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Abstract
AIM
To investigate the abundance and potential functions of 
LAP+CD4+ T cells in colorectal cancer (CRC). 

METHODS
Proportions of LAP+CD4+ T cells were examined in 
peripheral blood and tumor/paratumor tissues of CRC 
patients and healthy controls using flow cytometry. 
Expression of phenotypic markers such as forkhead 
box (Fox)p3, cytotoxic T-lymphocyte-associated protein 
(CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 
was measured using flow cytometry. LAP-CD4+ and 
LAP+CD4+ T cells were isolated using a magnetic cell-
sorting system and cell purity was analyzed by flow 
cytometry. Real-time quantitative polymerase chain 
reaction was used to measure expression of cytokines 
interleukin (IL)-10 and transforming growth factor 
(TGF)-β.
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RESULTS
The proportion of LAP+CD4+ T cells was significantly 
higher in peripheral blood from patients (9.44% ± 
3.18%) than healthy controls (1.49% ± 1.00%, P  < 
0.001). Among patients, the proportion of LAP+CD4+ T 
cells was significantly higher in tumor tissues (11.76% 
± 3.74%) compared with paratumor tissues (3.87% 
± 1.64%, P  < 0.001). We also observed positive 
correlations between the proportion of LAP+CD4+ T 
cells and TNM stage (P  < 0.001), distant metastasis (P  
< 0.001) and serum level of carcinoembryonic antigen 
(P  < 0.05). Magnetic-activated cell sorting gave an 
overall enrichment of LAP+CD4+ T cells (95.02% 
± 2.87%), which was similar for LAP-CD4+ T cells 
(94.75% ± 2.76%). In contrast to LAP-CD4+ T cells, 
LAP+CD4+ T cells showed lower Foxp3 expression but 
significantly higher levels of CTLA-4, CCR4 and CCR5 
(P  < 0.01). LAP+CD4+ T cells expressed significantly 
larger amounts of IL-10 and TGF-β but lower levels of 
IL-2, IL-4, IL-17 and interferon-γ, compared with LAP-

CD4+ T cells.

CONCLUSION
LAP+CD4+ T cells accumulated in the tumor micro
environment of CRC patients and were involved in 
immune evasion mediated by IL-10 and TGF-β.

Key words: LAP+CD4+ T cells; Colorectal cancer; Tumor 
microenvironment; Interleukin-10; Transforming growth 
factor-β
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Core tip: Many carcinomas, including colorectal cancer, 
gastric and nasopharyngeal cancer, are associated with 
elevated numbers of T regulatory (Treg) cells. It is 
suggested that Treg cells promote tumor development 
and metastasis by inhibiting the proliferation of effector 
T lymphocytes. LAP+CD4+ T cells, a recently identified 
subset of CD4+ Treg cells, have 50-fold more potent 
immunosuppressive ability than traditional CD4+CD25+ 

T cells. Here, we present several lines of evidence 
correlating LAP+CD4+ T cells with colorectal cancer 
progression.

Zhong W, Jiang ZY, Zhang L, Huang JH, Wang SJ, Liao C, Cai B, 
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http://dx.doi.org/10.3748/wjg.v23.i3.455

INTRODUCTION
Colorectal cancer (CRC) is the third most common 
carcinoma in men and second most common in 
women, with > 1 million new cases and > 500000 

deaths every year worldwide[1,2]. CRC progression is a 
complex process involving interactions between host 
cellular immunity factors and the tumor, which take 
place in the so-called tumor microenvironment[3,4]. 
This environment includes numerous factors that 
promote tumor growth, such as energy and nutrients 
in blood vessels, growth factors from immune cells 
and stromal cells, and proinflammatory mediators 
secreted by tumor cells[5]. The environment also 
contains numerous factors that can limit tumor 
growth, such as tumor-infiltrating immune cells and 
tertiary lymphoid structures[6]. This complex mixture 
of factors largely determines patient prognosis and 
serves as an attractive therapeutic target[6,7].

Several studies have suggested that during CRC 
progression, peripheral regulatory T (Treg) cells 
and myeloid suppressor cells increase in the tumor 
microenvironment, which is associated with worse 
prognosis[8-10]. Part of the reason appears to be that 
these cell populations counteract the host’s antitumor 
immune response[11]. Downregulating Treg cells can 
render antitumor responses more effective, which 
may improve prognosis in patients with CRC and other 
malignant carcinomas[12].

