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Abstract
Hepatitis C virus (HCV) infection is an excellent immunological model for 
understanding the mechanisms developed by non-cytopathic viruses and tumors 
to evade the adaptative immune response. The antigen-specific cytotoxic T cell 
response is essential for keeping HCV under control, but during persistent 
infection, these cells become exhausted or even deleted. The exhaustion process is 
progressive and depends on the infection duration and level of antigenemia. 
During high antigenic load and long duration of infection, T cells become 
extremely exhausted and ultimately disappear due to apoptosis. The development 
of exhaustion involves the impairment of positive co-stimulation induced by 
regulatory cytokines, such as transforming growth factor beta 1. This cytokine 
downregulates tumor necrosis factor receptor (TNFR)-associated factor 1 
(TRAF1), the signal transducer of the T cell co-stimulatory molecule TNFR 
superfamily member 9 (known as 4-1BB). This impairment correlates with the low 
reactivity of T cells and an exhaustion phenotype. Treatment with interleukin-7 in 
vitro restores TRAF1 expression and rescues T cell effector function. The process 
of TRAF1 loss and its in vitro recovery is hierarchical, and more affected by severe 
disease progression. In conclusion, TRAF1 dynamics on T cells define a new 
pathogenic model that describes some aspects of the natural history of HCV, and 
sheds light on novel immunotherapy strategies for chronic viral infections and 
cancer.

Key Words: Hepatitis C virus; Tumor necrosis factor receptor-associated factor 1; CD8; 
Exhaustion; Tumor necrosis family receptor superfamily member 9; Chronic hepatitis
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Core Tip: Tumor necrosis factor receptor-associated factor 1 (TRAF1) is the signal 
transducer of the positive checkpoint tumor necrosis family receptor superfamily 
member 9 (4-1BB), essential in the activation of adaptive immune response. During 
persistent hepatitis C virus (HCV) infection, this transducer is down-regulated via 
transforming growth factor beta 1, linked to T cell exhaustion. Interleukin-7 can restore 
TRAF1 expression and improve T cell reactivity but only in patients with mild 
evolution, while cases with a more aggressive progression also need the modulation of 
other negative co-stimulatory molecules. Therefore, TRAF1 dynamics defines a new 
pathogenic model that explains the different level of T cell exhaustion and progression 
during HCV infection and supports the rationale for immunotherapeutic strategies in 
chronic viral infections.

Citation: Peña-Asensio J, Sanz-de-Villalobos E, Miquel J, Larrubia JR. Tumor necrosis family 
receptor superfamily member 9/tumor necrosis factor receptor-associated factor 1 pathway on 
hepatitis C viral persistence and natural history. World J Hepatol 2020; 12(10): 754-765
URL: https://www.wjgnet.com/1948-5182/full/v12/i10/754.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i10.754

INTRODUCTION
Hepatitis C virus (HCV) evolution is heterogenous as a result of the particular 
interplay between the virus and the immune system[1]. The outcome of the fight 
between host and pathogen depends on the balance of the host-microbe interaction, 
which causes varying degrees of progressive liver damage[2-5]. The fine-tuning of this 
equilibrium can induce either rapid or slow disease progression, which depends on 
the degree of impairment of the adaptive immune system[6]. During persistent non-
cytopathic viral infection, the antigen (Ag)-specific T cell response is exhausted and 
unable to clear infection despite achieving partial viral control[7,8]. The correct 
activation of this response relies on the interaction with Ag-presenting cells 
(commonly known as APCs) in the proper cytokine environment with the right co-
stimulation[1,9,10]. Non-cytopathic viruses manipulate T cell co-stimulation for their own 
benefit, favoring the induction of negative co-stimulatory receptors and inhibiting 
positive co-stimulatory pathways[11-13]. Tumor necrosis factor receptor (TNFR) 
superfamily member 9 (4-1BB) is a TNFR-associated factor 1 (TRAF1)-binding 
checkpoint molecule that is normally absent from resting cells but is induced by T cell 
receptor (TCR) signaling[14]. It is a positive activator of the T cell response, which is key 
during viral infection and cancer. TRAF1 is the major signal transducer after 4-1BB 
triggering[15], and its downregulation on T cells is used by pathogens as a mechanism 
to evade specific adaptive immune responses[2,16].

