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Abstract
The role of bile acids in colorectal cancer has been 

well documented, but their role in pancreatic cancer 
remains unclear. In this review, we examined the 
risk factors of pancreatic cancer. We found that 
bile acids are associated with most of these factors. 
Alcohol intake, smoking, and a high-fat diet all lead 
to high secretion of bile acids, and bile acid metabolic 
dysfunction is a causal factor of gallstones. An 
increase in secretion of bile acids, in addition to a long 
common channel, may result in bile acid reflux into 
the pancreatic duct and to the epithelial cells or acinar 
cells, from which pancreatic adenocarcinoma is derived. 
The final pathophysiological process is pancreatitis, 
which promotes dedifferentiation of acinar cells into 
progenitor duct-like cells. Interestingly, bile acids act as 
regulatory molecules in metabolism, affecting adipose 
tissue distribution, insulin sensitivity and triglyceride 
metabolism. As a result, bile acids are associated with 
three risk factors of pancreatic cancer: obesity, diabetes 
and hypertriglyceridemia. In the second part of this 
review, we summarize several studies showing that 
bile acids act as cancer promoters in gastrointestinal 
cancer. However, more question are raised than have 
been solved, and further oncological and physiological 
experiments are needed to confirm the role of bile 
acids in pancreatic cancer carcinogenesis. 
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Core tip: Bile acids bridge the gap between risk factors 
and pancreatic cancer, providing a new horizon in 
pancreatic cancer carcinogenesis.
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INTRODUCTION
Pancreatic cancer mortality is the fourth leading cause 
of cancer deaths in males and females and accounts 
for 7% of all deaths in cancer patients[1]. Therapeutic 
strategies for these cancers are well developed, but 
the death rates of pancreatic cancer have remained 
stable from 1930 to 2011 due to delayed diagnosis 
and elusive mechanisms of cancer initiation and 
progression. Pancreas is a retroperitoneal organ, 
located behind the stomach and in front of the spine. 
Because of the relatively large space around this 
organ, pancreatic tumors do not generally cause 
obstructive symptoms or pain. Moreover, the pancreas 
contains two types of cells, exocrine and endocrine 
cells. Most pancreatic tumors are pancreatic duct 
adenocarcinomas, which originate in exocrine cells, 
with no changes in hormone secretion. Therefore, 
early diagnosis of pancreatic cancer is difficult due to a 
lack of symptoms. Most pancreatic cancer is diagnosed 
at a late, inoperable, and incurable stage. Scientists 
have sought to identify early diagnostic markers and 
to elucidate the underlying mechanisms of pancreatic 
cancer initiation and progression. Etiological studies 
have identified a number of risks for developing 
pancreatic cancer, including (1) alcohol intake; (2) 
smoking; (3) diet (high-fat and red meat); (4) obesity; 
(5) diabetes; (6) gallstones; (7) long common channel 
of the biliary duct and the pancreatic duct; (8) chronic 
pancreatitis; (9) hypertriglyceridemia; and (10) other 
risks, including age and sex, race (black population), 
non-O blood type, autoimmune disease, hereditary 
pancreatitis, and infectious disease[2]. Notably, 60% of 
pancreatic cancers occur in the head of the pancreas[3], 
which is close to the bile tracts, suggesting that bile 
acids may play a role in pancreatic cancer formation[4,5]. 
Bile acids were first proposed as a carcinogen in the 
1940s[4]. Since then, increasing evidence has shown 
that bile acids, particularly secondary bile acids, play 
important roles in the carcinogenesis in gastrointestinal 
cancers[4] and breast cancer[6]. We review the systemic 
and local effects of bile acids in pancreatic cancer 
initiation and progression and propose that bile acids 
have key roles in different metabolic and oncogenic 
pathways (Figure 1). 

SYSTEMIC EFFECT OF BILE ACIDS
Bile acids and alcohol intake
A large body of evidence has shown that alcohol 
intake significantly increases blood and intestinal bile 
acids levels[7,8]. Alcohol induces bile acid secretion via 
two pathways[9]. First, alcohol increases cholesterol 
7α-hydroxylase synthesis, rather than directly ac

tivating the enzyme[10]. Second, alcohol has an in
hibitory effect on gallbladder contraction, leading to 
a decrease in the amount of bile acid moving into the 
duodenum. Subsequently, enterohepatic circulation of 
bile acids is interrupted, resulting in reduced feedback 
inhibition of bile acid synthesis. Long-term alcohol 
intake results in prolonged low-dose exposure of the 
pancreatic epithelial cells to bile acids, which activate 
intracellular signaling pathways. Equilibrium of the 
alcohol-bile acids-microbiome axis must be taken 
into account in the relationship between bile acids 
and alcohol intake. After consumption of alcohol, 
fecal deoxycholic acid (DCA), one type of secondary 
bile acid, increased 3-4 times that of the control 
groups[7]. Secondary bile acids play an important role 
in shaping the gut microbiome[11], which is critical for 
the gut barrier. Additionally, the acute effects of alcohol 
administration directly impair the duodenum and 
jejunum barrier[12]. Gut barrier injury leads to changes 
in gut permeability, resulting in an increase in serum 
DCA levels and systemic inflammation[13]. 

