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Abstract
The varieties and capabilities of artificial intelligence and machine learning in
orthopedic surgery are extensively expanding. One promising method is neural
networks, emphasizing big data and computer-based learning systems to develop a
atistical fracture-detecting model. It derives patterns and rules from outstanding
amounts of data to analyze the probabilities of different outcomes using new sets of
similar data. The sensitivity and specificity of machine learning in detecting fractures
vary from previous studies. Al may be most promising in the diagnosis of less-obvious
fractures that are more commonly missed. Future studies are necessary to develop more

accurate and effective detection models that can be used clinically.
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Core Tip: Machine learning is currently applied to image-screening assistance,
predictive analytics, and intraoperative robotics, specifically in the trauma orthopedics
field. Artificial intelligence can be used in the emergency department of trauma centers
as a screening tool and aid to orthopedists, helping them improve their sensitivity and
specificity and help shorten their diagnosis time. In real-life practice, orthopedic
surgeons consider various factors when making a prediction; that is why machine
learning-based predictive models include features such as history and physical exam
data, along with imaging results. Artificial intelligence application may be able to

identify such patterns and increase the chance of optimum results.

INTRODUCTION
INTRODUCTION




Nowadays artificial intelligence and machine learning involve significantly in medicine
(1-4). Musculoskeletal trauma is one of the main reasons for emergency department
(ED) visits. Due to the nature of trauma, missed injuries are common after the primary
assessment of patients.(5) Avoiding missed injuries is essential for the timely and
efficient treatment of patients seen in the ED (6, 7). Therefore, identifying errors in
medical imaging interpretation that contribute to missed and delayed diagnoses is
critical. Al surveillance may be most promising in settings where misinterpretation is
most prone to happen. Hallas et al showed that fracture misdiagnoses were most likely
to occur between the hours of 8 pm and 2 am. (8)

Machine learning (ML) and artificial intelligence (AI) are poised to assist physicians in
faster and more efficient identification of fractures on radiographs taken in clinic
and/or the ED, working through a high volume of images while maintaining maintain
high accuracy (9). The ability of ML to handle large amounts of data and multiple
simultaneous variables means that it can identify patterns (injuries) that humans may
be more likely to miss. Analyzing big data gives ML the power to be applied for
predictive analytics, such as personalized treatment and prediction of surgical

tcomes (10).
In this review article, we discuss the developmental frontier of Al applications in

commonly used image modalities for identifying orthopedic injuries.

OVERVIEW OF DEEP LEARNING TECHNOLOGY

From being introduced in 1959 until now, Al applications have increased exponentially.
Physicians are now beginning to take advantage of this constantly developing tool
within their fields. Better central- and graphic-processing units (CPU and GPU) are
being designed to have the ability to put into use the ever-growing amounts of data that
is now accessible (11).

Al is described as algorithms solving issues that usually require humans to intervene.
Machine learning is a subset of Al that allows it to learn without complex

programming. The power of ML lies in the learning process, which can be divided into




two groups: supervised learning, which requires instructions from humans, and
unsupervised learning which the machine itself learns and classifies the data in patterns
itself finds; potentially identifying patterns that have not yet been recognized by human
rules.

Figure 1 illustrates a hierarchic relationship between these terms with deep learning
(DL) being the following subclass. The main difference between classic ML and DL is
that, unlike classic algorithms, DL algorithms learn which features are the best for the
calculating task rather than human experts choosing them (12, 13). Deep learning
algorithms are applied as neural networks that can learn the input data's nonlinear
functions. The concept of computer learning pictures lies in convolutional neural
networks (CNNs). CNNs contain many layers that are limited in transforming their
input with the convolution filters (Figure 2) (14). Schematic representation illustrated an
artificial network inspired by a biological neural system composed of many artificial
neurons. As dendrites receive inputs in a neuron cell, an artificial neuron receives
signals multiplied by their weights (w) so that output can be determined based on the
weighted sum of the input. There is a specific weight for each neuron, and the bias
value (b) is to shift the activation function along with the weighted sum of inputs. Here,
the activation function is shown as rectified linear unit (ReLU) function to introduce
non-linearity to the neuron decision. Here, it chooses the maximum of either z or 0.
Considering a collection of connected artificial neurons and when the output of some
becomes the inputs of another, arranged in a multilayer complex that is only connected
to their adjacent layers (Figure 3).

