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Abstract
The init iation and progression of l iver cancer, 
including hepatocellular carcinoma and intrahepatic 
cholangiocarcinoma, are dependent on its tumor 
microenvironment. Immune cells are key players in the 
liver cancer microenvironment and show complicated 
crosstalk with cancer cells. Emerging evidence has 
shown that the functions of immune cells are closely 
related to cell metabolism. However, the effects of 
metabolic changes of immune cells on liver cancer 
progression are largely undefined. In this review, we 
summarize the recent findings of immunometabolism 
and relate these findings to liver cancer progression. 
We also explore the translation of the understanding of 
immunometabolism for clinical use.

Key words: Cholangiocarcinoma; Hepatocellular 
carcinoma; Tumor microenvironment; Local immune 
status; Metabolite

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The liver microenvironment provides a special 
place for initiation and progression of liver cancer, 
in which immune cells play a vital role. On the one 
hand, immunosuppression leads to tumor survival 
and progression; on the other hand, the instigation 
of tumor metabolites and signal molecules to immune 
cells makes the state of immunosuppression further 
strengthened. Intensive studies of the metabolic state 
of immune cells in the tumor microenvironment is 
beneficial to our understanding of the regulation of 
pro-tumor patterns, and to provide theoretical basis 
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and guidance for immunometabolic therapies for liver 
cancer.

Zhang Q, Lou Y, Bai XL, Liang TB. Immunometabolism: A 
novel perspective of liver cancer microenvironment and its 
influence on tumor progression. World J Gastroenterol 2018; 
24(31): 3500-3512  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i31/3500.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i31.3500

INTRODUCTION
Liver cancer is one of the most common malignancies 
and has the third leading mortality rate and seventh 
leading incidence rate worldwide[1]. To date, with over 
42000 cases diagnosed and 30000 deaths in the 
United States per year, a continuous increase in both 
morbidity and mortality is observed in liver cancer[2]. 
Unfortunately, the prognosis of advanced liver cancer 
is still poor despite the many treatments that have 
been developed in the past few decades. Thus, novel 
approaches to treat liver cancer are urgently needed.

The tumor microenvironment (TME) plays critical 
roles in tumor development and is characterized by 
complicated components, including various types of 
non-tumoral cells and non-cellular materials[3]. TMEs 
can be largely distinct among different types of cancers 
and among different patients with the same type of 
cancer. Within a patient, the TME can consistently 
change as the tumor progresses and is influenced by 
the physiopathological conditions of the patient. Thus, 
it is theoretically impossible to identify the precise 
state of the TME. However, under certain conditions, 
the TME can be specialized to show typical traits, and 
in particular, this specialized TME may affect tumor 
progression. Understanding these particular TMEs, if 
not all of them, can outline the crosstalk between the 
TME and tumor cells and facilitate the development of 
novel strategies for tumor treatment[4].

Pathologically, liver cancer mainly includes 
hepatocellular carcinoma (HCC) and intrahepatic 
cholangiocarcinoma (ICC). The two types of liver 
cancers share a similar hepatic microenvironment, but 
may have different TMEs due to the various biological 
characteristics of the tumor cells. For instance, in a 
considerable proportion of cases, ICC harbors isocitrate 
dehydrogenase (IDH) 1 and IDH2 mutations[5], which 
are rare in HCC[6]. IDH1 and IDH2 are important 
enzymes involved in cellular metabolism. Therefore, 
IDH1/2 mutations can substantially influence the 
metabolite profiles in cells and TMEs. In this case, the 
roles of the TME in liver cancer progression may be 
greatly altered. However, knowledge in this field is poor 
and scattered.

Immune cells are key players in liver cancer 
progression, and their recruitment and functions are 

profoundly affected by the TME[7]. Other molecules in 
the TME, such as fatty acids and glucose, are able to 
regulate the metabolism, phenotype and function of 
immune cells[8,9]. The term “immunometabolism” has 
recently been proposed and indicates the functional 
intracellular metabolic alterations that occur within 
immune cells[10]. These affected immune cells, in 
turn, could have significant effects on adjacent tumor 
cells. In this minireview, we collected evidence of TME 
heterogeneity resulting from the different biological 
features of cancer cells and functional changes of 
immune cells resulting from an altered TME and how 
the TME affects tumor progression via metabolically 
regulated immune cells. 