Bile acids and smoking
Epidemiological and clinical studies have indicated that 
smoking is a risk factor for pancreatic cancer. Recent 
reports have shown that nicotine stimulates mutated 
K-ras activation, as well as other mutations associated 
with pancreatic cancer, including those in p53, COX-2, 
SMAD4 and p16INK4A[14,15]. However, little is known 
about the mechanisms of how smoking causes gene 
mutation and pancreatic cancer formation. Bile acid 
concentration in the stomach of smokers is significantly 
higher than that in non-smokers, and this trend is 
found even when not actually smoking[16]. Additionally, 
nicotine induces gastric acid secretion, leading to a 
significant drop in the pH of the stomach[17]. Gastric 
acid is a strong regulator of the secretion of bile acids. 
However, bile acid reflux into the pancreatic duct is 
associated with intraductal papillary carcinoma in the 
pancreas[18]. Further investigations are still needed 
to determine whether smoking also leads to bile 
acid reflux to the pancreatic duct. Overall, the above 
findings are not convincing evidence of the association 
between smoking and pancreatic cancer initiation. 
The local effects of bile acids, which are induced by 
smoking, on pancreatic cancer formation may be 
overestimated, but nicotine may act on pancreatic cells 
via blood circulation delivery. 

Bile acids and diet
Little is known about how diet is associated with 
cancer formation, partly because there is high 
variation in diets. The basic function of bile acids is 
to promote the absorption of dietary fat and help 
absorb fat-soluble vitamins, as well as to regulate 
cholesterol metabolism. Dietary fat, which is the 
strongest regulator, induces secretion of bile acids into 
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the duodenum, resulting in an elevated fecal bile acid 
concentration. Vegetables and carbohydrates, which 
do not induce secretion of bile acids, are not associated 
with pancreatic cancer[19]. Approximately 95% of bile 
acids are reabsorbed into the intestine and transported 
to the liver. During this process, bile acids also escape 
into blood circulation. Studies have shown that the 
plasma bile acid concentration is correlated with the 
fecal concentration[20] due to intestinal epithelial cell 
exposure to bile acids. Accumulating evidence has 
shown that excess bile acids are associated with colon 
cancer initiation. However, the pancreas does not 
directly contact bile acids. How diet-induced bile acids 
promote pancreatic cancer formation, through local 
effects (by bile reflux) or though systemic effects (by 
circulation), remains unknown. 

Bile acids and obesity, diabetes, and 
hypertriglyceridemia
Metabolic syndrome includes the following disorders: 
abdominal obesity, hypertension, hyperglycemia, 
hypertriglyceridemia, and low serum high-density 
protein. Metabolic syndrome and prediabetes share 
the same disorders. Thus, we here discuss obesity, 
diabetes and hypertriglyceridemia at the same time. 
Possible mechanisms linking obesity and cancer 
include: (1) Insulin or insulin-related growth factors 
(IGF); (2) microbiome; (3) chronic inflammation; 

(4) sex hormones; (5) circulating adipokines; and 
(6) white adipose tissue-derived progenitor cells[21]. 
Type 2 diabetes is cause by insulin resistance, with 
hyperinsulinemia. Approximately half of individuals 
with diabetes are obese[22], and up to 60% of diabetes 
cases are caused by obesity[23]. A recent study revealed 
that type 2 diabetes results from chronic inflammation 
caused by obesity[24]. Above all, when deeply studying 
the mechanism of these two diseases, it is difficult 
to identify which is the original metabolic defect, 
hyperinsulinemia or insulin resistance, and which is 
secondary. We hypothesize that hyperinsulinemia is 
the original defect[25]. In parallel, obesity is a complex 
and multifactorial metabolic disease. Here, we only 
discuss diet-induced obesity and review several bile 
acid-related factors.

In addition to the important role of bile acids in 
nutrient absorption, accumulating evidence indicates 
that bile acids play key roles in glucose and lipid 
metabolism. The concentration of deoxycholic 
acid, a secondary bile acid, is elevated in type 2 
diabetes, along with elevation of the hydrophobic 
12a-hydroxylated bile acids[26]. In vivo, ob/ob mice 
also had elevated plasma bile acids[27]. Bariatric 
surgery[28] and bile acid binding resins improve 
insulin resistance[29] and ameliorate obesity and type 
2 diabetes, indicating that changes in bile acid flow 
or compositions promote remission of metabolic 
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Figure 1  Bile acids are in the central position of oncogenic and metabolic pathways. MMP: Matrix metalloproteinase; FXR: Farnesoid X nuclear receptor; 
TGR5: Takeda G-protein receptor 5.
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cholestatic liver disease, gallstones, fatty liver, 
diabetes and obesity. 

Bile acids regulate metabolism via FXR
Bile acids and FXR are regulators of glucose homeo
stasis and insulin resistance. Gene encoding 
phosphoenolpyruvate carboxykinase, glucose-6-
phosphatase, and fructose-1,6-biphosphatase (FBP1) 
are target genes of FXR[37]. All of these are rate-limiting 
enzymes in glucose metabolism. Activation of FXR or 
overexpression FXR in the liver reduces the plasma 
glucose level. FXR deficiency, in the liver not in the 
intestine, leads to glucose metabolism disruption and 
results in insulin resistance[37]. However, expression of 
FXR in the intestine has a negative effect on human 
disease development. In FXR-/- mice, enhanced glucose 
clearance and insulin sensitivity were observed, but 
hepatic insulin sensitivity was not altered[38], indicating 
that the effect of intestine FXR overcomes the effect 
of the liver in regulating glucose metabolism. A recent 
study was also consistent with these findings. In high-
fat-induced nonalcoholic fatty liver disease mouse 
models, changing the composition of bile acids by 
administration of antibiotics, which results in gut 
microbiota alternation, led to nonalcoholic fatty liver 
disease development. This study demonstrated that 
bile acids or gut microbiota (which will be discussed 
in a later section) regulate nutrient metabolism in a 
FXR-dependent manner in the intestine but not in the 
liver[39]. A intestine-selective, high-affinity FXR inhibitor, 
glycine-β-muricholic acid (Gly-MCA), improved 
metabolic parameters, high-fat diet-induced and 
genetic obesity, insulin resistance and hepatic steatosis 
in mice[40].