LAP+CD4+ T cells are a newly identified subset of 
Treg cells that express latent-associated peptide (LAP), 
and function within the latent transforming growth 
factor (TGF)-β complex to block interaction between 
TGF-β and receptors on immune cells[13]. Among the 
various Treg cell populations, LAP+CD4+ T cells are 
endowed with more potent immunosuppressive fun
ction than traditional CD4+CD25+Foxp3+ Treg cells[14], 
and they are associated with autoimmune disease 
progression[13,15-17]. However, we are unaware of 
studies examining whether LAP+CD4+ T cells contribute 
to CRC progression. Thus, we analyzed the abundance, 
phenotype and cytokine secretion of LAP+CD4+ T cells 
in the tumor microenvironment in patients with CRC.

MATERIALS AND METHODS
Ethics statement
All patients enrolled in this study provided written 
informed consent. The study protocol conformed to 
the ethical guidelines of the Declaration of Helsinki 
(Fortaleza, Brazil; October 2013), and it was approved 
by the Research Ethics Committee of the First Affiliated 
Hospital of Guangxi Medical University, China.

Study participants and samples
This study involved 50 patients who underwent 
primary tumor resection for colorectal adenocarcinoma 
at the First Affiliated Hospital of Guangxi Medical 
University from January to August 2014. Samples 
of peripheral blood were obtained preoperatively, 
and colorectal tumor and paratumor tissues were 
obtained postoperatively from each patient. Paratumor 
tissue samples were taken from tissue near the 
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resection margin (≥ 10 cm away from the tumor 
site) that was confirmed to be tumor-free based on 
routine pathology. The basic data regarding the study 
population are shown in Table 1.

Patients were excluded if they (1) had already 
undergone CRC surgery or had been diagnosed with 
locoregional recurrence; or (2) were receiving any 
anticancer therapy, corticosteroids or other nonsteroidal 
anti-inflammatory drugs at the time of peripheral 
venous blood collection. 

During the study period, peripheral blood was 
also collected from 25 healthy donors serving as a 
control group. Healthy controls were free of chronic 
pain, cardiovascular complaints, or other chronic 
inflammatory diseases. They were matched with 
patients in age and sex and showed no significant 
differences from patients. 

Cell isolation 
Peripheral blood mononuclear cells (PBMCs) were 
isolated from patients using Ficoll density gradient 
centrifugation. Fresh tumor and paratumor samples 
were washed three times in RPMI 1640; after which, 
fatty, connective and necrotic tissues were removed. 
Samples were cut into 1-2-mm cubes, transferred 
to a 50-mL beaker, and incubated for 3 h at room 
temperature with a triple-enzyme digestion medium 
containing 1 mg/mL collagenase IV, 30 μg/mL DNase 
Ⅰ and 0.1 mg/mL hyaluronidase (Sigma, St. Louis, 
MO, United States). Dissociated cell suspensions were 
filtered through a 70-μm nylon mesh, then tumor-
infiltrating lymphocytes (TILs) were isolated from 
cell suspensions using discontinuous density gradient 
centrifugation[18]. LAP-CD4+ T cells and LAP+CD4+ T 
cells were isolated using a Magnetic cell sorting system 
(Miltenyi Biotec, Bergisch Gladbach, Germany). Cell 
purity was analyzed by flow cytometry as described 
below.

Flow cytometry
TILs and PBMCs were stimulated in culture for 4 h at 
37 ℃ with 50 ng/mL phorbol-12-myristate-13-acetate, 

1 μg/mL ionomycin, and 0.7 μl/mL GolgiStop reagent 
in a 5% CO2 incubator. T cells were identified based on 
surface or intracellular expression of markers labeled 
using antibodies (eBioscience, San Diego, CA, United 
States) against the following human antigens: LAP, 
CD4, forkhead box (Fox)p3, cytotoxic T-lymphocyte-
associated protein (CTLA)-4, chemokine CC receptor 
(CCR)4, and CCR5. Antibodies were conjugated with 
one of the following fluorophores: phycoerythrin (PE), 
fluorescein isothiocyanate, PEcy5.5, PEcy7, peridinin 
chlorophyll protein (PerCP)-cy5.5, or allophycocyanin. 
Labeled cell suspensions were analyzed using a FACS 
Calibur flow cytometer (BD Bioscience, Franklin Lakes, 
NJ, United States) and FlowJo software (Tree Star, 
Ashland, OR, United States).