In this review, we present an update on the current knowledge of the role of the 4-
1BB/TRAF1 pathway in the outcome of HCV infection, and how it can be manipulated 
to overcome T cell exhaustion. Although this immunotherapeutic strategy is no longer 
needed in the era of direct acting anti-viral (commonly referred to as DAA) 
medications[17,18], lessons obtained from this persistent infection model can be 
extrapolated to other viral infections, such as hepatitis B virus (known as HBV) and 
human immunodeficiency virus (HIV), or cancer.

ROLE OF T CELLS IN THE NATURAL HISTORY OF HCV
HCV is a highly variable, positive-sense, single-stranded hepatotropic non-cytopathic 
RNA virus of the family Flaviviridae[19,20], with parenteral, vertical, and sexual 
transmission capacities[21]. HCV induces progressive liver damage that can lead to 
chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma[3,22]. About one-third of 
patients spontaneously clear the virus but in the remaining two-thirds, the infection 
persists unless an anti-viral treatment is administered[5]. Currently, the infection is 
easily controlled by using DAA drugs[17]. Nevertheless, it is still possible to learn from 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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HCV about the host-pathogen interaction in chronic viral diseases, which can be 
applied to other chronic viral infections and cancer.

During the natural history of untreated, persistent HCV infection, there are three 
different progression groups: Slow, mild, and rapid fibrosers. Slow fibrosers do not 
develop significant fibrosis during their life, whereas rapid fibrosers can progress to 
cirrhosis, portal hypertension, or hepatocellular carcinoma in as quickly as 10-20 years 
after primoinfection[23]. Host factors such as sex, age of infection, alcohol consumption, 
co-infection with HIV or HBV, steatosis, and insulin resistance[23,24], as well as the 
quality of the adaptive immune response[1], are involved in the different evolution 
patterns of HCV. HCV-specific cytotoxic T cells play a central role in controlling HCV 
infection[25,26]. During persistent HCV infection, however, the cytotoxic T cell response 
becomes dysfunctional, with cells presenting markers of exhaustion and 
apoptosis[27-30]. Nevertheless, these HCV-specific CD8 T cells can still partially control 
viral replication[31].

Interestingly, it is not HCV-specific CD8 T cells but other inflammatory cells 
recruited to the infected liver that are ultimately responsible for persistent liver 
damage[32,33] (Figure 1). Therefore, long-lasting infection linked to a weak CD8-specific 
T cell response can induce permanent non-specific inflammatory infiltrates that can 
promote the rapid progression of liver fibrosis[33,34]. In fact, a high level of prolonged 
antigenemia induces a hierarchical loss of effector functions and ultimate apoptosis of 
T cells[35]. During persistent HCV infection, the level of specific T cell impairment 
positively correlates with the speed of liver fibrosis progression. These data suggest 
that stronger T cell exhaustion may facilitate rapid fibrosis progression. In support, 
rapid fibrosers with long-lasting infection lack detectable peripheral HCV-specific 
cytotoxic T cells, which although exhausted, are present in slow fibrosers and short-
term disease[2]. Consequently, it may be possible to restore specific T cell responses to 
improve viral control, and in addition, to prevent liver damage by reducing pro-
inflammatory chemokines and cytokines secreted in the infected liver.

During chronic hepatitis C, some pro-fibrogenic and immunoregulatory cytokines, 
such as transforming growth factor beta 1 (TGF-β1) are increased. In vitro analysis has 
shown that after Ag encounter, HCV-specific CD8 T cells secrete TFG-b1, which is 
linked to effector dysfunction and can be rescued by anti-TGF-β1 blocking 
antibodies[36]. Moreover, HCV itself is able to induce liver cells to express TGF-β1, and 
the number of TGF-β1-secreting regulatory T cells is also enhanced during chronic 
hepatitis C infection[37,38]. Among its immunoregulatory properties, TGF-β1 has been 
linked with the negative modulation of the positive co-stimulatory checkpoint 4-
1BB/TRAF1 in some chronic viral infections, such as those by HIV, HCV, and 
lymphocoriomeningitis virus[2,16].

In the next sections of this review, this specific pathogenic axis will be discussed in 
detail.

4-1BB/TRAF1 PATHWAY
4-1BB, also called CD137, is a co-stimulatory checkpoint that is predominantly 
expressed on activated CD8 T cells and natural killer cells[39], and in lower levels on 
CD4 T cells, dendritic cells, granulocytes, and mast cells[40]. It binds to 4-1BB-ligand (4-
1BBL, CD137L, or L/TNFR9), which is present on such APCs as activated B cells, 
dendritic cells, and macrophages[41]; the 4-1BB/TRAF1 pathway is shown in Figure 2. 
4-1BBL trimer has a three-bladed propeller structure and binds to three 4-1BB receptor 
monomers[42]. 4-1BB translocates to the membrane after Ag encounter on CD8+ T 
cells[43], recruiting the TRAF family members TRAF1, 2, and 3[44]. Signaling through the 
4-1BB receptor depends on the association with TRAF1 and 2 molecules, as evidence 
shows that the lack of any of them blocks 4-1BB/4-1BBL downstream transduction[16,45].