CNNss are a subset of DL algorithms that has surpassed image analysis by acting as an
arrangement of layers that simplifies image volume into basic class scores. Using
learnable layers that reduce the complexity and parameter requirements per layer
starting from the "Dense layer," where all the possible connections between input and
output nodes are introduced and classified. Moving on to the "Convolutional layer
(CONYV layer)," "Pooling layer," and "Dropout layer," which are created to learn more

complex features and avoid overfitting, that is when there is a good performance on the




training data but poor employment to other data. CONV layer also can be used for
determining the exact input volume. CNNs gained enormous popularity in neutral
image recognition when they outperformed humans. (15)

DL and CNNs can train with input data and its standard labels (for example, fracture or
no fracture). Self-learning is a prominent feature of this system, which gives them the
advantage of handling novel tasks with less computational power and time, stepping
up the interpretation process. It is difficult to determine how a CNN works, but more
information on its decision-making has been presented in many related articles (12-14).
Although, medicine as a field has underutilized Al applications so far, its use is
increasing (16). ML is now applied to intraoperative robotics, predictive analytics, and,

most importantly, image-screening assistance, specifically in the trauma field(15, 17-19).

IMAGE-BASED AT APPLICATION

Physicians have been quick to apply machine learning and Al to fracture detection,
given the large number of medical images that must be reviewed and the potential for
missed injuries. The image-based DL model is one of the most used Al techniques for
fracture detection and has been applied to various modalities such as computed
tomography (CT) images, X-Ray, and MRIs.

Given the prevalence of hand and wrist injuries, and scaphoid fractures being the most
common carpal bone fractures, Ozkaya, E., Topal, F.E., Bulut, T. et al (2022) used CNN
for detecting scaphoid fractures, comparing its performance with emergency
department (ED) physicians and two orthopedic specialists (one of them being
experienced in the hand surgery) for detecting scaphoid fractures on anteroposterior
wrist radiographs. Even though the experienced orthopedic specialist showed the
highest area under the receiver operating curve (AUC) value (0.920), CNN's AUC value
was higher than both the untrained orthopedic specialist and ED physicians (0.840 vs.
0.820 and 0.760, respectively). CNN also had a significantly higher sensitivity than the
ED physicians (72% compared to 62%), even though it showed lower sensitivity than

the experienced orthopedic specialist (86%). This article recommended using CNN for




detecting scaphoid fractures in centers without experienced hand surgeons available
(20) Oka, K. et al 2021 used image augmentation to increase their training data in an Al
model they developed to diagnose distal radius fractures. Their model displayed an
excellent diagnostic accuracy at 98+1.6% for detecting distal radius fractures and a
91.1+2.5% diagnostic accuracy for fractures of the ulnar styloid process, despite using a
relatively small amount of data. This promising diagnostic rate was achieved by using
bi-planar X-ray images. The sensitivity and specificity for distal radius fractures were
98.6 + 1.8% and 96.7% + 3.5, respectively, with the sensitivity and specificity for the
styloid process of the ulna being 92.2 +5.7% and 90.4 + 3.9%, respectively. (21)

