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Abstract
AIM: To investigate the effect of arg-gly-asp-mannose-6 
phosphate (RGD-M6P) on the activation and proliferation 
of primary hepatic stellate cells in vitro . 
 
METHODS: Hepatic stellate cells (HSCs) were isolated 
from rats by in situ  collagenase perfusion of liver and 
18% Nycodenz gradient centrifugation and cultured on 
uncoated plastic plates for 24 h with DMEM containing 
10% fetal bovine serum (FBS/DMEM) before the culture 
medium was substituted with 2% FBS/DMEM for another 
24 h. Then, HSCs were cultured in 2% FBS/DMEM with 
transforming growth factor β1, M6P, RGD, or RGD-
M6P, respectively. Cell morphology was observed under 
inverted microscope, smooth muscle α-actin (α-SMA) 
was detected by immunocytochemistry, type III 
procollagen (PCⅢ) in supernatant was determined by 
radioimmunoassay, and the proliferation rate of HSCs 
was assessed by flow cytometry. 

RESULTS: RGD-M6P s igni f icant ly inh ib i ted the 
morphological transformation and the α-SMA and PC
Ⅲ expressions of HSCs in vitro  and also dramatically 
prevented the proliferation of HSCs in vitro . Such effects 
were remarkably different from those of RGD or M6P. 

CONCLUSION: The new compound, RGD-M6P, which 
has a dramatic effect on primary cultured HSCs in 
vitro , can inhibit the transformation of HSCs in culture 
caused by TGFβ1, suppresses the expression of PCⅢ 
and decreases proliferation rate of HSC. RGD-M6P can 
be applied as a selective drug carrier targeting at HSCs, 
which may be a new approach to the prevention and 
treatment of liver fibrosis.
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INTRODUCTION
Liver fibrosis is characterized by an excessive deposition 
of  extracellular matrix constituents, resulting from an 
enhanced synthesis of  matrix proteins (fibrogenesis) and 
decreased removal by matrix degrading enzymes (fibrolysis) 
in consequence of  liver cell damage of  various causes[1-3]. 
The major cell type responsible for hepatic fibrogenesis is 
the activated hepatic stellate cells (HSCs). Therefore, this 
cell type is an important target for antifibrotic therapy[4,5].  
Pharmacotherapeutic intervention to alter HSC functions 
may act at different levels: inhibition of  activation and 
transformation of  HSCs, inactivation of  profibrogenic 
cytokines, interference with matrix synthesis and stimula-
tion of  matrix degradation[6-11]. In vivo, however, antifi-
brotic drugs may not be efficiently taken up by HSCs or 
may produce undesirable side effects. Drug targeting may 
be explored to elicit cell-specific uptake of  drugs, but in 
contrast to other cell types in the liver, a specific carrier 
agent to go into HSCs is not yet known[12]. Therefore, 
we focused on the development of  a specific carrier for 
HSCs. The binding sites expressed on activated HSCs were 
considered for their ability to serve as potential targets for 
carrier molecules. Two of  these are integrin and mannose 
6-phosphate/insulin like growth factor II (M6P/IGF-II) 
receptors, which are over-expressed on activated rat HSCs, 
particularly during fibrosis[13,14]. Additionally, extracellular 
matrixes (ECM) regulate the morphology and biological 
activities of  HSCs through integrins on the cell mem-
brane[13]. It has been certified that the RGD sequence plays 
a vital role in the linkage between ECM and integrins[13]. 
This study was to synthesize a new compound, RGD-M6P 
targeting at integrins and/or M6P/IGF-II receptors over-
expressed on activated HSCs and to study its effects on the 
activation and proliferation of  primary cultured HSCs in 
order to find a new approach for regulating HSC activation 
and anti-hepato-fibrotic therapy. If  successful, this may be 
of  value in the design of  other receptor-specific carriers.  
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MATERIALS AND METHODS
Animals  
Male Sprague-Dawley rats weighing 400-500 g were pur-
chased from the Shanghai Laboratory Animal Center, Chi-
nese Academy of  Sciences. 

Main reagents 
RGD, M6P and RGD-M6P were synthesized in Gastro-
enterological Laboratory of  Xinhua Hospital, Shanghai 
Second Medical University. DMEM was purchased from 
Gibco Company. Procollagen Ⅲ (PCⅢ) radioimmunoas-
say kits were purchased from Institute of  Naval Medicine, 
Shanghai. α-SMA monoclonal antibody was provided from 
by Cruz Company. 

