
Key words: Hepatoma hybrid cells; Ethanol; Apoptosis; 
Fas receptor; Caspase

McVicker BL, Tuma DJ, Casey CA. Effect of ethanol on pro-
apoptotic mechanisms in polarized hepatic cells. World J 
Gastroenterol 2007; 13(37): 4960-4966

 http://www.wjgnet.com/1007-9327/13/4960.asp

INTRODUCTION
It has been well established that chronic ethanol consump-
tion can lead to a variety of  pathological consequences 
(ethanol-related liver injuries such as hepatomegaly, 
fatty liver, alcoholic hepatitis and cirrhosis)[1,2], yet the 
mechanism(s) by which ethanol causes hepatotoxicity 
requires further clarification. From several years of  
investigation, certain factors have been identified as having 
a role in ethanol-induced toxicity, such as changes in 
redox status (NAD+/NADH ratio), the accumulation of  
acetaldehyde (a product of  ethanol oxidation), depletion 
of  antioxidants such as glutathione, and the generation of  
reactive oxygen species (ROS)[3-8]. As a consequence, it has 
been demonstrated that amongst the various deleterious 
effects that can result from ethanol administration, it has 
been shown that alcohol-induced diseases are accompanied 
by morphological liver changes that include the increased 
production of  apoptotic cells[9-11]. More specifically, it 
has been demonstrated that ethanol administration is 
linked to hepatocyte apoptosis[12-14] and that the number 
of  apoptotic cells detected in the liver correlates with 
the development of  ethanol-induced pathological liver 
injury[15].

Apoptosis is a regulated mode of  cell death, which is 
characterized by specific biochemical and morphological 
changes in the cell. Morphologically, during induction 
of  apoptosis, the affected cells shrink, lose cytoskeletal 
contacts and undergo chromatin condensation. During 
the terminal phase of  the apoptotic process, the nucleus 
collapses followed by fragmentation of  the entire cell into 
apoptotic bodies which are recognized and eliminated 
through phagocytosis by neighboring cells[16-18]. The search 
for the biochemical and signal transduction pathways 
involved in producing the characteristic apoptotic 
morphological cellular changes has been underway for 
several years. The current dogma is that apoptosis is 
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Abstract
Chronic ethanol consumption is associated with serious 
and potentially fatal alcohol-related liver injuries such as 
hepatomegaly, alcoholic hepatitis and cirrhosis. Moreover, 
it has been documented that the clinical progression 
of alcohol-induced liver damage may be associated 
with an increase in hepatocellular death that involves 
apoptotic mechanisms. Although much information 
has been learned about the clinical manifestations 
associated with alcohol-related diseases, the search 
continues for a better understanding of the molecular 
and/or cellular mechanisms by which ethanol exerts its 
deleterious effects such as the induction of pro-apoptotic 
mechanisms and related cell damaging events. As part 
of the effort to enhance our understanding of those 
particular cellular pathways and mechanisms associated 
with ethanol toxicity, researchers over the years have 
utilized a variety of model systems. Recently, work 
has come forth demonstrating the utility of a hybrid 
cell line (WIF-B) as a cell culture model system for the 
study of alcohol-associated alterations in hepatocellular 
mechanisms. Success with such emerging model 
systems could aid in the development of potential 
therapeutic treatments for the prevention of alcohol-
induced apoptotic cell death that may ultimately serve 
as a significant target in delaying the onset and/or 
progression of clinical symptoms of alcohol-mediated 
liver disease. This review article summarizes the current 
understanding of ethanol-mediated modifications in cell 
survival and thus the promotion of pro-apoptotic events 
with emphasis on analyses made in various experimental 
mode l systems, par t i cu lar ly the more recent ly 
characterized WIF-B cell system.

© 2007 The WJG Press. All rights reserved.

www.wjgnet.com



thought to occur by two main pathways involving either an 
extrinsic route (which utilizes death receptors), and/or an 
intrinsic pathway that involves mitochondrial intracellular 
stress signals[19]. Once triggered, the apoptotic machinery 
is set into motion through the activation of  a family of  
intracellular cysteine proteases known as caspases, which 
amplify appropriate signals by acting as initiators as well as 
executioners in the death program. For instance, there are 
downstream executioner enzymes (caspases 3, 6, and 7) 
that are activated by upstream initiator caspases (caspases 8, 
2, 9, and 10) that are in turn regulated by specific protein-
protein interactions. As an example, caspases may be 
activated in an extrinsic manner by membrane signaling 
events (death domain transmembrane receptors) and/or 
by intracellular intrinsic changes resulting in the release of  
specific proteins from the mitochondria. Intertwined in 
these pathways are the proteins that control the intrinsic or 
extrinsic routes of  apoptosis that often belong to families 
that have specific domains that mediate their action. Some 
of  the regulatory proteins that have been identified include 
those of  the Bcl-2 family, which possess anti-apoptotic as 
well as pro-apoptotic activity via the Bcl-2 and Bax genes 
respectively.