Liu and colleagues improved an Al algorithm (RetinaNet) and trained it with X-rays of
patients with tibial plateau fractures (TPF) to help orthopedic physicians detect TPF.
The algorithm's performance was promising; not only was it 16 times faster than the
orthopaedists, but it also showed a similar accuracy rate (0.91 vs. 0.92). Liu suggests that
their Al algorithm would perform even better in clinical settings. Humans have been
shown to be prone to missed diagnoses when under pressure or overworked, making
Al a potentially useful tool in these scenarios. (22)
In a study conducted by J.E. Small ef al (2021), C-spine, a convolutional neural network
(CNN) developed to detect cervical spine fractures on CT, showed a lower accuracy
(92% vs. 96%) and sensitivity (79% vs. 93%) rate compared to that of radiologists.
Nevertheless, CNN was superior to radiologists regarding radiology interpretation
times. This decrease in fracture detection time illuminates the possible role of CNN in
prioritizing unstable fractures to intervene promptly. (23) Murata, K., Endo, K., Aihara,
T.et al. (2020) trained a deep convolutional neural network (DCNN) with plain
thoracolumbar radiography (PTLR) to detect vertebral fractures (VF). PTLR is cheaper
and more available in primary care centers than CT and MRI, yet PTLRs sensitivity for
detecting VF is considerably lower than theirs. The DCNN Murata and his colleagues
showed higher sensitivity than orthopedic residents (84.7% vs. 72.4%) but lower
sensitivity than orthopedic surgeons and spine surgeons (77.5% and 96%, respectively).

Their work suggests that DCNN can be used by general and emergency physicians or




even orthopedic residents to identify VFs not only early and timely for management but
with an 86.0% accuracy rate, higher than the accuracy rate of orthopedic residents
(77.5%) and almost equivalent to that of orthopedic surgeons (88%). (24)

In a retrospective study conducted by Mutasa, S., Varada, S., Goel, et al (2020) (25), CNN
was used to not only diagnose but to classify femoral neck fractures (FNF) based on the
radiograph-based Garden classification system of FNF (26). They trained two networ
one to localize the femoral neck on anteroposterior (AP) radiographs, the other to
classify the femoral neck into Garden I/1I, Garden III/IV, or no fracture groups. Data
augmentation improved their CNN performance by providing additional training data.
The CNN detected fractures with an accuracy of 92.3%, sensitivity of 0.91, and
specificity of 0.93. It also showed a higher sensitivity for detecting and correctly
classifying displaced fracture (Garden III or IV) compared to non-displaced fractures
(Garden class I or II), with an accuracy rate of 86% vs. 80% and a sensitivity of 0.91 vs.
0.54, respectively, suggesting that DL using a CNN can help physicians with the timely
detection and therefore management of FNFs in the emergency department. More
recently, Bae, J., Yu, S., Oh, J. et al. (2021) (27) used hip and pelvic AP films for training
a CNN developed to detect FNFs. They then performed an external validation for their
CNN model. This study was conducted in two hospitals. After training and intgrnal
validation of one hospital dataset, the test values were 0.999 AUC, 0.986 accuracy, 0.966
sensitivity, and 0.993 specificity. Values of external validation with the other hospital
dataset were 0.977, 0.971, 0.939, and 0.982, respectively. Values of the combined hospital
dataset were 0.987 AUC, 0983 accuracy, 0.973 sensitivity, and 0.987 specificity,
indicating that even though other hospitals could use the completed model trained with
the data set of one hospital for screening FNF, the CNN should also be trained with
images from those hospitals, to improve the CNNs performance.

One of the limitations of most algorithms that have been developed is that they are
limited to one anatomical area. Therefore, in account to apply them to interact with
other algorithms, one interconnected software was needed. Jones et al (2020) article

using 715,343 radiographs is an example of this interaction. This multicentric study, 16




anatomic regions were analyzed using an ensemble of 10 CNNs with mean AUCs above
0.98 for most areas (Figure 4). (28)

