AS IMMUNE AND PREMALIGNANT
MODULATORS

GC is currently accepted as the consequence of a multifactorial process, involving

pathogen infection and the virulence of some strains (as H. pylori), environmental factors,

dietary habits, and host intrinsic factors, as we have discussed above; however,
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socioeconomic factors, such as education level and occupation, have shown to be
determinant during the progression of the premalignant cascade of GC and the patient
outcome after the cancer onset(161-163],

Asia accounts for 71% of GC cancer worldwide, in which China’s incidence is 44.1%.
The high incidence in China is marked by the rural population, and their exposure to
carcinogens through diet and the environment and the H. pylori infection per se('¥l. The
incidence of GC in Europe is heterogeneous; while the highest incidence is in Central and
Eastern Europe, the lowest incidence is in Western and Northern Europe, which
correlates with a higher detection of H. pylori in Eastern Europe compared to Western
Europel’®], as well as an observed higher consumption of red and processed meat
resulting in an increased risk of GC[¢],

After Europe, Latin American countries have shown a high incidence of gastric
malignancies, among the associated risk factors are infection with H. pylori, diet and
habits such as smoking, consumption of salt, alcohol and meat, as well as ethnicity and
agel'¥7). Some authors have suggested for Latin America a close correlation between GC
incidence and altitude, based on the presence of a mountainous geography, such as the
Sierra Madre, Cordillera de Centroamerica and the Cordillera de los Andes(168], However,
the mortality and incidence rates for gastric malignancies in the Chilean population is
statistically higher than the average rates in the rest of Latin America, becoming the
second cause of death from cancer in Chile, affecting 11.6 per 100000 inhabitants and
causing around 3000 deaths per year("). That incidence seems to correlate mainly with
socioeconomic status, Mapuche ethnicity, and the age at the primary H. pylori
infection1é9),

Surprisingly, most of the countries with the highest incidence of GC are not those with
low incomes (Table 2). In fact, it seems that the vicious circle between precancerous
lesions, inflammation and GC onset is caused by the low level of education within the
population. A study performed within the Swedish population, which considered all the
economically active population, showed an increased risk factor of GC in workers

engaged in manual-labor occupations and in industry. The statistics were standardized
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for categories of occupation and adjusted by age, period and region, and confirmed that
overall manual-workers a armers had the highest risk of GC, including male miners
and quarry workers!2. The European Prospective Investigation into Cancer and
Nutrition cohort included about 520000 participants mostly aged 35-70 years and, after
an avera%follow-up of 6.5 years, reported 268 cases with adenocarcinoma of the
stomach. Higher education was significantly associated with a reduced risk of GC witha

ard ratio (HR) of 0.64 (95%CI: 0.43-0.98) and, as was expected from other reports, that
effect was more pronounced for cancer of the cardia (HR: 0.42) as compared to non-cardia
GC (HR: 0.66)(163],

A survey to address GC risk factors and endoscopic screening within the North
American population showed that ethnicity, cultural habits and immigration patterns are
potentially useful to identify high-risk persons from multicultural areas within the
USAI'7], The authors identified that dietary habits during teenage years (15-18) and
education below high school level may represent signs of risk of GC in older people of
foreign birth[170]. Most recently, based on the previous research, a secondary analysis
showed that education level was the single most reliable measure of GC risk among three
variables of socioeconomic status including, education, income, and occupation, which
are the most commonly used for health outcomes such as cancerﬁrvival[”“. Similar
results were observed in a seroepidemiologic study in Japan where the H. pylori positive
rate increased at 1% per year for people born after 1950 but was comparatively constant
for people with birth dates before 19501'71l. Based on the authors, the apparent decreased
prevalence of H. pylori post-war was accompanied by the Westernization of the country
and subsequently by a reduction in the frequency of atrophic gastritis and the incidence
ofﬁstric carcinoma during the most modern times'71172],

The infection status in adults is considered to be influenced by socioeconomic status in
childhood; however, given the massive_improvement in hygiene and the economic
environment around the world, it has contributed to the variation in the trends in
incidence and death rates of GC among the countries mentioned above. Based on other

authors, the education in H. pylori eradication and gastric malignancies is largely due to
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unplanned prevention caused by the widespread adoption of technology and improved
manufacturing practices of the food industry. In a similar way, the prevalence of H. pylori
infection may be reduced owing to improvements in sanitary and housing conditions
based on education at early ages by primary schools and in adult life by primary health
workers.

Where the intersection between education and immunity is not evident, by intuition a
limited knowledge regarding gastrointestinal health and eradication of H. pylori infection
might dramatically influence the development of GC. Therefore, the inflammatory
process induced by a pathogen or even an incipient neoplasm may not receive enough
attention, progressing finally to an advanced disease with limited therapeutic

opportunities and uncertain outcome for the patient.