Bile acids and FXR also regulate lipid metabolism. 
FXR regulates lipogenesis by inhibiting LRH-1 and 
LXRα[41]. In addition, activation of FXR induces ex
pression of Apolipoprotein C-II and Apolipoprotein A-V 
(apoA-V) and suppresses expression of Apolipoprotein 
C-III, which results in an increase in lipoprotein 
synthesis and a decrease in plasma triglycerides[42]. 
Peroxisome proliferator-activated receptor α, which is 
involved in lipid, lipoprotein and fatty acid metabolism, 
is also regulated by bile acids via FXR[43]. Taken together, 
these results show that bile acids and FXR regulate lipid 
metabolism in direct and indirect manners. 

Bile acids and insulin resistance and hyperinsulinemia
Although the regulation of bile acid synthesis and 
bile acid metabolism is complex, clinical evidence 
suggests that adjusting the flow rate and composition 
of bile acids can improve metabolic disorders. Bypass 
surgery and bile acid sequestrant improve insulin 
resistance, obesity and hyperlipidemia, although the 
mechanism of these two treatments is unclear. Bile 
acid binding resins function by sequestering bile acids, 
which suppresses absorption and increases excretion 

disorders. The dominant type of bariatric surgery is 
Roux-en-Y gastric bypass (RYGB)[28], which alters bile 
acid flow and re-absorption by changing the anatomy 
of the intestine. Plasma primary bile acids, including 
chenodeoxycholic acid (CDCA), and cholic acid (CA), 
increased after surgery, along with increased taurine-
conjugated and glycine-conjugated bile acids[30], which 
indicated that re-absorption increases in the upper 
intestine. Consequently, fewer bile acids reached the 
distal intestine, resulting in decreased secondary bile 
acid pools. Bile acid binding resins predominantly 
function by decreasing bile acids in the intestine 
and by blocking re-absorption of bile acids, which 
limits the total bile acid pool. In other words, both 
bariatric surgery and bile acid binding resins promote 
primary bile acid synthesis and re-absorption and limit 
secondary bile acid synthesis and their concentration 
in plasma.

Farnesoid X nuclear receptor and bile acid synthesis
Farnesoid X nuclear receptor (FXR) is a nuclear 
receptor, and its major ligands are bile acids[31]. A 
primary bile acid, CDCA, is the strongest agonist 
of FXR. Secondary bile acids, such as lithocholic 
acid (LCA) and deoxycholic acids (DCA), are also 
activators of FXR but have a lower affinity. In contrast, 
hydrophilic bile acids do not activate FXR[31]. In 
addition to FXR, bile acids activate other nuclear 
receptors, such as pregnane-X-receptor, constitutive 
androstane receptor and vitamin D receptor, inducing 
different signaling pathways[32]. FXR is predominantly 
expressed in the liver, intestine, kidney, adrenal 
gland, pancreas, and reproductive tissues[33]. In the 
liver, primary bile acids bind to FXR in hepatocytes 
after re-absorption, leading to increased expression 
of small heterodimer partner 1 (SHP-1), which is 
a DNA-binding domain. SHP-1 inhibits expression 
of cholesterol 7 α-hydroxylase (CYP7A1) via liver 
receptor homologue 1 (LRH-1) and liver X receptor 
α (LXRα), resulting in decreased synthesis of bile 
acids[34]. This is the major mechanism of bile acid re-
absorption feedback inhibition of bile acid synthesis. 
Furthermore, SHP-1 can also inhibit expression of 
CYP8B1 (cytochrome P450, family 8, subfamily 
B, polypeptide 1) via hepatocyte nuclear factor 4 
(HNF4). CYP8B1 regulates the synthesis of cholic acid 
(CA), which is hydrophilic. Thus, composition and 
hydrophobicity of the primary bile acids is determined 
by CYP8B1[35]. In the intestine, activation of FXR 
induces the secretion of fibroblast growth factor-19 
(FGF-19), FGF-15 in mouse, which binds to fibroblast 
growth factor receptor 4, to decrease the expression 
of CYP7A. This is a SHP-1-independent pathway in 
the regulation of bile acid synthesis[36]. Enterohepatic 
circulation of bile acids leads to feedback inhibition 
of bile acid synthesis. Any problems in the steps in 
this cycle will lead to metabolic diseases, including 
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of bile acids in the feces. Despite the complexity of 
the regulation of bile acids and their receptors, bile 
acid binding resins improve insulin resistance in diet-
induced rat models of obesity[44]. In bile acid binding 
resin-treated groups, plasma glucose levels decrea
sed to baseline values throughout the oral glucose 
tolerance test, a parameter of insulin resistance, 
and insulin levels declined to baseline as well. These 
findings indicated that bile acids modulate glucose 
metabolism and insulin sensitivity. Another approach 
for improving metabolic disorder is bariatric surgery, 
as mentioned above. In contrast to bile acid binding 
resins, bariatric surgery increases plasma bile acids 
to improve metabolic parameters, although the 
underlying mechanism remains to be determined. 
However, bariatric surgery did not decrease the 
standardized incidence of obesity-related cancers 
but increased the incidence of colon cancer with time 
after the surgery[45,46]. This study included a large 
sample size cohort, 15095 and 62016 in the surgery 
and control cohort, respectively, and long-term follow 
up (up to 30 years). It provided a very convincing 
result, that bariatric surgery provided a short-term 
benefit for metabolic disorders but increased colorectal 
cancers instead over time. It is still unclear why 
and how bariatric surgery changed the incidence of 
colorectal cancer. We hypothesize that changing the 
anatomy of the intestine leads to bile acid flow and 
composition alteration and results in turnover of the 
population of gut microbiota. Studies have shown that 
gastrointestinal bypass surgery may lead to changes in 
the intestinal and fecal microbiota, resulting in colonic 
mucosa exposure to increased toxicity of the feces and 
increased incidence of colon cancer[47]. 