TRAF 1, 2, and 3 can form heterodimers and interact with adaptor proteins (i.e., 
ubiquitin ligases, proteases, kinases), creating a three-dimensional structure complex 
where enzymatic processes can be carried out[46]. TRAF1 differs from the other 
members of its family, as it lacks the N-terminal RING finger domain, which prevents 
it from acting as an E3 ubiquitin ligase. However, TRAF1 acts as a bridge between a 
wide range of adaptor proteins, regulating their activity[47] and interacting with several 
TNFR members, prompting their stimulation or inhibition. TRAF1 has a role in T cell 
activation through the canonical nuclear factor-kappa B (NF-κB) pathway and an 
alternate pathway. These two different mechanisms of action regulate the physiology 
of T cells. In the canonical pathway, TRAF1 is inducible after cell activation through 
NF-κB[48], and is present in a restricted group of cells in which activated lymphocytes 
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Figure 1 Theoretical model of liver damage during chronic viral hepatitis due to non-specific inflammatory infiltrate. Left-side: Depiction of an 
efficient hepatitis C virus (HCV)-specific cytotoxic T cell (CTL) controlling HCV in the liver; Right-side: Depiction of HCV-specific exhausted CTLs unable to control 
HCV replication. Hepatocytes steadily secrete chemokines that attract specific and non-specific infiltrate, the latter of which is responsible for liver damage. CTL: 
Cytotoxic T cell; HCV: Hepatitis C virus.

are included[49]. TRAF1 regulates survival signals mediated by TRAF2, modulating 
their ability to mediate sustained activation of NF-κB and c-Jun N-terminal kinase[50]. 
Specifically, TRAF1 is implicated in extracellular signal-regulated kinase (ERK) 
activation mediated by leukocyte-specific protein 1[51].

ERK phosphorylates Bim, eliciting its elimination by the proteasome and abrogating 
its anti-apoptotic effects[52]. The formation of two heterotrimers TRAF1:TRAF2 results 
in the recruitment of cellular inhibitor of apoptosis protein (cIAP) as well as the 
interaction with other adaptor proteins and protein kinases, which leads to activation 
of the NF-κB pathway[53]. TRAF2 can also dimerize to activate E3 ubiquitin ligases 
through their RING finger domains. Evidence indicates that the interactions among 
different TRAFs heterodimers allow them to adopt an octagonal superstructure where 
many 4-1BB/4-1BBL act simultaneously. This structure has been called the 4-1BB 
signalosome and could provide a model to design novel 4-1BB analogues as 
immunotherapeutic strategy[46]. Downstream signaling leads to the phosphorylation of 
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Figure 2 Tumor necrosis family receptor superfamily member 9/tumor necrosis factor receptor-associated factor 1 signaling complex. 
Schematic representation of tumor necrosis family receptor (TNFR) superfamily member 9 (4-1BB) signaling pathways, indicating the interaction between the trimeric 
4-1BB ligand presented by the antigen presenting cell and the three molecules of the receptor 4-1BB. The signal transduction occurs through tumor necrosis factor 
receptor-associated factor (TRAF) 1. Representative combinations of TRAF1, 2, and 3 and their interactions with adaptor proteins are presented. Canonical activation 
of nuclear factor kappa B (NF-κB) leads to the activation of naïve T cells, which differentiate into effector cells and proliferate after antigen encounter. Non-canonical 
NF-κB bestows proliferation and survival of effector cells and also drives the generation and maintenance of memory T cells in a delayed manner. APC: Antigen-
presenting cell; 4-1BB: Tumor necrosis family receptor superfamily member 9; 4-1BBL: 4-1BB-ligand; TRAF: Tumor necrosis factor receptor-associated factor; cIAP: 
Cellular inhibitor of apoptosis protein; ERK: Extracellular signal-regulated kinase; MKK: Mitogen-activated protein kinase kinase; IKK: Inhibitory kappa B kinase; 
MAPK: Mitogen-activated protein kinases; NF-κB: Nuclear factor kappa B; Mcl-1: Myeloid leukemia cell differentiation protein.

inhibitor of kappa B kinase subunit β and subsequent activation of canonical NF-κB[54], 
ERK1/2[55], and p38 mitogen-activated protein kinase[56]. Collectively, this 4-1BB-
dependent modulation results in CD8 T cell proliferation and survival.