CONCLUSION

During the transition from premalignant lesions of the gastric epithelium to the final
carcinoma, some microorganisms will play a determinant role promoting the neoplastic
transformation or contributing with particular tumor phenotype and its heterogeneity,
together with different mutagenic agents and genomic aberrations. This review provides
an overview on innate immune activation in the context of gastrointestinal malignancies
and compiles studies related to TLRs, neutrophils, cytokines and pathogens, as crucial
players during the precancerous cascade and the cancer onset, allowing the correlation
of those aspects with clinical and socioeconomic variables.

As shown in the graphical abstract, intersections between innate immune response and
GC development is driven by common mediators, such as NF-kB and IFN-y molecular
pathways, cellular processes (neutrophil and myeloid cells activation), and
activators/inducers (PAMP, damage-associated molecular patterns, tumor-antigens).
However, universal risk factors are identified affecting globally any human being which,
depending on extrinsic and intrinsic host factors, might facilitate the progression of the

precancerous cascade to GC.
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Modern therapies such as adoptive cell therapy, vaccines, and especially
immunotherapy using checkpoint inhibitors, which have not been mentioned in this
work, have shown in clinical trials the role of restoring the balance in favor of the immune
system against GC. In the words of Dunn et all'73l the observed benefits in GC may be
based on (1) Elimination: NK cells and T lymphocytes (helper and cytotoxic) secrete
interferon IFN-y leading to a reduction of angiogenesis and proliferation of cancerous
cells; moreover, macrophages and DC secrete cyﬁmk'mes that activate immune cells to
phagocytize dead tumor cells; (2) Equilibrium: Residual cancerous cells remain in a
dormant state because DC and cytotoxic T cells secrete IFN-y and inhibitory cytokines
(IL- 12) suppress them; and (3) Escape: Tumor cells change their features, up-regulating
immune checkpoint pathways, which will be transmitted to the daughter cells, therefore
escaping immunosuppression and proliferating, along with the apoptosis of the effector
lymphocytes('73l. The success of those treatments relies on an efficient immune system,
and of course an innate response able to promote priming and mobilization of newly
activated immune cells; the presence of pathogens or their PAMPs, as well as molecules
derived from the tumor itself will continuously modulate the tumor immune
microenvironment. The shape of the tumor will also depend on the host background
(genome stability, driver mutations and other gene variants) but in addition, the external
environment shaped by the socioeconomic status of each person will determine the final
outcome.

Innate immunity is the beginning, and certainly, will be part of the final response
against tumors. All these observations require further investigation but it is clear that
pathogens like H. pylori and EBV need to be assessed in GC based on their role as

biomarkers and as potential mechanisms of resistance to therapy.
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Figure Legends

Figure 1 Graphical abstract. Intersections between innate immune response and gastric
cancer development is driven by common mediators, such as molecular pathways
(Nuclear factor-kB and interferons-y), cellular processes (neutrophil and myeloid cells
activation), and activators/inducers (Pathogen-associated molecular patterns, damage-
associated molecular patterns, tumor-antigens). However, universal risk factors are
identified affecting globally to any human being, which depending on extrinsic and
intrinsic host factors might facilitate the progression of the precancerous cascade to
gastric cancer. NF-xB: Nuclear factor-kB; IFN-y: Interferons-y; PAMPs: Pathogen-
associated molecular patterns; DAMPs: Damage-associated molecular patterns; TLR:
Toll-like receptors; ICM: Imuune checkpoint molecules; GC: Gastric cancer; EBV:

Epstein-Barr virus; H. pylori: Helicobacter pylori.
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Table 1 Expression of Toll-like receptors in esophageal and gastric epitheliums

PRR  Organ Model Method  Ligand Observation Reference
TLR1 Esophagus Esophageal HQ Triacyl Receptor [22,171]
/2 carcinoma lipopeptid upregulation in
and e tumor and
premalignant dysplasia.
lesions.
TLR2 Stomach; Human ADC IHQ; RT- Microbial Receptor [21,22,27,3
esophagus and qPCR lipopeptid upregulation in 2,172-174]
premalignant e tumor  cores.
lesions; H. Increased
pylori tumorigenesis;
infection. constitutive
Mice model expression  in
and TE-1 cell line.
i1 vitro
culture.
TLR3 Stomach; Human IHQ; RT- dsRNA Increased [25,174-
esophagus gastric and qPCR receptor levels 176]
esophageal correlate  with
carcinoma. poor prognosis;
increased
expression on
EAC-derived
cell lines.
TLR4 Stomach; Human ADC IHQ; RT- LPS Upregulation in [21,24,25,2
esophagus and qPCR tumor  cores. 7,32,171,17
premalignant Weak 3-179,182]
lesions; H. association with
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TLR5

TLR6

Stomach;
esophagus

Esophagus

pylori
infection;
esophageal

carcinoma.

