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Abstract

AIM: To explore the effects of endothelin-1(ET-1) on
hepatic stellate cells (HSCs) DNA uptake, DNA synthesis,
collagen synthesis and secretion, inward whole-cell calcium
concentration ([Ca2+]i) as well as the blocking effect of
verapamil on ET-1-stimulated release of inward calcium
(Ca2+) of HSC in vitro.

METHODS: Rat hepatic stellate cells (HSCs) were isolated
and cultivated. 3H-TdR and 3H-proline incorporation used
for testing DNA uptake and synthesis, collagen synthesis
and secretion of HSCs cultured in vitro; Fluorescent calcium
indicator Fura-2/AM was used to measure [Ca2+]i inward
HSCs.

RESULTS: ET-1 at the concentration of 5×10-8 mol/L,
caused significant increase both in HSC DNA synthesis
(2 247±344 cpm, P<0.05) and DNA uptake (P<0.05) when
compared with the control group. ET-1 could also increase
collagen synthesis (P<0.05 vs control group) and collagen
secretion (P<0.05 vs control group). Besides, inward HSC [Ca2+]

i reached a peak concentration (422±98 mol/L, P<0.001)
at 2 min and then went down slowly to165±51 mol/L
(P<0.01) at 25 min from resting state (39±4 mol/L) after
treated with ET-1. Verapamil (5 mol/L) blocked ET-1-
activated [Ca2+]i inward HSCs compared with control group
(P<0.05). Fura-2/AM loaded HSC was suspended in no
Ca2+ buffer containing 1 mol/L EGTA, 5 min later, 10-8 mol/L
of ET-1 was added, [Ca2+]i inward HSCs rose from resting
state to peak 399±123 mol/L, then began to come down
by the time of 20 min. It could also raise [Ca2+]i inward
HSCs even without Ca2+ in extracellular fluid, and had a
remarkable dose-effect relationship(P<0.05). Meanwhile,
verapamil could restrain the action of ET-1(P<0.05).

CONCLUSION: Actions of ET-1 on collagen metabolism of
HSCs may depend on the transportation of inward whole-
cell calcium.
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INTRODUCTION
Hepatic fibrosis associated with the activation of hepatic stellate
cells (HSCs), the major source of extracellular matrix (ECM)
proteins[1]. It is generally believed that HSCs are the main cells
producing ECM, from resting state to active myofibroblasts,
which is the key point of formation and development of hepatic
fibrosis[2-6]. Endothelin-1(ET-1) is currently known as a polypeptide
with a stronger activity to contract blood vessel. So, based on
prophase researches[7-9], we chose ET-1 to observed its direct
effect on DNA ingestion and synthesis as well as collagen
synthesis and secretion of HSCs in cultivating. Meanwhile, as
we know that Ca2+ is an important intracellular messenger, relate
to HSC proliferation and ECM synthesis[10-13]. The effects of
ET-1 on regulation and intracellular [Ca2+]i of HSCs isolated
and cultivated in vitro were studied.

MATERIALS AND METHODS
MATERIALS
Animals  Wistar male rats, weighting (450±50) g, were provided
by Shanghai Experimental Animals Center of Chinese Academy
of Sciences.
Reagents  ET-1, calcium fluorescence probes Fura-2/AM, Triton
X-100, pronase, trypsin, DMEM, DAB-H2O2 were from Sigma;
verapamil from Knoll; collagenase from Medical Industry
Academy of Shanghai; RPMI 1640 from Gibco; HEPES from
EMK; 3H-L-proline from Academy of Atomic Energy in China
(66.6 GBq/mmoL, radioactivity purity>90%). 3H-TdR was from
Institute of Atomic Energy in Shanghai (814 GBq/mmoL,
radioactivity purity >95%).