Normally, in a healthy individual, the highly regulated 
apoptotic system is counterbalanced by cytoprotective 
signals that maintain tissue homeostasis. However, when 
an organism is subjected to repeated or exacerbated 
insults of  a pathological stimulus such as alcohol, pro-
apoptotic death factors can be inappropriately expressed 
shifting the balance towards enhancement of  the apoptotic 
machinery and subsequent deleterious effects. Hence, it 
has become clinically relevant that a better understanding 
of  the mechanisms and factors involved in apoptosis be 
ascertained which has lead to an emergence of  studies 
concerning the role of  apoptosis in the initiation and 
progression of  alcohol-induced liver injury.

ETHANOL-MEDIATED PATHOLOGICAL 
FACTORS AND APOPTOSIS
Over the past decade, significant progress has been made 
concerning the identification of  contributing factors that 
are involved in the initiation and progression of  apoptosis 
in both clinical and experimental alcoholic liver disease 
states. In general, it has been shown that alcohol-mediated 
apoptosis is a multi-factorial process that could involve: (1) 
oxidative stress mechanisms[20]; (2) the effects of  various 
cytokines, particularly TNF-α and TGF-β[21,22]; (3) the 
involvement of  death receptor pathways (TNF-receptor 
1 and Fas/CD95)[7,23]. How and when these factors 
elicit hepatotoxic effects is not completely understood, 
however it has been noted that a direct correlation exists 
between the ethanol concentration and time of  exposure 
in the ability of  these factors to promote apoptotic and/
or necrotic cell death. For instance, it has been shown 
that higher amounts of  alcohol resulted in a decline in 
apoptosis with an increase in promotion of  necrotic cell 
death, presumably from the induction of  microsomal 
cytochrome components, specifically cytochrome P450 
2E1 (CYP2E1). Conversely, at lower concentrations of  

ethanol, apoptosis is the preferential mode of  injury 
as death was found to be triggered by the Fas receptor 
system[24]. Thus, ethanol administration is related to cellular 
injury mechanisms, yet a complete understanding of  the 
presumably intertwined factors that can be involved in 
hepatotoxicity is still sought. The following is a brief  
review of  current knowledge concerning the factors 
identified in alcohol-mediated apoptotic liver damage.

Oxidative stress and alcohol-induced liver apoptosis
Following the recognition that ethanol and its metabolites 
induce the formation of  reactive oxygen species (ROS) in 
liver cells; studies were able to link the ethanol-mediated 
induction of  oxidative stress to the observed enhancement 
of  apoptosis. Specifically, it has been demonstrated 
that one of  the mechanisms responsible for ethanol-
induced hepatotoxicity appears to involve the induction 
of  intracellular enzymes, such as alcohol dehydrogenase 
(ADH) and the induction of  CYP2E1, that oxidize ethanol 
to reactive metabolites, producing reactive oxygen species 
and lipid peroxides[20]. In linking the ethanol-induced 
oxidative stress with liver cell apoptosis, it was determined 
that ROS cause damage to the mitochondria by altering 
mitochondrial membrane potential and/or membrane 
permeability. This in turn can initiate the release of  pro-
apoptotic factors, such as cytochrome c, thus activating 
the caspase cascade[25-27]. Identified targets in this process 
include mitochondrial DNA and specific proteins that are 
promoters of  apoptosis (Bax, Bad, and Bid), which are 
related to the Bcl-2 oncogene family[7].

Ethanol treatment was also shown to impair antioxidant 
levels in hepatocytes, resulting in ROS generation and 
increased oxidative stress. For example, the balance of  
glutathione is impaired by ethanol treatment and was 
found to be involved in the regulation of  mitochondrial 
function in alcohol-associated apoptosis[28]. In particular, it 
was determined that the mitochondrial glutathione (mGSH) 
pool itself  is depleted after ethanol administration, leading 
to the induction of  the apoptotic cell death program[29-31].

Overall, in reviewing the data, it is clear that ethanol 
administration results in enhanced oxidative stress; that 
mitochondria are intimately involved in the survival of  
the cell as both a producer and target of  ROS; and that 
apoptotic death can be the consequential end of  these 
changes.