Isolation of HSCs and grouping 
HSCs were isolated and cultured. Briefly, the rats were 
anesthetized with an intraperitoneal injection of  pento-
barbital. After cannulation into the portal vein, the liver 
was perfused with calcium-free balanced NS containing 
0.5 mg/mL collagenase and 1 mg/mL pronase E. Then 
the liver was removed, cut into small pieces and incubated 
in a solution containing 0.5 mg/mL collagenase. After 
washed, HSCs were purified by density gradient centrifu-
gation with 18% Nycodenz, collected from the top layer, 
washed and suspended in DMEM supplemented with 10% 
FBS at the concentration of  1×106 cells/mL，and seeded 
on uncoated 24-well plastic plates at 1×105/well supple-
mented with 20% FBS/DMEM for 24 h. Then the HSCs 
were subjected to tetrandrine treatment after cultivation in 
2% FBS/DMEM for another 24 h. Over 90% of  isolated 
HSCs were viable as assessed by trypan blue exclusion with 
a purity of  higher than 90% as determined by direct cell 
counting under a phase-contrast microscope and intrinsic 
vitamin A autofluorescence.  
    HSCs were subjected to different treatments for 5 d as 
follows: control group：without any treatment; TGFβ1 
group：supplemented with 5 ng/mL TGFβ1; M6P 
group：supplemented with 100 μg/mL M6P and 5 ng/mL 
TGFβ1; RGD group: supplemented with 100 μg/mL RGD 
and 5 ng/mL TGFβ1; RGD-M6P group: supplemented 
with 200 μg/mL RGD-M6P and 5 ng/mL TGFβ1. 

Immunocytochemical analysis of α-SMA  
HSCs were cultured on 24-well plates with different 
treatments as described above. HSCs were fixed with 
ethanol/acetic acid after 5 d of  treatment. α-SMA 
antibody, horse radish peroxidase-conjugated secondary 

antibody and diaminobenzidine were added sequentially 
according to the standard protocol.  Semi-quantitative 
assessment of  protein expression was performed using 
pathological image analysis system. The expression of  
α-SMA was estimated by gray value. 

PCⅢ  content  
PCⅢ in supernatant was measured with a radioimmunoassay 
kit according to the manufacturer’s instructions. 

Flow cytometry  
The cell cycle was analyzed by flow cytometry to assess 
the proliferation rate of  HSCs. Adherent and floating cells 
were collected from a 6-well plate, centrifuged and washed 
twice with PBS at room temperature. Cell pellets were re-
suspended in ice-cold 70% ethanol for overnight fixation 
at 4 ℃, centrifuged and re-suspended in 0.8 mL PBS. One 
microlitre 10 mg/μL RNase and 20 μL propidium iodide  
(1 mg/mL)were added and samples were incubated at 
37 ℃ for 30 min before analysis by flow cytometry using a 
Beckman Coulter FC500. Proliferation was quantitatively 
measured as the percentage of  cells in the G2/M phase. 

Statistical analysis 
All data were expressed as mean±SD. Statistical analysis of  
values was performed with SPSS software (10.0 version). 
P < 0.05 was considered statistically significant. 

RESULTS
Morphological study of isolated HSCs in vitro 
Over 90% of  isolated HSCs were viable as assessed by 
trypan blue exclusion, which were small and round in 
appearance (Figure 1A). HSCs stimulated by 327 nm-
length laser, showed a blue-green intrinsic autofluorescence 
due to vitamin-A rich droplets. After cultured for 72 
h, HSCs presented a wall-adhesive growth pattern and 
many spindle-like or asteroid membranous processes and 
a reduction of  vitamin-A droplets (Figure 1B).  Overall, 
these findings indicated that HSCs freshly isolated from 
normal rats showed an activated form after 5 d of  in vitro 
culture.  

Expression of α-SMA in culture-activated HSCs  
Immunocytochemical assay was used to evaluate the 
percentage of  α-SMA-positive HSCs in different groups. 
The percentage of  α-SMA-positive HSCs was significantly 
higher in TGFβ1 and M6P groups (Figures 2B and 2C) 

Figure 1 Small and round HSCs in the 
presence of vitamin-A droplets in cytoplasm 
(A) and spindle-like or asteroid membranous 
processes in HSCs (B). 
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than in control, RGD and RGD-M6P groups (Figures 
2D and 2E). Even condensed α-SMA positive granules 
could be found (Figure 2B). No difference was found in 
the immunohistochemical study between RGD and RGD-
M6P groups (Figure 2F). The cytomorphology study 
showed that the primary isolated HSCs were positive for 
α-SMA and the positivity was intensified through auto-
activating characteristics of  HSCs in vitro. Additionally, 
RGD and RGD-M6P could inhibit the activation of  HSCs 
stimulated by TGFβ1. 

PCⅢ  excretion from culture-activated HSCs  
PCⅢ is the most acceptable parameter of  fibrogenesis as 
compared to other ECM contents, such as collagens I, 
Ⅲ,Ⅳ, fibronectin, laminin and proteoglycans[15,16]. The 
level of  PCⅢ in the control group was lower than that in 
the other groups (P < 0.01, Table 1), and higher in TGFβ1 
and M6P groups than in RGD and RGD-M6P groups. 
No difference was found in the level of  supernatant PCⅢ 
between RGD and RGD-M6P groups. The results showed 
that the effect of  RGD-M6P was better than that of  M6P 
on inhibiting PCⅢ expression after stimulated by TGFβ1. 