Methods
Isolation and cultivation of rat HSCs  Rat HSCs were isolated
referring to Knook[14-17]. Rats were anaesthetized with
pentobarbitone (200 mg/kg) by abdominal injection, then
heparin sodium (10 mg/kg) was injected into the caudal vein.
The abdominal cavity was opened and portal vein and dorsal
vein were exposed. Blood was released through vein and D-
Hank’s solution was perfused (20-25 mL/min) until pale yellow
appeared. Liver was taken out and undergone extracorporeal
circulation when perfusion fluid was changed to GBSS
containing 0.5 g/L pronase E, 0.5 g/L collagenase and 10 mmoL
HEPES. Circle perfusion was performed for 30 min (15 mL/min).
Liver was taken out and cut to pieces, then put into GBSS
containing 0.25 g/L pronase E, 0.25 g/L collagenase and 10 mmol/L
HEPES, shocked at 37 °C for 30 min, little suspended deposit
was put in culture media on the top of three-layer density
gradient centrifugation fluid containing 80 g/L and 130 g/L
metrizamide, 2  800 r/min centrifugation for 20 min, Cells were
sucked between top layer and 80 mL/L density layer. DMEM
containing 200 mL/L calf serum was used to regulate the number
of cells to 1×105/mL.
DNA and collagen synthesis of HSCs  HSCs in 2 to 4 th
generation were digested by pancreatin and cultured with
DMEM supplemented with 100 g/L calf serum and 100 mL/L
horse serum. Cells were adjusted to 1×10-8/mL and inoculated
on a 48-well plate, cultured for 24 h, then different concentration
of ET-1 and the same dosage of drug was added, respectively
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and triplicated for each concentration. 3H-TdR and 3H-proline
were used to assay the incorporation.
HSC ingestion of DNA  3H-TdR 18.5 GBq/mmoL was added at
10, 20, 30 and 60 min respectively, washed 3 times with PBS of
1×105 mmol/L, centrifuged 1 000 r/min 10 min, the top layer fluid
was removed, 2 mL of 100 g/L TCA was added and centrifuged
1000 r/min 10 min again. Top layer fluid was collected and
deposited, washed 3 times with 800 mL/L ethanol at 4 °C. The
top layer fluid was removed and dried in vacuum. 1 mol/L NaOH
was added to lyse the deposit and 1N HCl was used to adjust
pH to 7.0 Radioactivity of specimens was measured on Beckman
scintillation counter.
Collagen secretion of HSC  In experiment of 3H-TdR, before
transferred to F49 filter paper, 1 mL culture media was taken out
and put into a tube. A 5 mmol/L acetic acid was used to adjust
pH to 2 to 3, then 25 µL of 2.5 g/L pepsin was added to digest.
A 50 µL of proline was added at 4 °C for 3 h, l, 1.2 mol/L
trichloroacetic acid was fixed for 2 h, transferred to F4a filter
paper, closed with saline, 0.6 mol/L trichloroacetic acid was
used again, then bleached with anhydrous alcohol, baked at
80 °C. Radioactivity of specimens was measured on YSJ-75
liquid scintillation counter.
[Ca2+]i in Fura-2/AM loaded HSC  HSCs were cultured on a
rectangle glass when HSCs grew and covered the glass. Then
cells were taken out of the glass and RPMI 1640 containing
Fura-2/AM (10 nmol/L) was added to incubate at 37 °C for
50 min, D-Hank’s solution was used to wash extracellular free
Fura-2/AM and incubated for another 30 min, 1 g/L trypsin was
used to digest the cells and the number of cells was adjusted to
106/mL by buffer.
Fluorescence spectrum  About 2 mL of Fura-2/AM loaded
HSCs was suspended for the test with a fluorescence
spectrophotometer. Raster (EX) 5 nm, radiate raster (EM) 10 nm
were excited at a middle scan speed (32 mm/min), excitation
light scan ranged 300-400 nm, emission light scan ranged
440-540  nm.
Intracellular fluorescence intensity  Fluorescence intensity F
was detected first (laser wave-length 340 nm, EX 5 nm, emission
wave-length 510 nm, EM 10 nm), then different concentrations
of ET-1 and verapamil and EGTA (last concentration 8 mmol/L)
were added for the detection of minimum fluorescence intensity
(F min).
Calculation of [Ca2+]i  Intracellular [Ca2+]i (nmol/L) = kd
(F-F min)/(F max-F). Kd is a dissociation constant to Fura-2/Ca2+

compound which equals to 224 nmol/L.
Statistical analysis  Variance homogeneity tests were used to
make comparisons.