CHARACTERISTICS OF IMMUNE CELLS 
IN LIVER CANCER MICROENVIRONMENT
With genetic and epigenetic changes, hepatoma cells 
express specific tumor-associated antigens, such as 
α-fetoprotein (AFP), glypican-3 (GPC3) and melanoma-
associated gene-A1 (MAGE-A1), which can be taken up 
by antigen-presenting cells and presented to T cells, 
resulting in a cytotoxic reaction to eliminate cancerous 
cells[11,12]. However, immunosuppressive factors and 
immune-inhibitory checkpoint molecules inhibit anti-
tumor reactions and create a special microenvironment 
to facilitate tumor progression[12]. Almost all types of 
immune cells are deeply involved in the TME of liver 
cancer (Figure 1), including macrophages, Kupffer cells, 
neutrophils, T cells, B cells, innate lymphoid cells (ILCs), 
dendritic cells (DCs), natural killer (NK) cells, natural 
killer T (NKT) cells, and myeloid-derived suppressor 
cells (MDSCs)[13-18].

Macrophages and neutrophils
Macrophages display remarkable heterogeneity in 
liver cancer for various reasons, such as the cell origin 
(resident Kupffer cells and recruited monocyte-derived 
macrophages), stimulating signals (i.e., microbes, cell 
debris) and functional phenotype (i.e., inflammatory, 
anti-inflammatory). Notably, macrophages can play 
two or more contradictory roles in a particular TME. 
As guardians, macrophages are normally activated by 
inflammatory signals and together with CD4+ T cells 
eliminate precancerous senescent cells[19]. Kupffer cells 
directly show cytotoxicity against tumor cells[20-22]. 
In addition, macrophage-derived interleukin (IL)-12 
hampers tumor progression by activating NK and 
NKT cells[23,24]. As an accomplice, however, tumor-
associated macrophages (TAMs, most of which are M2-
polarized macrophages), induced by IL-4 and tumor 
growth factor (TGF)-β, accumulate in liver cancer and 
are correlated with the poor prognosis of patients[25,26]. 
Importantly, these macrophages express the immune 
checkpoint protein programmed cell death-ligand 1 
(PD-L1, also known as B7-H1), which inactivates CD8+ 
T cells[13,27,28]. Via other immunosuppressive signals, 
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such as Toll-like receptor (TLR) 4 and CD48/2B4, M2-
polarized macrophages promote the recruitment of 
regulatory T cells (Tregs) and suppress the activity of 
NK cells[29-31]. Moreover, these macrophages can secrete 
various tumor proliferation-promoting cytokines, such as 
IL-1β, IL-6, TGF-β, C-X-C motif chemokine (CXCL) 10, 
invasion and metastasis-promoting factors like tumor 
necrosis factor (TNF)-α, osteopontin (OPN), matrix 
metalloproteinases (MMPs), C-C Motif chemokine 
ligand (CCL) 22, and proangiogenic growth factors, 
like vascular endothelial growth factor (VEGF), platelet 
derived growth factor (PDGF), fibroblast growth factor 
(FGF), and TGF-β, to build a tumor-prone inflammatory 
microenvironment[3,26,32-35]. 

Similar to macrophages, neutrophils also have diverse 
functions at different stages of liver cancer progression. 
In the case of a hepatic infection or injury, neutrophils 