Real-time quantitative polymerase chain reaction
Total RNA was isolated using TRIzol reagent 
(Invitrogen, Carlsbad, CA, United States), and first-
strand cDNA was generated using oligo (dT) primers 
and the SuperScript Ⅲ First-Strand Synthesis System 
(Invitrogen). Levels of mRNAs encoding cytokines 
secreted by LAP+CD4+ T cells and LAP-CD4+ T cells 
(TGF-β, INF-γ, IL-2, IL-4, IL-10 and IL-17) were 
determined using SYBR-based real-time polymerase 
chain reaction (7500 StepOnePlus system, Applied 
Biosystems, Carlsbad, CA, United States) and primers 
purchased from TaKaRa Biosystems (Table 2). Relative 
expression levels were calculated using the 2-ΔΔCT 
method and normalized to levels of β-actin mRNA. 

Statistical analysis
Data were expressed as mean ± SD. Differences 
between two groups were assessed for significance 
using the Mann-Whitney U test, t-test, or paired t-test, 
as appropriate. All statistical tests were performed 
using SPSS version 16.0 (SPSS, Chicago, IL, United 
States), and the threshold of significance was defined 
as P < 0.05.
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Table 1  Clinical characteristics of patients with colorectal 
cancer

Characteristics Value1

Male 31
Female 19
Age, yr 57.4 (37-76)
Location of primary tumor
   Colon 22
   Rectum 28
TNM stage
   Ⅰ/Ⅱ 23
   Ⅲ/Ⅳ 27

1Values are n or mean (range).

Table 2  Primer sequences for polymerase chain reaction

Gene Sequence (5’-3’) Product 
(bp)

T (℃)

IL-2 F:5’ CAGCTACAACTGGAGCATTTAC 130 60
R:5’ TCAGTTCTGTGGCCTTCTTG

IL-4 F:5’ GACCGTAACAGACATCTTTGC 180 60
R:5’ TCGAGCCGTTTCAGGAAT

IL-10 F:5’ TTGCCAAGCCTTGTCTGA 160 60
R:5’ ACAGGGAAGAAATCGATGAC

IL-17 F:5’ CCTCAGAGATCAACAGACCAA   80 60
R:5’ GGTGCCTTGATCAGACAGAA

IFN-g F:5’ GGCAAGGCTATGTGATTACA 180 60
R:5’ TAAAGCACTGGCTCAGATTG

TGF-β1 F:5’ CACGTGGAGCTGTACCAGAA 219 60
R:5’ GAACCCGTTGATGTCCACTT

18srRNA F:5’ CCTGGATACCGCAGCTAGGA 112 60
R:5’ GCGGCGCAATACGAATGCCCC
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Figure 2B) and serum level of carcinoembryonic 
antigen (CEA) (P < 0.05; Figure 2C) (Table 3).

LAP+CD4+ Treg cell phenotype in CRC microenvironment
Further studies of phenotypic marker expression 
revealed differences between LAP+CD4+ T cells and 
LAP-CD4+ T cells. In contrast to LAP-CD4+ T cells, 
LAP+CD4+ T cells showed lower Foxp3 expression but 
significantly higher levels of CTLA-4, CCR4 and CCR5 (P 
< 0.01; Figures 3 and 4).

Magnetic-activated cell sorting in vitro 
Magnetic-activated cell sorting gave an overall 
enrichment of LAP+CD4+ T cells (95.02% ± 2.87%; 
Figure 3A) and enrichment was similar for LAP-CD4+ T 
cells (94.75% ± 2.76%; Figure 3B).

Cytokine expression
The expression levels of cytokine profiles were 
measured by real-time qPCR, LAP+CD4+ T cells 
expressed significantly larger amounts of IL-10 and 
TGF-β but lower levels of IL-2, IL-4, IL-17 and IFN-γ, 
compared with LAP-CD4+ T cells (Table 4).

DISCUSSION
Many carcinomas, including colorectal, gastric and 
nasopharyngeal cancer, are associated with elevated 
numbers of Treg cells[19-21], and it is suggested 
that Treg cells promote tumor development and 
metastasis by inhibiting the proliferation of effector 
T lymphocytes[22]. LAP+CD4+ T cells, a recently 
identified subset of CD4+ Treg cells, have 50-fold more 
potent immunosuppressive activity than traditional 
CD4+CD25+ T cells[13,23]. Here we present several 
lines of evidence correlating LAP+CD4+ T cells with 
CRC progression. These cells were more abundant in 
peripheral blood and tumor tissue from patients with 
CRC compared with healthy controls. In CRC patients, 
the abundance of these cells correlated positively 
with TNM stage, metastasis, and serum level of CEA. 
CEA is the most widely used serum marker and is 
related to the prognosis of patients with CRC. The 
main use of CEA in CRC is in surveillance following 
curative resection for primary cancer[24,25]. These 
results suggest that LAP+CD4+ T cells, like traditional 
CD4+CD25+ Treg cells, accumulate in the tumor micro
environment and postoperative monitoring of the 
LAP+CD4+ T cells in CRC patients may be useful for 
assessing prognosis and predicting distant metastasis. 