RESULTS
HSC activity
Trypan blue staining revealed an activity above 90% for HSCs.
The purity of HSCs was more than 80% assessed by
fluorescence microscope. The nuclei of HSC were stained blue
among the desmin-positive satellite cells.

Effect of ET-1 on HSC DNA synthesis
As shown in Table 1, ET-1 could accelerate 3H-TdR
incorporation into HSCs and HSC DNA synthesis and
proliferation (P<0.05), in a concentration-dependent manner.

Effect of ET-1 on HSC ingested 3H-TdR
ET-1 could accelerate the rate of HSC ingested DNA, the rate
increased with the time prolonged (P<0.05 or P<0.01, Figure 1).

Effect of ET-1 on HSC collagen synthesis
ET-1 could accelerate 3H-Proline incorporation into HSCs and

collagen synthesis at the concentration of 5×10-8 mol/L (P<0.05),
in a concentration-dependent manner.

Figure 1  Effect of ET-1 on HSC ingeste 3H-TdR.

Table 1  Effects of ET-1 on HSC DNA synthesis, collagen syn-
thesis and secretion (cpm, mean±SD)

Group                         DNA                  Collagen          Collagen
                                 synthesis               Synthesis          secretion

Control        1 370±113 2 167±454 1 431±389
ET 10-9 mol/L        1 489±305 2 206±725 1 528±242
ET 5×10-8 mol/L     1 986±457a 2 698±304a 1 903±552a

ET 10-8 mol/L        2 247±344a 2 876±396a 2 087±128a

ET 10-7 mol/L        4 015±102a 3 056±401a 2 794±397b

aP<0.05, bP<0.01 vs control group.

Effect of ET-1 on HSC collagen secretion
As shown in Tablet 1, ET-1 could remarkably accelerate HSC
collagen secretion compared with the control group (P<0.05).

Effect of ET-1 (10-8  mol/L) on intracellular [Ca2+]i

As shown in Figure 2, when ET-1 was added to the suspension
of Fura-2/AM loaded HSCs and kept for 25 min (n = 3), [Ca2+]i in
HSCs rose from (39±4) mol/L (resting state) to (165±51) mol/L
(P<0.01) and rose to peak (422±98) mol/L (P<0.001) after another
2 min, then it began to go down slowly and remained a higher
concentration even after another 18 min compared with the
resting [Ca2+]i (P<0.01). It suggested that the effect of ET-1 on
[Ca2+]i in HSCs could be divided into 2 phases, a fast phase
(I P) and a slow phase (II P).

Figure 2  Effect of ET-1 on [Ca2+]i peak value in HSCs.

Effect of ET-1 on peak concentration of [Ca2+]i in HSCs
As shown in Figure 3, [Ca2+]i in HSCs was in a ET-1
concentration-dependent manner. No change of [Ca2+]i

occurred in HSCs when ET-1 was less than 10-11 mol/L. [Ca2+]i

reached its peak in a ET-1-dose-dependent manner when ET-1
was greater than 10-9 mol/L.
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Figure 3  Effect of ET-1 on [Ca2+]i in HSCs (10-10mol/L).

Blocking effect of verapamil
As shown in Figure 4, calcium channel blocking agent verapamil
(5 µmol/L) could significantly restrain I P and II P effects on
[Ca2+]i in HSCs excited by ET-1 compared with control group
(P<0.05). Fura-2/AM loaded HSCs suspended in Ca2+-free buffer
containing 1 mol/L EGTA made [Ca2+]i in HSCs raise from resting
state to peak (399±123) mol/L, then go down to (49±17) mol/L at
the time of 20 min when first treated with 10-8 mol/L of ET-1,
suggesting that Ca2+-free buffer had no remarkable effect on I P
of [Ca2+]i in HSCs excited by ET-1 but completely blocked II P.