When TNFR signaling is active, TRAF1 also engages the non-canonical NF-κB 
pathway by degrading TRAF3[54,57,58]. Initiation of the non-canonical NF-κB pathway is 
delayed with respect to the canonical one, which may play a role in T cell activation 
and memory differentiation[56]. Thus, in contrast to the rapid and transient activation of 
the canonical NF-κB pathway, activation of the non-canonical NF-κB pathway is 
characteristically slow and persistent. On the other hand, TRAF1 also regulates the 
canonical pathway by preventing TRAF2 degradation or enhancing cIAP recruitment, 
degrading NF-κB-inducing kinase, which is necessary for activation of the alternate 
NF-κB pathway[14,58]. Therefore, TRAF1 is a key transducer involved in initial T cell 
activation and proliferation by the canonical NF-κB pathway, but also in the 
generation of the memory and effector pool in a delayed manner through the non-
canonical NF-κB pathway[54,56].

Figure 2 summarizes the different pathways involved in 4-1BB signaling.
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4-1BB/TRAF1 AND SPECIFIC CYTOTOXIC T CELL RESPONSE
Cytotoxic T cells carry out an essential task in non-cytopathic virus control[59,60]. This 
population is able to recognize infected cells and clear the virus by cytopathic and 
non-cytopathic mechanisms. Follow-up of healthcare workers after accidental 
needlestick HCV exposure showed that in those who naturally controlled the virus, 
HCV-specific CD8 T cells initially destroyed some hepatocytes but later removed the 
virus by releasing interferon-g[60]. These immune cells become activated by the 
combination of three different signals. First of all, the interaction between the APC and 
the TCR is necessary[61]. Thereafter, the interleukin (IL)-2 receptor is upregulated and 
its subsequent activation promotes T cell proliferation[62]. These two signals must be 
combined with the activation of early and late positive co-stimulatory checkpoints. 
Early positive co-stimulatory CD27 and CD28 counteract the inhibitory effects of 
negative checkpoints such as programmed cell death protein-1 (PD-1)[63-65]. Late 
positive co-stimulatory molecules such as 4-1BB play an important role in boosting the 
T cell response and inducing memory generation[14,66].

The 4-1BB/TRAF1 pathway promotes T cell memory formation[67] and survival[55,68] 
but also regulates effector T cell trafficking into the infected organ[69]. The triggering of 
this pathway can also improve T cell effector function by mitochondrial morphological 
and functional reprogramming[12,70,71]. Noteworthy, 4-1BB co-stimulation activates 
glucose and fatty acid metabolism to enhance CD8 T cell reactivity[72]. As noted above, 
the role of 4-1BB in T cell survival is mainly mediated via ERK by the downregulation 
of the pro-apoptotic protein Bim[55,73,74]. Thus, pharmacological intervention of this 
pathway can improve the T cell response by increasing survival and reactivity.

Tumors and persistent viral infections counter positive co-stimulation by early 
induction of negative checkpoints and inhibition of the positive checkpoints[7]. During 
non-cytopathic persistent viral infections, specific CD8 T cells are characterized by the 
expression of negative co-stimulatory molecules such as PD-1, T cell immunoglobulin 
and mucin-domain containing-3, and cytotoxic T-lymphocyte protein 4[11,27,75]. In 
addition, these viruses can impair downstream signaling of 4-1BB by causing the loss 
of its signal transducer TRAF1[16], which explains why positive immunotherapeutic 
modulation of 4-1BB has failed to boost the virus-specific CD8 T cell response[76]. 
During chronic lymphocytic choriomeningitis virus infection in mice, TRAF1 Loss on 
specific CD8 T cells is caused by TGF-β1-induced TRAF1 degradation, and this effect 
can be counter-regulated by common-g chain receptor cytokines, such as IL-7[16].

Interestingly, similar data have been reported for some human infections. 
Particularly, in chronic progressors during HIV infection, TRAF1 expression is lower 
than in elite controllers[16]. T cells from those elite controllers are more active in 
controlling HIV-infected cells and the process is correlated with TRAF1-mediated Bim 
downregulation. Indeed, the T cell response during HCV infection shares many 
features with HIV, and consequently, TRAF1 signaling could also be involved in HCV-
specific T cell exhaustion, as will be discussed in the next section.