Proliferation of cultured HSCs  
The activation of  HSCs resulted in over-expression of  

α-SMA and increased proliferation of  HSCs. Cell cycle 
analysis was used to evaluate the proliferation rate by 
flow cytometry. The primary isolated HSCs showed a 
characteristic proliferation (Figure 3A), which was further 
increased by TGFβ1 (Figure 3B).  M6P showed no effect 
on the proliferation of  HSCs (Figure 3C). On the contrary, 
RGD and RGD-M6P inhibited the proliferation of  
isolated HSCs significantly (Figures 3D and 3E).  

DISCUSSION
In the past decade, significant advances have been made 
in anti-fibrosis therapy due to a better understanding 
of  the cellular and molecular mechanism of  hepatic 
fibrogenesis[1-3,8]. The key factors in the pathogenesis of  
liver fibrosis include the activation and proliferation of  
HSCs and their transformation into myofibroblasts[5]. 
Therefore, HSCs are the important target for antifibrotic 
therapies[4,12,17,18]. However, contrary to in vitro data, in 
vivo studies[13,14,19] demonstrated that most antifibrogenic 
agents cannot be efficiently taken up by HSCs and the 
binding sites expressed on (activated) HSCs can serve as 
potential targets for carrier molecules. Two of  these are 
integrin and M6P/IGF-II receptors and their expressions 
are increased on activated rat HSCs, particularly during 
fibrosis. Some anti-fibrotic reagents targeting at HSCs 
have been developed[12,20], which allow cell-specific delivery 
of  antifibrotic drugs to HSCs, thus enhancing their 
effectiveness in vivo. 
    Specif ic interact ions between cel ls and ECM 
components are mediated by transmembrane proteins, 
especially heterodimeric integrins. Cell-matrix interactions 
guide or modulate cellular activities, such as adhesion, 
migration, differentiation, proliferation, and apoptosis[13].  
Most integrins can recognize and bind to the amino acid 
sequence of  RGD present in various matrix proteins.  The 
expression of  integrins is increased during liver fibrosis, 
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Figure 2 Immunocytochemical analysis of HSCs after cultured for 5 d (A), after treatment with TGFβ1 (B) and M6P (C), weak positivity of α-SMA RGD (D) and RGD-M6P (E), 
and elevated expression of α-SMA (F) in HSCs. aP < 0.05 vs control groups; cP < 0.05 vs TGFβ1. 

Table 1 PCⅢ level in different groups (mean±SD)

Group n Concentration of PCⅢ (ng/mL)

Control group 5 323.59 ± 16.14
TGFβ1 group 5 403.56 ± 7.97a

M6P group 5 399.70 ± 2.25a

RGD group 5 370.87 ± 13.07a,b

RGD-M6P group 5 357.61 ± 13.07a,b

aP < 0. 01 vs control groups; bP < 0. 01 vs TGFβ1 group.
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especially on the membrane of  activated HSCs, suggesting 
that integrins can be used as a homing device to target 
at HSCs in fibrotic livers[19,21]. About 10%-20% of  M6P/
IGF-II receptors are expressed in cell membrane and over-
expressed with the activation of  HSCs[14]. It was reported 
that integrin antagonists can reduce the level of  serum 
PCⅢ in fibrotic rats and inhibit the stimulating action of  
TGFβ1 on ECM expression[22-24]. Beliaars et al[25,26] showed 
that M6P-modified albumin accumulates in slices of  
normal and fibrotic liver and is taken up by HSCs. In the 
present study, we synthesized RGD-M6P and investigated 
its effects on the activation and proliferation of  the 
primary HSCs in vitro.  
    The isolated primary HSCs in culture undergo auto-
activation[27]. During this process, the expression of  
α-SMA is raised[28] and HSCs transform into fibroblast-like 
cells with increased proliferating activity[27], which might 
lack microenvironment in vitro. HSCs supplemented with 
TGFβ1 put forth more processes on their cell membrane, 
and the supernatant PCⅢ level is increased[29,30]. At the 
same time, the proliferation of  HSCs is increased. Both 
RGD and RGD-M6P could inhibit the effect of  TGFβ1 
on the activation and proliferation of  HSCs as well as PCⅢ 
expression. Though the M6P molecule participates in the 
activation of  latent TGFβ1[31], it can be used as a candidate 
in the study of  anti-fibrosis. In the present study, we could 
not find its anti-fibrosis activity because M6P acted on the 
activated TGFβ1 rather than the latent form.  Moreover, 

RGD-M6P may have a more effective anti-fibrotic activity 
than RGD because RGD-M6P targets at the integrin and 
M6P/IGFⅡ receptors on HSC membrane, thus more 
effectively modulating the HSC activity. But our present 
results failed to support the hypothesis. Further study 
is needed to explore the precise mechanism of  this new 
complex.
    In conclusion, integrins are related with TGFβ1 signal 
transduction and influence other signal transduction 
molecules such as JNK and NF-кB. 
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