Takeda G-protein receptor 5
Takeda G-protein receptor 5 (TGR5) is a membrane 
receptor of bile acids, and it belongs to the superfamily 
of G-protein coupled receptors. TGR5 is expressed 
in the gallbladder, intestine, human spleen and 
mononuclear and white blood cells, as well as in 
liver cells, brown adipose tissue, skeletal muscle 
and the nervous system[48]. Bile acids activate TGR5 
with different potency, and LCA > DCA > CDCA 
> CA[49]. In TGR5-/- mice, the bile acid pool was 
decreased by increasing fecal bile acid excretion[50]. 
Because TGR5 is expressed in the gallbladder, it also 
regulates bile composition by induction of chloride 
secretion[51]. In addition, TGR5 regulates contraction 
of smooth muscles of the gallbladder, participating in 
gallstone disease development[52]. However, the exact 
mechanism of how TGR5 regulates synthesis and the 
bile acid pool is still unknown. Similar to FXR, TGR5 
also plays a role in glucose metabolism. By binding 
to TGR5, bile acids induce intestinal glucagon-like 
peptide-1 (GLP-1) and GLP-2 release, which results in 

secretion of insulin[53]. One possible mechanism is that 
GLP stimulates oxidative phosphorylation, resulting 
in an increase in the ATP/ADP ratio, membrane 
depolarization and Ca2+ mobilization, leading to insulin 
secretion from pancreatic β-cells. Hyperinsulinemia is 
associated with insulin resistance and type 2 diabetes. 
Interestingly, in female TGR5-/- mice, insulin sensitivity 
increases but not in male mice[54], indicating that 
alternative regulatory pathways exist and that TGR5 
regulates glucose metabolism and insulin sensitivity. 

Insulin, insulin-like growth factor 1 and pancreatic 
cancer
Insulin regulates the production and activity of insulin-
like growth factor 1 (IGF1) by down-regulating insulin-
like growth factor-binding protein 1 (IGFBP1) and 
IGFBP2, which inhibit the activity of IGF1[55]. High 
plasma concentration of IGF1 and low concentration 
of IGFBP1 are observed in type 2 diabetes. The main 
function of IGF1 is to promote cell proliferation and to 
inhibit cell apoptosis[56]. Both the IGF1 receptor and 
insulin receptor belong to the family of transmembrane 
receptor tyrosine kinases. They are structurally and 
functionally related in cancers[57]. The insulin receptor 
is highly expressed in insulin-sensitive tissues, such 
as the liver, skeletal muscle and white adipose tissue, 
and shows low expression in other tissues, such as the 
brain, heart, kidney, lung, pancreatic acini, platelets, 
endothelial cells, monocytes, megakaryocytes and 
fibroblasts. Insulin does not activate the insulin re
ceptor in these tissues at normal concentrations[58]. 
Insulin abnormally activates these receptors due to 
hyperinsulinemia in diabetes. Moreover, in cancer 
patients, the tumor cells often highly express the 
insulin receptor, which results in non-metabolic effects. 
The non-metabolic effects include promotion of cell 
mitosis, proliferation, and metastasis[59]. The PI3K 
pathway and MAPK pathway play important roles in 
pancreatic cancer formation. Appleman et al[60] showed 
that the insulin receptor and IGF receptor could be 
activated by their ligands and in turn activated MAPK 
signaling and PI3K signaling. The insulin receptor and 
IGF receptor, along with the kras mutation, facilita
te pancreatic cancer development[61]. Additionally, 
another study revealed that there was cross-talk 
between the insulin receptor and IGF receptor with 
G-protein coupled receptors, which further activated 
mTOR signaling and promoted DNA synthesis[62]. 

Bile acids and gut microbiota
Primary bile acids are converted into secondary bile 
acids by structural modification by the gut microbiota 
(Figure 2). The gut microbiota has an important 
impact on the composition of bile acids, and vice 
versa, as bile acids re-shape the population of 
bacteria in the intestine. The role of intestinal flora in 
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modulating the host metabolism has received much 
attention after it was revealed that diabetic patients 
had changes in intestinal flora, with increases in 
the Firmicutes to Bacteroidetes ratio. Then, obese 
patient were also found to have a similar composition 
shift[63]. Gram-negative bacteria, which belong to 
Bacteroidetes and Proteobacteria, are enriched in 
type 2 diabetes[64]. Organic acids decrease luminal 
pH and damage bacterial cell membranes, which 
strongly affect the bacterial composition, especially 
after a high-fat diet[65]. Rats were fed a high-CA diet, 
which mimicked bile acids induced by a high-fat diet, 
and it was found that the fecal DCA concentration 
was much higher, with the CA/DCA ratio reversed, 
compared to the control diet group[66]. DCA is ten 
times more toxic to intestinal bacteria than CA[67]. 
Firmicutes and Bacteroidetes, which are the two major 
types of intestinal flora, accounted for 54.1% and 
30.7%, respectively, in the control group. In contrast, 
the proportion of Firmicutes increased to 98.6% in 
the high-CA group[66]. However, the total number of 
bacteria decreased in the feces, with an increased bile 
acid concentration, up to 50% that of the control diet 
group. Taken together, the results showed that a high-
fat diet regulates intestinal flora by affecting bile acid 
composition. Additionally, bile acids change with the 
gut microbiota composition shift. A recent study found 
that oral administration of antibiotics led to changes in 
the gut microbiota and subsequently, changes in bile 
acids and glucose metabolism via FGF-19 signaling[68]. 