TRAF1 INVOLVEMENT IN HCV T CELL EXHAUSTION
Exhausted HCV-specific cytotoxic T cells are characterized by the high expression of 
negative checkpoint proteins, such as PD-1, and low expression of the IL-7 receptor 
CD127[27] (Figure 3). Lack of CD127 makes these cells less sensitive to the pro-survival 
cytokine IL-7, which stabilizes the anti-apoptotic protein myeloid leukemia cell 
differentiation protein (Mcl-1)[28] (Figure 3). IL-7/IL-7R signaling positively regulates 
Mcl-1 via signal transducer and activator of transcription 5[77] but also increases TRAF1 
level[16] (Figure 4). As previously stated, 4-1BB/TRAF1 also counters Bim via ERK 
signaling[55] (Figure 4). Moreover, during persistent HCV infection, TGF-β1 Level is 
increased, and this cytokine downregulates TRAF1 expression on T cells. Hence, 
during HCV infection, the combination of low IL-7 sensitivity linked to the higher 
TGF-β1 Level could be the “perfect storm” to desensitize 4-1BB signaling via TRAF1 
Loss. This suggests that, as in HIV infection[16], the loss of TRAF1 in HCV-specific CD8 
T cells during chronic hepatitis C is central to the aforementioned imbalance between 
Bim and Mcl-1[28] (Figures 2 and 3). Therefore, HCV-specific T cells could be poorly 
reactive and prone to apoptosis due to the lack of signaling by IL-7 and 4-1BB.

TGF-β1 Levels are increased during persistent HCV infection[2,36,37] and there is low 
IL-7 receptor expression on T cells. TRAF1 is positively and negatively regulated by 
IL-7 and TGF-β1, respectively[16]. With this in mind, we hypothesize that high TGF-β1 
Level during HCV infection could downregulate TRAF1, impairing 4-1BB signaling 
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Figure 3 Mechanisms involved in T cell exhaustion and apoptosis during persistent hepatitis C virus infection. Scheme showing positive and 
negative checkpoints and proteins involved in CD8 T cell reactivity and apoptosis during hepatitis C virus infection. In TextTitle are highlighted the pathways 
discussed in the current review. HCV: Hepatitis C virus; 4-1BB: Tumor necrosis family receptor superfamily member 9; TRAF: Tumor necrosis factor receptor-
associated factor; GITR: Glucocorticoid-induced tumor necrosis factor receptor-related protein; CTL: Cytotoxic T lymphocyte; Neg: Negative; Pos: Positive; PD-1: 
Programmed cell death protein-1; Mcl-1: Myeloid leukemia cell differentiation protein; IL: Interleukin.

and upregulating Bim. Furthermore, low CD127 expression on HCV-specific CD8 T 
cells would also reduce Mcl-1 Levels. The combination of low Mcl-1 and high Bim 
levels would synergize to negatively affect T cell proliferation, cytotoxicity, and 
survival (Figure 4).

To test this hypothesis, our group detected TRAF1 expression directly ex vivo on 
HCV-specific CD8 T cells from chronically-infected and treated patients. As was 
expected, those individuals with persistent viral replication had lower TRAF1 
expression than HCV controllers[2]. Moreover, TRAF1 expression was inversely 
correlated with the exhausted and pro-apoptotic phenotypes and directly correlated 
with T cell reactivity. Low TRAF1 expressing T cells were PD-1high, Mcl-1low, and 
CD127low, and did not expand after Ag encounter. Analysis of the supernatants of Ag-
specific T cell cultures showed that those cases with less proliferative potential had 
higher levels of TGF-β1. Moreover, a negative correlation was also observed between 
serum TGF-β1 Level and TRAF1 expression on Ag-specific CD8 T cells. Furthermore, 
TGF-β1 in vitro treatment of HCV-specific CD8 T cells from resolvers induced TRAF1 
downregulation, and this effect was counteracted by IL-7 treatment. Although the 
CD127 expression level is low in the effector progeny subset, the low frequency 
progenitor pool still maintains this receptor, and it is this population that is suitable for 
immunotherapy[78,79]. Moreover, IL-7 at a therapeutic dose can antagonize multiple 
cellular and molecular networks[80]. These data suggest that during persistent HCV 
infection, TGF-β1 downregulates TRAF1 in T cells, which can be reversed by ex vivo 
IL-7 treatment.