The role of cytokines in ethanol-induced apoptosis
Cytokines are produced by multiple cell types in the liver 
and are integral in cellular signaling processes. Normally, 
liver cells use well-developed defense mechanisms as 
protection against cytokine-mediated damage. However, 
when toxins such as ethanol stress the cells, they lose their 
survival protection and become susceptible to the effects 
of  the various cytokines[21].

This scenario has been shown as the ethanol-related 
release of  cytokines [e.g. tumor necrosis factor-alpha 
(TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, and 
transforming growth factor-beta 1, TGF-β1] is associated 
with the promotion of  pro-apoptotic mechanisms[22,32]. 
Furthermore, TNF-α and TGF-β in particular have 
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been strongly implicated in ethanol-induced apoptosis. 
Specifically, it has been well documented that the chronic 
exposure of  ethanol can result in an elevation of  hepatic 
TNF-α, which in turn has been related to the activation 
of  caspases and the apoptotic program[8,33,34]. One pathway 
in which TNF-α-associated apoptosis occurs is through 
the interaction with the death receptor family, Fas ligand/
Fas, and TNF/TNF receptor (TNFR) systems. Within 
this family are three characterized receptors (TNFR1, 
TNFR2, and the Fas antigen, which are structurally related 
with shared homology for a death domain sequence, 
a C-terminal intracellular domain that is involved in 
apoptosis pathways. In another mechanism of  TNF-α-
induced cell death, the role of  TNF-α and mitochondrial 
GSH depletion in ethanol-related apoptosis was further 
defined. As mentioned above, ethanol impairs the transport 
of  cellular glutathione (particularly mGSH) resulting in its 
depletion and the subsequent sensitization of  the cell to 
undergo an apoptotic death. This ethanol-related depletion 
of  mGSH was also found to be associated with TNF-
mediated cell death in hepatocytes, as the cells became 
apoptotic as a result of  TNF-related events (such as the 
generation of  hydrogen peroxide). Validation of  this 
association came through studies demonstrating that TNF-
α-induced oxidative stress and subsequent apoptosis could 
be prevented by incubating hepatocytes with antioxidants 
as well as S-adenosyl-L-methionine, a substance that 
increases mGSH levels[35]. Overall, the data obtained 
from numerous studies has demonstrated that ethanol 
exacerbates TNF-related hepatotoxicity, in part, through 
the induction and perpetuation of  apoptotic cell death 
pathways.

Participation of  TGF-β1 in ethanol-induced apoptosis 
has also been widely studied. TGF-β1 is the prototype 
member of  the TGF-β family that is involved in a diverse 
array of  biological activities including development, 
differentiation, tissue remodeling, and apoptosis[36,37]. 
Several liver cells (including hepatocytes and hepatic 
stellate cells) can produce TGF-β1 in response to alcohol 
toxicity, and this production is considered to have a 
significant impact in the initiation and progression of  
alcoholic liver disease[38,39]. Researchers have identified 
some of  the pro-apoptotic pathways that have been 
induced by the up-regulation of  TGF-β1 in response to 
ethanol treatment. It has been demonstrated utilizing a 
fetal hepatocyte model that TGF-β1 induces apoptosis 
by producing oxidative stress in the cells by increasing 
ROS production and decreasing the level of  a natural 
antioxidant, glutathione[40,41]. In addition, the increase 
in TGF-β1-mediated signaling, resulting in caspase 
activation, can be associated with the enhanced cleavage 
of  the caspase substrate PARP [poly (ADP)-ribose 
polymerase][42]. It has also been identified that TGF-β1 
can activate the caspase cascade by either of  the two 
primary pro-apoptotic mechanisms (death receptor-
mediated pathway or intracellular stress-signaled pathway 
involving mitochondrial changes and the release of   
cytochrome c), and either pathway can involve the 
formation of  an apoptosome complex that activates the 
proteolysis of  the cell[43].

Involvement of the Fas/Fas ligand system in ethanol-
induced liver cell apoptosis
Of  the death receptor-mediated pathways, the involvement 
of  the Fas/Fas ligand system has proven to play a 
significant role in alcohol-related apoptosis in the liver. 
The pro-apoptotic signaling of  Fas (a glycosylated cell-
surface protein) is similar to other death receptors in that 
a specific interaction of  the oligomerized receptor with 
an associated ligand (i.e. Fas ligand) or antibody stimulates 
the recruitment of  the cytoplasmic adapter protein (Fas 
associated death domain, FADD) that mediates caspase 
activation and the signaling of  the apoptotic death 
program[44]. In the liver, increases in the expression of  
membrane-bound Fas as well as the levels of  soluble Fas 
and Fas ligand have been associated with pathological 
conditions associated with alcoholic hepatitis[13,45]. Also, 
the up-regulation of  Fas ligand in hepatocytes following 
ethanol treatment is thought to induce apoptotic death 
of  neighboring cells by interacting with the Fas receptor 
on the surface of  those cells[45]. Overall, it is thought that 
the activation of  Fas results in the promotion of  the 
apoptotic program that can include the induction of  the 
caspase cascade and permeabilization of  the mitochondrial 
membrane[46,11]. Moreover, the importance of  the Fas/Fas 
ligand system in caspase 3 activation and apoptosis in the 
liver following ethanol treatment was substantiated as the 
administration of  a caspase 3 inhibitor was shown to block 
ethanol-induced caspase 3 activity along with apoptosis[47]. 
Thus, there is a growing amount of  evidence that the 
Fas/Fas ligand system is a critical element in the activation 
of  the caspase cascade and the subsequent demise of  liver 
cells following chronic ethanol abuse.