In our study, expression of CCR4 and CCR5 
was higher in LAP+CD4+ T cells than in LAP-CD4+ 

T cells. CCR4 and CCR5 are highly expressed in 
tumor microenvironments and appear to act as proin
flammatory cytokine receptors[26,27]. Some studies 
have reported that CCR4 and its ligands are associated 
with increased tumor recurrence and impaired 
overall survival in patients with gastric cancer[28,29]. 
Wang et al[30] have shown that the CCL5/CCR5 axis 

RESULTS
LAP+CD4+ T cells are elevated in PBMCs and tumor 
tissue of CRC patients
PBMCs were isolated preoperatively and TILs were 
isolated postoperatively from patients who under
went radical resection for CRC. To understand 
further the roles of LAP+CD4+ T cells in the tumor 
microenvironment in patients with CRC, the proportion 
of LAP+CD4+ T cells in PBMCs and tissues was detected 
by flow cytometry (Figure 1). The proportion of 
LAP+CD4+ T cells was significantly higher in peripheral 
blood from patients (9.44% ± 3.18%) than healthy 
controls (1.49% ± 1.00%, P < 0.001; Figure 1B and 
C). Among CRC patients, the proportion of LAP+CD4+ T 
cells was significantly higher in tumor tissue (11.76% 
± 3.74%) compared with paratumor tissue (3.87% ± 
1.64%, P < 0.001; Figure 1B and D). 

Relationship between proportion of LAP+CD4+ T cells in 
tumor tissues and clinicopathological characteristics of 
CRC
We also observed positive correlations between the 
proportion of LAP+CD4+ T cells and TNM stage (P < 
0.001; Figure 2A), distant metastasis (P < 0.001; 

Table 3  Proportions of LAP+CD4+ T cells in tumor tissues 
and in relation to clinicopathological characteristics

n LAP+CD4+ 
Treg (%)

t P  value 95%CI

Age, yr
   < 60 29 11.15 ± 2.03 0.747 0.458 -1.35-2.94
   ≥ 60 21 11.96 ± 4.51
Sex
   Male 31 11.37 ± 3.24 0.444 0.659 -1.60-2.50
   Female 19 11.82 ± 3.89
Location
   Colon 22 10.35 ± 3.45 0.652 0.517 -1.11-2.18
   Rectum 28 11.89 ± 3.17
TNM stage
   Ⅰ/Ⅱ 23   8.45 ± 2.98 4.973 0.000  3.85-9.07
   Ⅲ/Ⅳ 27 14.90 ± 5.58
Pathological 
pattern
   Tubular/
   papillary

43 11.09 ± 3.54 1.335 0.188 -0.73-3.60

   Myxoma/
   ring cell

  7 12.83 ± 3.26

Differentiation
   High 42 10.50 ± 3.22 0.877 0.385 -1.45-3.70
   Low   8 12.43 ± 3.87
Metastasis
   Yes   9 12.51 ± 4.17 4.322 0.000  2.49-6.82
   No 41   7.85 ± 2.61
Ileus
   Yes   9 12.22 ± 3.49 0.904 0.470 -1.30-3.44
   No 41 11.15 ± 3.14
CEA (ng/mL)
   ≤ 5 34   9.94 ± 3.15 2.692 0.010  0.81-5.58
   > 5 16 13.13 ± 4.06
CA199 (U/mL)
   ≤ 37 32 11.34 ± 3.21 0.854 0.370 -1.51-3.85
   > 37 18 12.42 ± 4.35
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Table 4  Cytokine expression by LAP+CD4+ T cells and LAP-CD4+ T cells in colorectal cancer microenvironment

IL-2 IL-4 IL-10 IL-17 IFN-g TGF-β

LAP+CD4+ 0.22 ± 0.01 0.32 ± 0.12 1.13 ± 0.23 0.38 ± 0.10 0.18 ± 0.08 1.40 ± 0.15
LAP-CD4+ 1.49 ± 0.37 0.86 ± 0.23 0.86 ± 0.22 0.98 ± 0.23 0.69 ± 0.21 0.89 ± 0.11
t 8.811 5.505 -2.327 6.435 5.981 -7.316
P value 0.000 0.000  0.038 0.000 0.000  0.000