gather at the wound site together with macrophages to 
eliminate pathogens and necrotic materials. Additionally, 
neutrophils stimulate reactive oxygen species (ROS) 
and telomere DNA damage in hepatocytes, mediating 
neoplasia and progression[36]. Mirroring macrophage 
plasticity, a pro-tumoral phenotype of tumor-associated 
neutrophils (TANs) is proposed[37,38]. Despite biomarkers 
of this subtype, immunosuppression is the most central 
function of TANs. The immunosuppressive molecule 
PD-L1 is regularly displayed in TANs[39] and recruits 
macrophages and Treg cells to the liver cancer TME 
and induces impaired anti-tumoral immunity[14]. The 
infiltrating TAN density and neutrophil-lymphocyte ratio 
is reported to be a predictor of outcome, chemotherapy 
resistance, and recurrence risk[40-42]. Furthermore, 
neutrophils promote tumor progression by secreting 
cytokines and other functional molecules, such as CCL2 
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the survival of tumor cells seems to be in question. 
However, the tumor is able to reprogram the cellular 
metabolism for neoplastic proliferation. The abnormal 
metabolism induced by cancer provides energy and 
metabolites for cell activity and additionally modifies 
many related pathways that influence various biological 
processes[61].

General alterations
The liver is a metabolic organ, and metabolic disruption 
of the liver can lead to spontaneous hepatocarci
nogenesis[62]. The principal metabolic alterations in the 
liver cancer were profiled by metabolomics analysis, 
which showed elevated glycolysis, gluconeogenesis 
and β-oxidation, with reduced tricarboxylic acid cycle 
(TCA cycle) activity[63,64]. Aerobic glycolysis, also known 
as the “Warburg effect”, is frequently observed in 
various tumors. This theory indicates that tumor cells 
predominantly use glycolysis, even in the presence of 
sufficient oxygen[65]. For liver cancer, glycolysis also 
plays a dominating role in glucose metabolism[63]. 
Accumulating studies have revealed that glycolysis 
is associated with genetic and epigenetic changes. 
Activated oncogenes and mutant tumor suppressors are 
associated with glycolysis. Glucose transporters (GLUTs), 
glycolysis-related enzyme hexokinase2 (HK2), pyruvate 
kinase M2 (PKM2), and lactate dehydrogenase (LDH) A 
are also overexpressed in liver cancer tissue, suggesting 
an increased glycolysis activity[66]. Moreover, the hypoxic 
TME and overexpression of β-catenin in liver cancer 
stabilize hypoxia inducible factor (HIF)-1α to activate 
glycolytic enzymes[67-70]. 

Fatty acid β-oxidation is enhanced in liver cancer 
to overcome the energy shortage and reduce tumor 
dependence on glucose. Metabolic alteration increases 
FA biosynthesis and glycerolipid metabolism, leading 
to fatty acid and lipid accumulation[71,72]. However, 
the alterations of various types of fatty acids are 
complicated. Additionally, almost all amino acids are 
increased in liver cancer due to the reduction of amino 
acid catabolism[63]. Although these general changes 
were identified, many other factors may influence the 
levels of metabolites in TME.

Involvement of specific mutations
Some specific mutations profoundly change the 
metabolism of liver cancer. The Tumor Cell Genomic 
Atlas (TCGA) project of HCC demonstrated that 
IDH and fibroblast growth factor receptor (FGFR) 
are meaningful mutations in HCC. IDHs are critical 
enzymes for cell metabolism, particularly the TCA cycle. 
IDH1/2 mutations convert α-ketogluterate (α-KG) into 
2-hydrogluterate (2-HG)[73]. The unusually decreased 
ratio of α-KG/2-HG can significantly influence tumor 
cell biology by competing with α-KG and regulating 
epigenetic expression[74]. However, overproduced 
2-HG by tumor cells can also be released into the TME 
since elevated serum and urinary levels of 2-HG can 

for tumor growth, hepatocyte growth factor (HGF) and 
oncostatin M (OSM) for metastasis, and MMP9 and VEGF 
for angiogenesis[38,43-47].