Vancomycin had the strongest effect on the Firmicutes 
and Proteobacteria phyla, with Firmicutes decrea
sing and Proteobacteria increasing. The Firmicutes 
phylum, which consists of Gram-positive bacteria, 
plays a crucial role in primary bile acid modification. 
Researchers have attributed the promotion of insulin 
sensitivity to the decrease in the Firmicutes phylum 
and the increased primary bile acids (CA), which are an 
activator of intestinal FXR. However, to our knowledge, 
as mentioned above, activation of intestinal FXR 
may have negative effects on metabolic disorders. 
Therefore, the mechanism remains to be confirmed. 

Increasing gut permeability, which is controlled 
by microbiota, is associated with many metabolic 
diseases[69] and chronic low-grade inflammation[70]. 
All surfaces of the body, including the skin and the 
intestinal, oral and vaginal mucosa, are covered with 
microorganisms that maintain human health, rather than 
cause diseases. These microorganisms interact with the 
host to maintain the body’s health. However, when there 
are changes in the density or species composition of 
these organisms, it may result in disease. The majority 
of microorganisms exist in the human intestine as an 
essential part of mucosal immunity. A long-term, high-
fat diet affects intestinal flora density through bile acids, 
resulting in higher mucosal permeability. The integrity 
of tight junctions in the intestine and trans-epithelial 
permeability are regulated by the normal intestinal flora, 
through redistribution of Toll-like receptor 2 protein[71], 
a toll-like receptor on epithelial cells, and expression of 
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Intestine

Abst

Secondary
 bile acids:
 DCA/LCA

Enterohepatic circulation

Through cell-cell junction

Basolateral Apical

Systemic effect

Blood circulation

CYP7A1

FXR

Microbiota

Figure 2  Bile acids metabolism. FXR: Farnesoid X nuclear receptor; DCA: Deoxycholic acid; LCA: Lithocholic acid; CDCA: Chenodeoxycholic acid; CA: Cholic acid.
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tight-junction proteins in cell to cell contacts[72]. High 
permeability has two results: bile acid as a metabolism-
regulating molecule will enter the blood circulation, 
and gut microbes and their products will translocate to 
the bloodstream, leading to chronic local and systemic 
inflammation[70]. 

A large number of experiments confirmed that 
inflammation provides a suitable environment for 
tumor initiation and progression. Tumor-associated 
inflammatory cells and tumor stromal cells work 
together to promote tumor cell metastasis. Chronic 
inflammation induces bone marrow-derived mesen
chymal stem cells to migrate to the tumor site and 
inhibits tumor suppressor T cells, thereby inhibiting 
the body’s anti-cancer immunity[73]. Intestinal polyp 
patients had higher intestinal permeability compared 
with normal subjects. IL-6, IL-11, IL-17, IL-22, and 
IL-23 secreted by ectopic bacteria are required for 
the development of intestinal polyps[70,73,74]. Intestinal 
flora also affect tumor formation in distant organs by 
modulating tumor necrosis factor, oxidative stress and 
DNA damage repair[70]. A more recent study revealed 
that a long-term, high-fat diet first affected visceral 
adipose tissue. This effect was caused by damage of 
the intestinal mucosal barrier function. The local pro-
inflammatory response led to the accumulation of fat 
due to distant and systemic inflammation[75].

Bile acids and gallstones, pancreaticobiliary 
maljunction, chronic pancreatitis
Several risk factors for pancreatic cancer, such as 
gallstones, pancreaticobiliary maljunction (long 
common channel) and chronic pancreatitis, share 
a common pathophysiological feature of bile acid 
dysmetabolism and bile acid reflux. Consequently, 
these three are causative factors of pancreatitis. The 
sphincter of Oddi loses function with a long common 
channel, resulting in communication of the bile duct 
and pancreatic duct[76]. The reflux of pancreatic 
juice into the bile duct leads to a higher incidence of 
biliary cancer, whereas the reflux of bile juice into 
the pancreatic duct results in pancreatitis. It is still 
debatable whether the reflux of pancreatic juice into 
the bile duct actually occurs. Because pressure in the 
bile duct is higher than that in the pancreatic duct, 
and even in the long common channel, there is a 
greater possibility that pancreatic juice refluxes into 
the bile duct[77]. However, among the causal factors 
of acute pancreatitis, pancreatic juice reflux or duct 
obstruction is the most convincing one. Bile reflux 
into the pancreatic duct is known to be necessary for 
the induction of acute pancreatitis[78,79]. Additionally, it 
has been known for a long time that bile infusion can 
be used to establish pancreatitis animal models[80]. 
After a high-fat diet, the secretion pressure of bile 
may increase to a level high enough to reflux into the 
pancreatic duct, leading to mild or chronic pancreatitis. 

Chronic pancreatitis develops from recurrent acute 
pancreatitis, and it involves pancreatic exocrine and 
endocrine dysfunction and gradually progresses to 
malignant tumors and diabetes[81]. 

Due to different cell sources, pancreatitis and 
pancreatic cancer were once considered two unrelated 
disease because pancreatitis predominantly affe
cts pancreatic acinar cells, and pancreatic cancer 
originates from ductal cells[81]. However, a recent 
lineage tracing study questioned this hypothesis. 
Chronic inflammation induces dedifferentiation of 
acinar cells into progenitor duct-like cells, and the 
latter could be the source of pancreatic cancer[82]. 
Whether the bile acids reflux into the pancreatic duct 
and reach the acinar cells to induce pancreatitis is 
still controversial. There are two possible ways for 
bile to reach acinar cells: through bile duct epithelial 
cells and through cell-cell contacts, with tight junction 
impairment[83]. Bile acids were originally identified 
as detergents. Now, they are studied as regulatory 
molecules. Gpbar1 (the other name of TGR5 
mentioned above), a G-protein coupled receptor, is 
expressed on acinar cells and mediates bile acid-
induced pancreatitis. Deletion of this gene reduced 
hyperamylasemia, edema and inflammation[84]. Acinar 
cell exposure to bile acids and activation of Gpbar1 
cause cell injury mediated by Ca2+ signaling and 
downstream NF-κB translocation[85]. Ca2+ signaling 
also mediates intra-acinar cell zymogen activation and 
in turn damages the acinar cells. In addition to NF-κB 
signaling, oxidative stress, which is related to bile acid 
injury[86], is also indispensable in acinar cell necrosis 
and fibrosis. All these processes produce inflammatory 
cytokines and chemokines, which activate the immune 
system. Inflammatory mediators generate secondary 
oxidative injury and damage cells[81]. Surprisingly, 
insulin-producing cells develop a malignant phenotype 
in inflammatory circumstances[87]. Chemokines are 
inflammatory cues for mesenchymal stem cells 
from different types of tissues, which can regulate 
tissue immune response[88]. Mesenchymal stem cells 
differentiate into fibroblasts or leucocytes infiltrating 
in the inflammatory lesion. As in the old hypothesis 
- cancer is just likes a wound that does not heal[89] - 
duct epithelial cells and acinar cells, as well as stroma 
and immune cells, function as intrinsic and external 
factors, respectively, to promote cancer formation 
(Figure 3). 