Consequently, we developed an IL-7 and 4-1BBL combination treatment to improve 
T cell reactivity; IL-7-dependent upregulation of TRAF1 restored 4-1BB signaling to 
fully enable the agonist actions of 4-1BBL over 4-1BB. We observed a hierarchical 
response that was dependent on the stage of HCV infection; only cases with less severe 
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Figure 4 Tumor necrosis factor receptor-associated factor 1 pathways involved in T cell survival. Scheme of T cell survival pathways. Interleukin 
(IL)-7/IL-7 receptor (CD127) increases the level of the anti-apoptotic molecule myeloid leukemia cell differentiation protein (Mcl-1) via signal transducer and activator 
of transcription 5. After T cell receptor activation, tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) level is upregulated via nuclear factor-kappa B. 
TRAF1 is the signal transducer of the positive checkpoint TNFR superfamily member 9 (4-1BB). 4-1BB stimulation downregulates Bim via extracellular signal-related 
kinase. IL-7 induces TRAF1 expression, increasing its anti-apoptotic effect by improving 4-1BB signaling. Together, 4-1BB and CD127 balance Bim and Mcl-1. HCV: 
Hepatitis C virus; 4-1BB: Tumor necrosis family receptor superfamily member 9; ERK: Extracellular signal-regulated kinase; TRAF1: Tumor necrosis factor receptor-
associated factor 1; Mcl-1: Myeloid leukemia cell differentiation protein; IL: Interleukin; NF-Κb: Nuclear factor kappa B; MHC: Major histocompatibility complex; TCR: 
T cell receptor.

fibrosis and lower evolution responded favorably to the 4-1BBL/IL-7 combination[2]. 
We speculated that cases with worse progression probably had higher burden of 
exhausted T cells with increased PD-1 expression, leading us to add anti-PD-L1 
treatment to the IL-7/4-1BBL combination[81]. After the combined treatment, we were 
able to restore two other groups of cases: Those with low fibrosis progression but long-
term infection, and those with rapid-progression and short-lasting disease. 
Unfortunately, those cases with less favorable factors, specifically rapid fibrosis 
progressors with long-term infection, were not responsive to the treatment[2]. This may 
have been due to the loss of these T cell populations from apoptosis (Figure 5).

CONCLUSION
The HCV-specific T cell response impacts infection outcomes. Mid-slow fibrosis 
progressors have less exhausted T cells, but the length of infection also influences the 
impairment of the T cell response. Worse T cell reactivity is observed the longer the 
infection lasts, and the faster liver fibrosis takes place. T cell response impairment is 
mediated by an exhausted and pro-apoptotic status that is characterized by the 
upregulated expression of negative checkpoints and the inhibition of positive co-
stimulatory molecules. Among the latter is 4-1BB signaling via its effector TRAF1. This 
pathway regulates downstream Bim via ERK and is involved in T cell activation and 
survival. TRAF1 is induced by IL-7 and downregulated by TGF-β1. During persistent 
HCV infection, TGF-β1 Level is increased and can contribute to T cell exhaustion by 
TRAF1 loss. Depending on the stage of the infection, IL-7 ex vivo treatment can restore 
TRAF1 expression and T cell reactivity (Figure 5).

4-1BB/TRAF1 has a pathogenic role in chronic HCV infection that describes a new 
mechanism of T cell exhaustion and explains different infection outcomes. Modulation 
of 4-1BB/TRAF1 can be useful as an immunotherapeutic strategy in chronic viral 
infections and cancer.
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Figure 5 Tumor necrosis factor receptor-associated factor 1-related pathogenic mechanism involved in T cell exhaustion and liver 
fibrosis progression during persistent hepatitis C virus infection. Scheme showing transforming growth factor beta 1-mediated CD8 T cell impairment 
during chronic hepatitis C virus infection due to tumor necrosis factor receptor-associated factor 1 (TRAF1). In patients with mild clinical progression, T cell reactivity 
can be restored by TRAF1 upregulation with interleukin (IL)-7 treatment. Those with rapid fibrosis or with long-term infection need IL-7 treatment combined with 
programmed cell death protein 1 blockade. Cases with rapid fibrosis and long infection duration cannot be restored, probably due to T cell deletion. Ag: Antigen; 4-
1BB: Tumor necrosis family receptor superfamily member 9; 4-1BBL: 4-1BB-ligand; PD-1: Programmed cell death protein-1; HCV: Hepatitis C virus; TRAF1: Tumor 
necrosis factor receptor-associated factor 1; TGF: Transforming growth factor; IL: Interleukin; APC: Antigen-presenting cell; TCR: T cell receptor.
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