Figure 4  Effect of ET-1 increase [Ca2+]i in HSCs.

DISCUSSION
HSCs were first detected by Ito and Nemoto in 1952, which
provided a new way to study episode mechanism of hepatic
fibrosis and deepened the cognition of hepatic fibrosis from an
angle of source cells of collagen production[2-6,15,16]. HSCs is
also named Ito cell, VitA storing cell, liver antrum around cell,
fat-storing cell, and is one of the liver interstitial cells. The main
function of HSC is to store and metabolize VitA. It has been
found to be able to synthesize and secrete ECM and synthesize
collagenase[2-6]. When hepatic fibrosis occurred, HSC turned
into fibroblasts or myofibroblasts that were the cause of liver
synthesis of ECM. This change of HSC was called activation
or conversion[2,3]. It has been certificated that interstitial cells
especially HSCs are the main cells which producte collagen
when hepatic fibrosis occurs. So it has become a central link in
hepatic fibrosis occurrence mechanism.
      ET distributes widely in liver and portal vein system, and
has important biological effects on liver[18-24]. This experiment
showed that ET could remarkably accelerate HSC proliferation,
DNA synthesis, collagen synthesis and secretion. It is thus
clear that ET-1 had double roles during hepatic fibrosis,
accelerating not only HSC synthesis of collagen but also
selective excretion of collagen. Besides[25,26], endothelial cells
in hepatic sinusoid secrete endothelins that can activate HSCs.
It has been reported that ET could raise [Ca2+]i in smooth muscle
cells[27-29]. This study showed that ET-1 could raise [Ca2+]i in

HSCs and appeared double phase reaction, fast phase and
slow phase. Both phases had a dose-dependent manner. It
turns out that when the cells are at resting state, if there is
extracellular Ca2+, the [Ca2+]i in HSCs will be higher than that
without extracellular Ca2+. ET-1 can remarkably raise [Ca2+]i in
HSC with or without extracellular Ca2+. It implies that ET-1 can
accelerate HSC release of intracellular Ca2+.
      Three different ways have been found to elevate [Ca2+]i

[30-33].
Plenty of calcium flows into cell through Ca2+ channel, Ca2+-
ATP enzyme or Na+-Ca2+ changing system is restrained which
can transfer Ca2+ out of cells; Ca2+storing systems such as
mitochondrion and endoplasm increase Ca2+. We used Ca2+-
free buffer and found it had no effect on [Ca2+]I in I P in HSC
excited by ET-1 but could block  [Ca2+]I in II P. It implies that
elevated [Ca2+]I in I P is caused by increased Ca2+ stored in
cells, while elevated [Ca2+]I in II P is caused by Ca2+ flowing out
of cells. It has been currently accepted by some of scholars
that the raise of Ca2+ in HSC is through the way of phospholipase
C (PLC)-inositol triphosphate (IP3)- diacylgcerol (DAG)[34-51].
ET-1 excites PLC on cell membrane through G protein that makes
4,5-biphosphate inositol divide into IP3 and DAG-IP3.
Mitochondrion, endoplasm and sarcoplasm that make Ca2+ in
cell release to cytoplasm and increase free [Ca2+]i in cells. IP3

works only a very short time , and is quickly converted to IP4

by special enzymes. So peak I P lasts for a very short time, but
IP4 can accelerate the opening of Ca2+ channel on cell membrane,
which makes an increase of calcium flowing out of cells and at
last results in a fast raise of [Ca2+]i in cells.
      Physiological and pathological significance of elevated free
Ca2+ in HSCs excited by ET is still not clear. Maybe it could
participate the series of signals in cells and physiological effect
of ET[25,27]. In conclusion, ET-1 can remarkably accelerate HSC
proliferation, collagen synthesis and secretion, increase of [Ca2+]i in
HSC and of release of Ca2+ in cells, thus accelerating proliferation
of fibrous tissues and repair of injury tissues.
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