LOCAL TISSUE EFFECTS OF BILE ACIDS
Bile acids induce cell membrane perturbations
Removal of cholesterol on the cell membrane can 
inhibit apoptosis induced by DCA. After staining with 
filipin, it was found that DCA could cause redistribution 
of membrane phospholipids. Similarly, DCA could 
also affect the distribution of plasma membrane 
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caveolin and reduce membrane fluidity. Radiolabeled 
DCA showed that bile acids are located in the cell 
membrane microdomains, and different reactions 
depends on the physical and chemical properties of 
bile acids. These findings suggest that redistribution 
of membrane cholesterol is the initial stage of bile 
acid-induced signaling activation[90]. Additionally, 
whether the bile acids enter the cell depends on the 
critical micelle concentration, which is the lowest 
concentration of surfactant in the solvent molecules to 
form micelles[91].

Bile acids increase cell proliferation and mitotic events
Treatment of colonic epithelium with bile acids 
leads to phospholipid turnover, thereby increasing 
the release of diacylglycerol, which is a protein 
kinase C (PKC) activator. Bile acid activation of PKC 
is mediated by activator protein-1 (AP-1)[92]. PKC 
activation increased synthesis of DNA and promoted 
cell proliferation[93]. In addition, ornithine decarboxylase 
(ODC) activity and DNA synthesis varied with different 
types of bile acids in an in vitro study. Compared 
with 12-O-tetradecanoylphorbol-13-acetate (TPA), a 
tumor-promoting agent, deoxycholic acid (DCA) was 
a more potent activator of ODC. DCA and TPA both 
stimulated DNA synthesis within 2 d of treatment, with 
a peak at 2 h and a decline after 4-12 h. Moreover, 
the stimulatory activity of bile acids with different 
structures is different. By analyzing 26 types of bile 
acid component, bile acids, which are 5β-cholanic acids 
with two α-hydroxy groups in 3α, 7α, and 12α position 
and 5β-cholanic acids with a 3 α-hydroxy group, had 
the strongest activities. Therefore, the composition of 
bile acids plays an important role in cell proliferation 
and DNA synthesis in colonic epithelial cells[94]. 

Bile acids reduce susceptibility to apoptosis
An in vivo study showed that rats fed a diet containing 
2% CA for 18 wk had significantly decreased apoptotic 
bodies in the normal intestinal epithelium and aber

rant crypt foci (ACF) compared to those in the 
normal diet group (P = 0.0034), and the number of 
apoptotic bodies in ACF was significantly lower than 
those in normal intestinal epithelium (P = 0.012). 
In conclusion, CA simultaneously reduced apoptotic 
bodies in normal intestine ACF, and ACF are more 
susceptible to bile acids than normal intestinal mucosa. 
Bile acids promotes colorectal cancer formation and 
progression[95], which was consistent with another 
clinical study that also found the same phenomenon. 
In patient biopsy specimens, after co-culturing with 
bile acids, intestinal mucosal cell apoptosis was 
significantly reduced[96]. 

Bile acids stimulate COX-2 and PGE2 production
DCA and CDCA were found to induce COX-2 ex
pression in the pancreatic cancer cell lines BxPC3 and 
SU86.86[97] and colon cancer cell lines[98]. Both studies 
found that bile acids acted in a dose-dependent 
manner, but the strongest effect was induced by 
different concentrations (100 μmol/L and 250 μmol/L, 
respectively) and different reaction times (6-12 h and 
24 h, respectively). Glinghammar et al[98] also revealed 
that bile acids induced COX-2 expression mediated by 
AP-1, PKC and p38.

Bile acids induce MMP7 mRNA expression
The main function of matrix metalloproteinase (MMP) 
proteins is decomposition of the extracellular matrix 
proteins, which are involved in cancer metastasis and 
inflammatory responses. MMP proteins are expressed 
in a wide range of cancers, including esophageal 
cancer, stomach cancer, liver cancer, pancreatic cancer, 
and kidney cancer[99]. Tumors with high expression 
of MMP7 are more aggressive and have a greater 
metastatic ability. Apical sodium-dependent bile acid 
transporter (Asbt)-deficient mice, which show a 10–
fold increase in bile acids in the intestinal tract, have 
54% more aberrant crypt foci than that in wild-type 
mice, and the probability of colon cancer development 
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Figure 3  Oncogenic process of bile acid reflux. 
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is twice as high as that in the wild-type mice. The 
study found that increasing the content of bile acids 
significantly increased MMP7 expression, which is 
mediated by muscarinic receptors (a G-coupled protein 
receptor)[100]. This indicates that bile acids also play a 
role in cancer invasion and migration[101].