Guermazi A et al (2022) (29) aimed to compare the performance of medical doctors of
several fields, four_of them being orthopedists, in detecting fractures of various
anatomic locations (oot and ankle, knee and leg, hip and pelvis, hand and wrist, elbow
and arm, shoulder and clavicle, rib cage and thoracolumbar spine) with and without the
assistance of Al, with a minimum washout period of 1 mo. With AI assistance,
orthopedists' sensitivity per patient improved by 9.1%, and their specificity per patient
enhanced by 2.0%. Their study showed no difference between specialties for sensitivity
or specificity per patient improvement with the assistance of Al and that the Al can help
clinicians ghorten the radiograph reading time by 6.3 per patient. Inoue and colleagues
(30) used a CNN model to localize fractures on whole-body CT scans of polytrauma
patients and to classify them into pelvic, rib, and spine fractuEs. The CNN showed
0.839 sensitivity for pelvic fractures, with 0.645 precision. For rib fractures, the
sensitivity was 0.713, and the precision was 0.602. In detecting spine fractures, the
CNN's sensitivity was 0.780 with a 0.683 pregision. Overall, The CNN model
demonstrated promising outcomes for detecting all three types of fractures; for the
grouped mean values, sensitivity was 0.786, and accuracy was 0.648. They also had
their CNN model assist orthopedic surgeons with fracture diagnosis, resulting in
increased sensitivity and reduced CT image reading time. The results of these two
articles suggest that Al can be used in the emergency department of trauma centers as a
screening tool and aid to orthopedists, helping them improve their sensitivity and

specificity and help shorten their diagnosis time.

PREDICTIVE ANALYSIS

Even in orthopedic surgery - a field that largely relies on technical devices and imaging
modalities Al use is not limited to fracture detection and surgical robots in the
operating room. Predictive modeling in traditional statistical modeling is based on

known underlying structures and various hypotheses, but this is not the case for ML




(31), which makes ML-based predictive models more efficient. We will review some of
the predictive applications of ML in trauma orthopedics.

Orthopedic surgeons use pre-operative data (e.g., imaging information) to choose the
best surgery method. But, clinical decision-making in trauma patients is not always
straightforward; fractures may not be evident in pre-operative routine assessments (i.e.,
occult fractures). The study of Hendrickx et al (32) is an example. Tibial shaft fracture
complicated with posterior malleolar fracture benefit from the “malleolus first” surgical
technique; however, the latter may remain undiagnosed before the surgery. So, the
authors used ML methods that accurately predicted posterior malleolar fracture.

Sports medicine is an important topic for predictive medicine. Researchers have
compared the performance of ML and traditional regression analysis to predict
following-season injuries among 2322 national hockey league players (33). Advanced
ML models outperformed logistic regression in their study. A similar study was also
conducted among (American) league baseball players (34). In another study evaluating
soccer players with Achilles tendon rupture (35), 32,853 soccer matches were analyzed
with ML methods, and pre-injury performance was the best predictor of match
participation level after the trauma. Studies have also used ML to predict secondary
meniscus tears in 1187 patients who underwent primary anterior cruciate ligament
(ACL) reconstruction (32). They used four ML models, and they all outperformed
logistic regression. ML can even identify patients at risk of prolonged opioid use
following arthroscopic ACL repair (36).

If it were not for Al, would it be possible to analyze such extensive data while training
individualized predictive models?

In general and trauma surgeries, studies have also used ML to determine which
characteristics would lead to a worse outcome. An example is using ML to predict
surgical site infection (37). The authors analyzed patient and surgical procedure-related
factors in 2,882,526 surgical procedures; the results support the superiority of ML
models compared to logistic regression. Other examples include a) promising

performance to predict delirium after hip fracture fixation in geriatrics (internally and




externally validated) (38), and b) accurate prediction of short-term outcomes after open
reduction and internal fixation in ankle fractures (39). Martin and colleagues have used
ML models to predict ACL revision surgery and developed an in-clinic calculator; in
another study, they externally validated their previous findings suggesting that
incorporating this tool helps clinicians predict revision risk among these patients (40,
41).

The precise predictive ability of ML is advantageous in critical settings where
traditional methods may come short. For example, pertrochanteric fracture surgery in
elderly patients accompanies higher morbidity and mortality rates. ML methods were
used to predict one-year mortality after per-trochanteric fracture surgery in 448 patients
(42). ML-based analysis of patients undergoing primary emergency hip fracture surgery
accurately predicted 30-day postoperative mortality (43, 44).