Figure 1  Abundance of LAP+CD4+ T cells in the colorectal cancer microenvironment based on flow cytometry. A: Gated on FSC/SSC, the proportion of 
LAP+CD4+ T cells in the CD4+ subset is presented in quadrant Q2; B: Flow cytometry to measure the proportion of LAP+CD4+ T cells in PBMCs and tissues; C: 
Proportion of LAP+CD4+ T cells in PBMCs; D: Proportion of LAP+CD4+ T cells in tissues.
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modulates angiogenesis and metastasis that dictate 
cancer development in the tumor microenvironment. 
We identified similarities and differences between 
LAP+CD4+ T cells and traditional CD4+CD25+ Treg 
cells. Foxp3, previously identified as important in the 
differentiation and development of Treg cells[31,32], 
was expressed at detectable levels in only 4% of 
LAP+CD4+ T cells. This means that LAP+CD4+ T cells 
differ from traditional CD4+CD25+ Treg cells in marker 
expression and their immunosuppressive activity 
is independent of Foxp3. In contrast, LAP+CD4+ T 
cells expressed abundant levels of CTLA-4, which is 
used by CD4+CD25+ Treg cells to modulate immune 
responses[33]. CTLA-4 on CD4+CD25+ Treg cells has 
been shown to suppress immune function through 
several mechanisms[34,35]: increasing numbers of 
CD4+CD25+ CTLA-4 T cells; inhibiting production of 
proinflammatory factors such as IFN-γ; increasing pro
duction of IL-2, IL-4, IL-10 and TGF-β1; and blocking 
tryptophan synthesis by antigen-presenting cells[36]. 
Under normal circumstances, these mechanisms can 
promote self-tolerance and prevent autoimmune 
disease and transplant rejection. Our results suggest 
that the CTLA-4 on LAP+CD4+ T cells help CRC tumors 
evade the host immune system, and one mechanism 
may be by inhibiting proliferation of effector T 
lymphocytes.

Our results reproduce most of those of Mahalingam 
et al[37], using different procedures. We isolated 
LAP+CD4+ T cells and LAP-CD4+ T cells using a 
magnetic cell sorting system and analyzed cell purity 
by flow cytometry. Our results revealed that, after 
sorting, the purity of these two cells was > 90%. This 
is the first time that LAP+CD4+ T cells were isolated 
using a magnetic cell sorting system. In contrast to 
Mahalingam et al[37], we found that LAP+CD4+ T cells 
expressed high levels of IL-10 and TGF-β. These 
cytokines play key roles in suppressing immune 
responses in mouse models of cerebral meningitis and 
allergic inflammation[13,38,39]. The immunoregulatory 
activity of Treg cells has been linked to several 
molecules, such as CTLA-4, TGF-β, and IL-10[40,41]. 
TGF-β has been shown to play an important role 
in the differentiation, maintenance and function of 
natural Treg cells[42-45]. However, several studies have 
revealed the role of IL-10 in Treg cell suppression. 
It has been demonstrated that IL-10 is required for 
the homeostatic maintenance of the T cell number 
by Treg cells[46] and is involved in Treg-cell-mediated 
suppression in murine models of transplantation, graft-
versus-host disease, chronic parasite infection, colitis, 
and a rat model of type 1 diabetes[47]. Like classical 
CD4+CD25+ Treg cells, our experiments suggest that 
the immunosuppressive activity of LAP+CD4+ T cells 

Figure 3  Expression of phenotypic markers by LAP+CD4+ T cells and LAP-CD4+ T cells. A: Typical histograms of the expression of Foxp3, CTLA, CCR4 and 
CCR5 in LAP+CD4+ T cells or LAP-CD4+ T cells are depicted. The expression levels of Foxp3, CTLA, CCR4 and CCR5 were measured and compared between 
LAP+CD4+ T cells and LAP-CD4+ T cells; B: Foxp3; C: CTLA-4; D: CCR4; E: CCR5.
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could be mediated by IL-10 and TGF-β.
In conclusion, we provide evidence that patients 

with CRC have elevated proportions of LAP+CD4+ T cells 
in the peripheral blood and tumor microenvironment, 
and their accumulation at tumor sites correlates with 
CEA level, TNM stage and distant metastasis. LAP+CD4+ 
T cells express high levels of IL-10 and TGF-β, which 
may be involved in tumor immune evasion. Our 
findings suggest that investigating the functions and 
regulation of LAP+CD4+ T cells in CRC may improve our 
understanding of disease progression and treatment.
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that express latent-associated peptide (LAP). They function within the latent 
transforming growth factor (TGF)-β complex to block interaction between 
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