Human ADC IHQ Flagellin
and

premalignant

lesions. H.

pylori

infection.

Esophageal IHQ; TF Diacyl
carcinoma
and  human e

dysplasia.

lipopeptid

clinicopathologi
¢ variables; high
expression
correlates with
poor prognosis;
upregulation of
IL-8 and COX-2
in BE.

Highly
expressed.
Upregulation in
tumor and older
patients.
Association
with  necrosis
and tumor
growth in the
stomach;
overexpression
in dysplastic
lesions of BE.
No association
with EAC
prognosis.
Upregulated in

tumor tissue.

[26,27,32,1
77]

[22,171]
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TLR7 Stomach;

esophagus

TLR9 Stomach;

esophagus

Human ADC IHQ; WB;

and

tissue.

Human ADC.

normal RT-qPCR

THQ; RT-
qPCR

ssRNA

ssDNA;
dsDNA

Downregulated

tumors;
levels correlate
with a better
outcome in GC;
constitutive
expression  in
TE-1 cell line;
association
between
expression and
tumor grade in
ESCC.
Upregulated in
early tumors.
Correlation
with better
prognosis in
GC; association
with
histopathologic
al grade in
ESCC and
dysplasia; high
expression  in
EAC correlates

with advanced

[22,32,173,
in gastric 174,176,18

high 0,183]

[24,25,32-
34,173,175,
176,181,18

4]
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tumor stage and

metastasis.
TLR10 Stomach Human RT-qPCR  ssDNA; Upregulated by [35]
biopsy. dsDNA H. pylori.

PRR: Pattern recognition receptor; TLR: Toll-like receptors; IHQ: Immunohistochemistry;
ADC: Adenocarcinoma; RT-qPCR: Reverse transcription and quantitative PCR; IF:
Immunofluorescence; WB: Western blot; TE-1: Human cell line derived from esophageal
cancer; ESCC: Esophageal squamous cell carcinoma; BE: Barrett’s esophagus; EAC:

Esophageal adenocarcinoma; GC: Gastric cancer; H. pylori: Helicobacter pylori.

Table 2 Gastric cancer incidence and socioeconomic indicators per country

Country Estimated  Crude ASR Cum. risk HDI

cases rate (World)! classification
Japan 138470 1095 31.6 9.35 Very high
Korea 28713 56 279 6.51 Very high
Brunei

55 12.6 135 593 Very high
Darussalam
Russia 37364 25.6 13.5 3.29 Very high
Chile 4208 22 13.1 417 Very high
Lithuania 864 31.7 13 34 Very high
Estonia 379 28.6 123 3.2 Very high
Latvia 530 281 12 3.01 Very high
Portugal 2950 289 11 2.99 Very high
Slovakia 1210 222 10.7 3.12 Very high
Mongolia 860 26.2 325 7.71 High
China 478508 331 20.6 524 High
Iran 14656 174 175 6.58 High
Kazakhstan 3357 17.9 158 347 High

47749




Belarus
Peru
Colombia
Costa Rica
Samoa
Azerbaijan
Tajikistan
Kyrgyzstan
Cabo Verde
Bhutan
Viet Nam
Sao Tome
Principe
Myanmar
Lao

Guatemala

Turkmenistan

Haiti

Mali
Afghanistan
Zimbabwe
Papua
Guinea
Rwanda
Yemen
Senegal
Benin

Mauritania

and

New

2739
6300
8214
952
20
1453
1301
1027
82
118
17906

18

7235
675
1637

583

1184
1097
2149
641

474

587
966
597
429
143

29

19.1
16.1
18.7
10.1
14.3
13.6
15.7
14.7
153
184

8.2

133
9.3
0.1

97

104
54
55
43

53

45
3.2
3.6
3.5
3.1

154
152
12.8
12.8
12.8
12.7
234
19.7
184
17.7
155

147

13.7
12.9
122

118

13.5
12.8
124
94

9.2

81
7.1

5.6

3.5

516
3.61
412
3.75
342
6.96
5.01
588
3.88
3.57

2.06

3.58
3.17
3.93

237

458
2.96
318
3.24

3.17

1.61
2.68
1.66
229
146

High
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium

Medium

Medium
Medium
Medium

Medium

Low
Low
Low

Low
Low

Low
Low
Low
Low

Low
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Topl0 countries with the highest age-standardized incidence rates per 100000
inhabitants, per each human development index classification. Source: Globocan 2020,
access by https://gco.iarc.fr. ASR: Age-standardized incidence rates; HDI: Human

development index.
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