Orthopedic trauma patients also benefit from long-term rehabilitation, and clinicians
assess its success based on patient-reported outcome measures and clinical assessments.
ML analyzes these data to determine which factors most likely lead to better outcomes
(45). In a study on hip, knee, and foot trauma patients (46), ML was able to predict
rehabilitation success. Hopefully, by applying these findings in the future, trauma
patients will receive individualized treatments that provide the optimal outcome -a
healthier and happier patients.

Studies do not always confirm the superiority of Al and ML-based prediction models in
trauma orthopedics (39). Al-based predictive analysis is an emerging field, but despite
potential capabilities, we must address its shortcomings to yield more accurate
algorithms. Some limitations are as follows: the predictive model is affected by the type
and nature of variables; the exact data size to build a precise model is not clear; only the
output can be obtained, and the information and knowledge that lead to an ML
algorithm is unknown (47, 48). In real-life practice, orthopedic surgeons consider
various factors when making a prediction; that is why ML-based predictive models
include features such as history and physical exam data, along with imaging results. It

is essential that the ML algorithm considers all the variables necessary for making the




correct prediction. These novel predictive models still have a long way to go before they

can be successfully implemented in day-to-day practice, however (49).

LIMITATIONS AND STRENGTHS OF THE CURRENT STUDY

The inclusion of search details is not mandatory in narrative reviews, which may
compromise the thoroughness and impartiality of the search methods. Selective
inclusion of publications that support a particular hypothesis can introduce bias and
hinder the exploration of the existing evidence. Narrative reviews often lack
descriptions of their selection and review methods, making replication and verification
of their results impossible, which conflicts with scientific evidence. These reviews rely
on written paragraphs to summarize research findings and do not conduct pooled
analyses, which limits objectivity and instead reflects dominant opinions at the time of
publication. While narrative reviews may provide a general understanding of a body of
evidence, they do not fully explore alternative hypotheses and cannot ensure the
correctness of dominant opinions. The aforementioned statements have been added to

the manuscript.

CONCLUSION
CONCLUSION and FUTURE DIRECTION

As the long history of Al inclusion in medicine tells us (50), Al has a great potential to
enhance diagnostic accuracy, especially in imaging-related areas (51). However, has it
gained the reliability to act in an emergency in severe trauma patients? A recent study
by De Simone et al (49) demonstrated that emergency surgeons have a growing interest
in Al implantation in the acute settings of ED and emphasized that the support of
healthcare systems is essential for the progress of Al in this field.

Aside from being used in hospital settings, high-accurate outcome predictors have also
been helpful for bedside counseling of elderly patients concerned about trauma (52). So

that we could say it can help trauma detection before the patient arrives at the hospital.




All of this can give us a picture of how hospitals and Eds may be affected in the next ten
years: considering all of this potential that Al has, user-friendly applications must be
developed to even guide doctors through the most critical data and imaging available in
emergencies. Al applications may be able to identify such patterns and increase the
chance of optimum results. It cannot be defined how the future will be precisely, but it
is safe to say that Al has not yet been able to do all of the complex tasks that human
does, but it can augment their performance to help them keep up with the ever-

increasing workflow.
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Figure Legends

Figure 1 Diagram demonstration of convolutional neural networks in the artificial
intelligence hierarchy

Figure 2 Schematic exemplification of an artificial neuron to highlight its similarity to a
biological neuron. Data input is termed weights in an artificial neuron. As in, inputs are
multiplied by their weights, bias is added to allow the model to fit better, and a
nonlinear mathematical formula determines the output for the next neurons in line. (W
= weight, X =input, Y = output, and b = bias value.)

Figure 3: (a) graphic model of artificial neural network and its similarity to (b) biological
neural network. Output of one layer is considered the input of another.

Figure 4 Schematic representation of detection of fracture and localizing it. (a) To better
outline the fractures, 10 CNNs were used to predict and generate bounding boxes
around them. (b) Sixteen anatomical regions and the result of fracture detection in them.

Reprinted with permission from Jones ef al (28)
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