MECHANISMS OF ALCOHOL-INDUCED
APOPTOSIS
The enhancement of  our unders tand ing of  the 
mechanisms involved in the apoptotic cascade is 
becoming exceedingly important and relevant to disease 
states such as ALD. However, studies concerning the 
effect of  ethanol on cellular processes such as apoptosis 
are often limited due to the applicability of  the model 
system. As an example, the dose required for ethanol-
induced hepatotoxicity in vitro has been found to vary 
between cell strains presumably due to the differences 
in the metabolism of  ethanol by ADH and CYP2E1[25]. 
Also, the use of  freshly isolated hepatocyte models were 
found to produce confounding results when searching for 
mechanistic parameters as the cells dedifferentiate (i.e. lose 
cell polarity and many liver-specific characteristics such 
as the ability to metabolize ethanol) within a few hours 
after isolation, making the cells useful for short-term 
culture conditions only. Despite these limitations, many 
studies have been performed yielding useful information 
concerning pro-apoptotic mechanisms that are induced 
following ethanol administration.

Around fifteen years ago, interest began to develop 
concerning the relevance of  apoptotic cell death in 
liver pathology with particular interest in hepatocellular 
injury associated with ethanol toxicity[48]. Since the 
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acceptance that apoptosis may play a significant role in 
the development of  liver injury, studies have searched 
for the potential mechanisms and pathways that are 
involved. In animal models, it was demonstrated that 
ethanol feeding resulted in an increase in apoptotic cells 
in the liver[11,49] that was subsequently shown to be related 
to the induction of  reactive oxygen species (ROS) as 
a result of  ethanol metabolism and the generation of  
acetaldehyde[50]. Furthermore, it was concluded that the 
ethanol-induced ROS production was driven by redox 
changes that ultimately lead to mitochondrial dysfunction 
and caspase activation. These intrinsic events were not, 
however, the only mechanism by which ethanol was found 
to induce apoptosis. Specifically, it was determined that 
ethanol can also induce apoptosis through the involvement 
of  the extrinsic death receptor pathway via the Fas/CD95 
receptor system[50].

In other works, acute studies involving ethanol 
treatment to cells isolated from animals also demonstrated 
that oxidative stress was involved in mitochondrial 
membrane changes that were found to result in cytochrome 
c release and caspase activation[51,52]. Additionally, studies 
using developed recombinant cell lines demonstrated the 
role ethanol-inducible CYP2E1 has in alcohol-mediated 
apoptosis. Particularly, it was shown that ethanol-induced 
apoptosis was related to oxidative stress and subsequent 
lipid peroxidation in CYP2E1 over expressing cells[53], 
confirming the central role ROS and CYP2E1 have in 
ethanol-mediated cell death as hypothesized in previous 
works[25,54-56]. Additional evaluations demonstrated that 
such activation of  intrinsic apoptotic pathways could be 
related to alcohol-mediated glutathione depletion which 
enhances the sensitivity of  the cell to succumb to death, 
especially when faced with additional insults (e.g. increases 
in TGF-β expression or the presence of  Hepatitis 
virus)[52,57-59]. Furthermore, continued searches for pro-
apoptotic mechanisms involved in ethanol-mediated cell 
injury have provided additional information regarding 
the potential contribution regulatory mechanisms have in 
hepatocellular apoptosis, such as the role of  NF-κB and 
ethanol-mediated alterations in proteosome function[60,61]; 
whether the processes are p53 dependent[62,63]; and what 
role pro-apoptotic Bcl-2 family proteins have in mediating 
mitochondrial permeability and apoptosis during alcohol 
cytotoxicity[59].