Bile acids induce overexpression and activation of the 
erbB2 and EGFR signaling cascades
Epithelial cells in the gall bladder and bile tract, which 
directly contact bile acids, highly express erbB2 in their 
malignant lesions[102,103]. EGFR expression in intrahepatic 
cholangiocarcinoma, extrahepatic cholangiocarcinoma 
and gallbladder cancer was 100%, 52.6% and 
38.5%, respectively, and HER2 is overexpressed 
in 10% and 26.3% of gallbladder and extrahepatic 
cholangiocarcinomas, respectively, suggesting that 
EGFR and HER2 may contribute to the initiation and 
development of these cancers[103]. However, whether 
bile acids directly induce the expression of EGFR and 
HER2 and activate these receptors was not clear. A 
recent study confirmed that bile acids induced the 
expression of EGFR and HER2 directly and activated 
the EFGR/HER2 pathway and downstream pathways, 
contributing to cancer formation and progression[104]. 
The study found that secondary conjugated bile 
acids, such as taurochenodeoxycholic acid, induced 
gallbladder cancer cell EGFR/erbB2 expression and 
activation of EGFR/erbB2 and downstream signaling: 
bile acid → src → TACE → EGFR/erbB2 → downstream 
signaling cascade. This induction and activation 
have also been verified in skin cells. This study was 
consistent with previous studies showing that in 
hepatocytes, the bile acids activated the MAPK and 
PI3K/Akt signaling pathways[105,106], indicating that bile 
acids have a prolonged effect on the activation of EGFR/
erbB2 signaling and finally led to intranuclear effects, 
rather than acute effects. HER2 is overexpressed 
in 61.2%-90% of pancreatic cancer patients[107,108], 
and survival of patients with HER2 overexpression is 
significantly lower compared with patients with low 
expression, 14.7 mo and 20.7 mo respectively. In 
a multivariate analysis, HER2 overexpression is an 
independent prognostic factor. These findings suggested 
that a HER2 monoclonal antibody may be beneficial for 
this subtype of patients[107]. 

The kras mutation plays an important role in pan
creatic cancer initiation. Kras induces endogenous EGFR 
expression and activation. EGFR inhibitors eliminated 
kras mediation of pancreatic cancer. In other words, 
without EGFR activation, kras cannot activate the MEK/
ERK pathway and promote tumorigenesis[109]. However, 
unlike gallbladder and bile tract cancer, whether bile 
acids induce expression of EGFR and HER2 in pancreatic 
duct epithelial cells remains unknown. A recent study 
revealed that there was crosstalk between a bile acid 
membrane receptor, TGR5, and EGFR signaling. The 

cell surface protease TACE/ADAM-17, which is required 
in EGFR activation by its ligands amphiregulin (AREG) 
and TGF-α, is highly expressed in colorectal cancer and 
pancreatic cancer. Exposure of colorectal cancer cells and 
pancreatic cancer cells to bile acids activates EGFR in an 
AREG-dependent manner. Furthermore, this effect was 
mediated by a G-protein coupled receptor, TGR5[5,104]. 
RNA silencing of TGR5 inhibited EGFR, MAPK and STAT3 
signaling induced by bile acids. 

QUESTIONS REMAIN
Toxicity of bile acids
Although we discussed bile acids as a molecular 
regulator in metabolic and cancer signaling, we still 
must note that bile acids are a type of detergent. 
Exposure of cells or tissues to bile acids at high 
concentrations (Table 1) primarily causes cell death, 
whereas activation of signaling pathways is secondary. 
This may be a reason for the contradictory findings. 
A study[110] found that DCA and CA increased the 
proportion of cells in G0 and G1 phase, while GCA and 
TDCA increased the proportion of cells in S phase. 
Effective biological effects could not be found, even 
with different concentrations and different times. After 
48 h of treatment, Panc-1 cells showed cell structural 
damage. Therefore, the researchers concluded that 
increases in bile acid concentration in the serum 
might inhibit the progression of pancreatic cancer. The 
conclusion might be far-fetched. In previous studies 
(listed in Table 1), the concentration of bile acids and 
the processing time varied substantially, indicating that 
bile acid concentration and treatment time are critical 
factors in research on the biological role of bile acids 
in cancer. Moreover, even if there is a clear biological 
effect in an in vitro study, how to simulate the in vivo 
environment is another issue. In the study of bile acids 
and pancreatic cancer, determining how bile acids 
reach the pancreatic duct epithelial cells or acinar 
cells is a prerequisite for all studies. If the bile acids 
do not reflux at high concentrations (for example, 
500 μmol/L) into the pancreatic parenchyma, how 
can these studies determine how bile acids affect the 
development of malignant tumors? Bile acid retrograde 
infusion into the pancreatic ducts are widely used 
to induce pancreatitis in vivo[111]. It has been shown 
that 37 mmol/L of taurocholate acids or 3 mmol/L of 
tauro-LCS induces maximally severe, acute necrotic 
pancreatitis but not chronic pancreatitis. For studies on 
chronic pancreatitis, due to the duration of the study, 
duct ligation models with bile acid reflux are often 
used[112]. However, a profile of bile acids is missing in 
these cases. Therefore, the concentration of bile acids 
is a crucial factor for both in vivo and in vitro studies. 
Additionally, the method of contact of bile acids with 
cells is also important, whether it is by contacting 
the cell surface (luminal or basal surface) or by 
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disrupting cell-cell connections to enter the pancreatic 
parenchyma. However, the solution to these questions 
cannot be determined from in vitro experiments. In 
vitro studies focus on one type or a few types of cells, 
and they cannot simulate tissue or organ structures. 
For example, apical or basolateral membranes of 
pancreatic ductal epithelium have different cell surface 
receptors and ion channels[77]. Thus, they have dif
ferent biological effects caused by contact with bile 
acids. These effects are different and may even be 
opposite. 