Overall, substantial information has been gained 
linking oxidative stress from alcohol metabolism via ADH 
and CYP2E1 to the induction of  several pro-apoptotic 
mechanisms involving both intrinsic and extrinsic 
apoptosis pathways. However, the development and use 
of  additional model systems, such as a recently described 
polarized hepatic cell line, may significantly contribute to 
our understanding of  pro-apoptotic mechanisms induced 
as a consequence of  ethanol administration.

ETHANOL-INDUCED APOPTOSIS IN A 
POLARIZED LIVER CELL MODEL
Many of  the studies performed previously concerning the 
effect of  ethanol on cellular processes have used alcohol-

fed animal models as sources of  isolated hepatocytes 
in order to provide more compatible models to human 
pathology than most cell culture systems provide. 
However, limitations were often observed in the model 
systems used. For example, the study of  protein trafficking 
events in cultured systems has been hampered by the 
lack of  a well-polarized cell that adequately mimics the 
complexity of  in vivo hepatocyte protein delivery systems 
(i.e. the indirect transport of  apical membrane proteins). 
Recently, our laboratory has demonstrated that the 
use of  the WIF-B hepatoma hybrid cell line (in which 
polarity is a stable and dominant trait)[64,65] is an ideal  
in vitro model for studying the effects of  ethanol on cellular 
processes[66]. Specifically, the WIF-B cells were found to 
exhibit alcohol dehydrogenase (ADH) activity allowing 
for the efficient metabolism of  ethanol. Also, increases 
were observed in cellular triglyceride levels in the WIF-B 
cells following ethanol treatment, similar to the reported 
fat accumulation that is observed in human alcoholic liver 
injury. In addition, treatment of  the WIF-B cells with 
alcohol resulted in morphological changes in the cells as 
demonstrated by decreases in bile canalicular formation 
and cell-cell contacts[66]. Thus, the use of  the WIF-B cell 
line to study ethanol-induced cellular mechanisms is quite 
appropriate since the cells present a unique culture system 
that has the ability to metabolize ethanol and is a system 
that more closely resembles human morphology than 
other known cell lines.

The WIF-B hybrid cell is a cross between a human 
fibroblast (WI 38) and a Fao rat hepatoma cell line[64,67]. 
This clone represents a polarized and differentiated cell 
of  hepatic origin that exhibits long-term viability in 
culture, develops a hepatocellular-polarized phenotype 
and expresses human genes coding for liver-specific 
proteins (albumin, fibrinogen, and ADH)[68]. One of  
the unique characteristics of  the WIF-B clone is that 
the cells grow in monolayers and acquire a polarized 
phenotype as the cells form bile canalicular-like spaces 
(BC) that have concentrated apical membrane proteins. 
Therefore, these cells are useful for the functional studies 
of  hepatocyte-specific properties such as the transport of  
membrane proteins. Indeed, several studies have utilized 
the advantages of  the maintained polarized cell to study 
intercellular communication, bile acid transport systems, 
and membrane trafficking pathways[69-71].

In recent studies using this hepatic model, it was 
demonstrated that ethanol treatment induces apoptosis via 
signals emanating from the pro-apoptotic death receptor 
systems (i.e. Fas/CD95) as well as from intrinsic signals 
that resulted in mitochondrial changes[72]. Specifically, 
it was demonstrated that ethanol treatment of  WIF-B 
cells resulted in a significant increase in apoptotic-related 
morphological changes (cells that contained condensed 
chromatin) that were also associated with pro-apoptotic 
biochemical features (indicated by the induction of  
caspase-3 activity). Also, it was shown that caspase-3 
activation in ethanol-treated WIF-B cells was related to 
mitochondrial permeability transition (MPT) as ethanol 
treatment resulted in cytochrome c release that was found 
to be sensitive to cyclosporine A (an inhibitor of  MPT). 
Additionally, it was determined that in the ethanol-induced 
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involving ethanol abuse. Insights into the cellular 
mechanisms involved in the initiation and propagation of  
apoptosis will significantly impact our understanding of  
alcohol-induced liver disease and may lead to the potential 
development of  therapeutic interventions. The use of  
an emerging model system, polarized hepatic WIF-B 
cells, could significantly impact the study of  alcohol-
related hepatocellular injury, especially concerning the 
delineation of  mechanisms involved in ethanol-induced 
cell death. In addition, polarized hepatic cell cultures 
may aid in the acquisition of  translational information as 
the WIF-B cells offer a more compatible model system 
that better correlates to human pathology for analysis of  
potential therapeutic targets that could modulate apoptotic 
mechanisms induced by ethanol.
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the consequential generation of reactive oxygen species are implicated in the 
activation of pro-apoptotic mechanisms via death receptor (i.e. Fas/CD95) as well 
as intrinsic apoptotic pathways.
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