Systemic effects or local tissue effects
After reviewing the role of bile acids in pancreatic 
cancer formation and progression, more questions 
are raised. Bile acids enter the bloodstream by 
enterohepatic circulation. Bile acid receptors, including 
cell surface receptors and nuclear receptors, are widely 
distributed in the organs and tissues, including the 
pancreas. Bile acids regulate endocrine and exocrine 
functions of the pancreas, and they may be involved 
in pancreatic cancer formation and progression. We 
cannot assume that the role of bile acid-induced pan
creatic cancer is just due to local effects (reflux); it is 
more likely to function via systemic effects. Moreover, 
bile acid receptors in different organs and tissues have 

different effects (liver FXR and intestine FXR). They 
simultaneously play a pathogenic role and a protective 
role, which makes studying these processes very 
complex. 

Proportion of different fractions in bile acids
Bile is composed of a mixture of ingredients, and 
bile acid is the main component of bile. Bile acid 
itself has different ingredients, including conjugated 
bile acids and free bile acids, which have different 
hydrophilic properties, and their ability to cross the 
cell membrane is different. Glycine-conjugated bile 
acids have pKa values of 4.3-5.2, and they constitute 
greater than 60% of the bile, while taurine-conjugated 
bile acids have pKa values of 1.8-1.9, accounting for 
approximately 20% of the bile[113]. Therefore, the ratio 
of glycine-conjugated bile acids and taurine-conjugated 
bile acids is approximately 3:1. Taurine-conjugated 
bile acids are soluble and contact cells with a high 
frequency. They contribute to the role of bile acids 
as a carcinogen. Gastrointestinal inflammation and 
tumorigenic effects caused by different components of 
bile acids, glycine-conjugated or taurine-conjugated, 
conjugated or free, are not the same. Non-conjugated 
bile acids have more significant carcinogenic ef
fects[110]. A novel function of UDP glycosyltransferase 

Table 1  Review of the biological effects of bile acids

Ref. Year Cell/tissue Bile acid Dose Time Biological effect

Jean-Louis et al[90] 2006 HCT 116 DCA 500 μmol/L 5, 15, 30 min Cholesterol aggregation at 
membrane1, 2, 4 h

DCA 500 μmol/L 1 h Internalization of caveolin-1
Hirano et al[92] 1991 Gastric mucosal primary 

culture
DCA 30 min PKC activation

DeRubertis et al[93] 1987 Colonic epithelial cells DCA DAG ↑
Takano et al[94] 1984 Colonic epithelial cells DCA 2 d DNA ↑

ODC ↑
Magnuson et al[95] 1994 In vivo CA 2% in diet 18 wk Apoptosis ↓
Garewal et al[96] 1996 Biopsies DCA 1 mmol/L 30 ℃ 3 h Apoptosis ↓
Tucker et al[97] 2004 BxPC3 CDCA, DCA 100 μmol/L 6-12 h COX-2 ↑

SU86.86 PGE-2 ↑
Glinghammar et al[98] 2001 HCT 116 Tauro-CDCA 200-1200 μmol/L 15 h AP-1 ↑, COX-2 ↑, PKC(+), P38(+)

DCA, CDCA, CA 250 μmol/L
Butyric acid 0.1-4 mmol/L

HT 29 DCA 500 μmol/L 24 h COX-2 ↑, PCNA ↑
Raufman et al[100] 2015 In vivo (Asbt-deficient) Aberrant crypt foci
Cheng et al[101] 2007 H508 DCT 50 μmol/L 24 h MMP ↑
Kitamura et al[104] 2015 Primary culture (BK5 

erbB2 mice)
TCDC 100 μmol/L 72 h Cell proliferation ↑, EGFR MAPK 

Cyclin D1 ↑
Sk-Ch-A-1 TCDC 10-200 μmol/L 72 h Cell viability ↑

CDCA, DCA, TC, 
TDC

0.5 mmol/L 30 min p-erbB2, p-EGFR, p-MAPK, p-Akt ↑

TCDC 500 μmol/L 3 h HB-EGF ↑
TCDC 200 μmol/L 60 min TACE activity ↑

In vivo (BK5 erbB2 mice) TCDC 2.5 mmol/L 200 μL Twice/wk for 
20 wk

Skin tumor ↑

Qiao et al[105] 2001 hepatocytes DCA 50 μmol/L 5 min EGFR/Ras/MAPK activation
Rao et al[106] 2002 Primary rat hepatocytes TDCA, TCA, DCA 50 μmol/L 20 min p-raf-1↑, MEK ↑, ERK ↑
Nagathihalli et al[5] 2014 HCT116, HCA-7, BxPC3, 

AsPC-1, Capan 2
DCA 300 μmol/L 4 h-6 h TACE co-localization, TGF-α 

mRNA ↑
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8 (UGT8) has been found; it galactosylates bile acids 
up to 60-fold more efficiently than its activity towards 
ceramide[114]. This finding suggested that UGT8 might 
be involved in modulating bile acid signaling. In 
contrast, UDCA has anti-neoplastic effects but is also 
commonly used for clinical treatment of biliary tract 
disease[90,115]. Therefore, we need to understand the 
variety in the composition and concentration of bile 
acids in pancreatic cancer patients to further clarify the 
role of bile acids in pancreatic cancer.

CONCLUSION
Bile acids are associated with most risk factors of 
pancreatic cancer, including alcohol intake, smoking, a 
high-fat diet, gallstones, a long common channel, and 
chronic pancreatitis, as well as obesity, diabetes and 
hypertriglyceridemia. In addition to systemic effects, 
bile acids have local tissue effects, and they directly 
activate cancer signaling pathways. Bile acids are likely 
to be recognized as signaling molecules in pancreatic 
cancer in the future.  
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