T cells
CD8+ T cells are the most important executors of 
adaptive immunity against neoplasms, including 
liver cancer. Unfortunately, the TME transforms these 
‘warriors’ into ‘servants’. Compared with the normal 
liver, tumor tissue has a lower density of CD8+ T cells 
and a higher density of Tregs. The ratio of CD8+ T 
cells to Tregs typically indicates a poor prognosis[48-50]. 
Recent studies suggest that interferon (IFN)-γ, TNF and 
granzyme secretion by CD8+ cytotoxic T lymphocytes 
(CTLs) represent a common cytotoxic reaction against 
tumors[51,52]. Tregs, characterized by CD4, CD25, 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
and forkhead box P3 (FoxP3) expression, can eliminate 
IL-2 via its receptor subunit CD25, downregulate CD80 
and CD86 and conjugate to the co-stimulatory molecule 
CD28 competitively with CTLA-4 to suppress immune 
responses. In addition, Tregs secrete TGF-β and IL-10 
into the TME to suppress T effector cells[52]. Via a 
complicated regulatory network, several subtypes of T 
cells contribute to the immunosuppressive TME.

ILCs
ILCs are recently identified innate immune cells that 
lack a specific antigen receptor. These cells originate 
from mucosal-associated lymphoid tissues and act as 
a sentry of the rapid immune response and regulator 
of immune homeostasis and inflammation[53]. Mirroring 
the classification of helper T cells (Th), ILCs are divided 
into three classes. ILC1s produce Th1-associated 
cytokines, ILC2s are associated with Th2-associated 
cytokine release, and ILC3s secrete Th17-associated 
cytokines[54]. As these three components simultaneously 
exist in the liver, they are likely to be involved in 
hepatocarcinogenesis and progression. ILC1s produce 
IFN-γ to activate NK cells and indirectly participate 
in cancer immunosurveillance, while ILC3s release 
IL-17 and IL-22, which may promote tumor growth 
and angiogenesis[16,55,56]. Moreover, we observed an 
increasing number of ILC2 in HCC tissue (unpublished 
data) and an elevated level of IL-33 in both serum and 
tumor tissue samples from HCC patients[57]. IL-33 can 
stimulate rapid growth and metastatic progression in 
breast cancer and cholangiocarcinoma[58,59]. Therefore, 
the initiation and growth of liver cancer promoted by 
the ILC2-related IL-33/ST2 axis might be theoretically 
tenable[60].

ALTERED METABOLISM OF LIVER 
CANCER AND ITS INFLUENCE ON THE 
TUMOR MICROENVIRONMENT
With their rapid growth and limited nutrition supply, 
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be detected in patients with IDH1/2-mutated solid 
tumors[75,76]. Although 2-HG seems to be impermeable, 
this enzyme acts on stromal cells within the bone 
marrow microenvironment through an ROS/extracellular 
signal-regulated kinase (ERK) signaling pathway[77], 
suggesting that 2-HG may influence immune cells in 
the TME of liver cancer. This finding is important since 
IDH-like HCCs (particularly those containing IDH1/2 
mutations and those with IDH-like gene expression) 
are indicative of worse clinical outcomes for undefined 
reasons[6]. In addition to 2-HG, IDH-like HCCs and 
IDH1/2 mutated ICCs have other significant metabolic 
alterations, such as gliomas due to pseudohypoxia, an 
interrupted Krebs cycle, and epigenetic changes[78]. In 
addition, IDH gain-of-function mutations also induce 
the reprogramming of pyruvate and lipid metabolism 
to maintain cell proliferation and clonogenicity[79,80]. 
Therefore, the TMEs of these tumors likely have distinct 
features, and the immune cells within such TMEs may 
be reprogrammed to have different functions.

FGFR genetic aberrations include mutations, ampli
fications, and gene fusions, which have been observed 
in over 10% of liver cancer[81-83]. FGFR2 fusions are 
active kinases with the highest incidence[84]. These 
genetic aberrations indirectly affect glucose and lipid 
metabolism by activating the kinase network[85]. 
Additionally, the oncogenic FGFR3-transforming acidic 
coiled-coil containing protein (TACC) 3 fusion activates 
oxidative phosphorylation and mitochondrial biogenesis, 
causing a mitochondrial respiration-dependent subtype 
of tumor cell[86]. 

Influence of hepatic viruses
Hepatitis viruses, particularly HBV in eastern countries 
and HCV in western countries, cause specific metabolic 
alterations during hepatocarcinogenesis and tumor 
progression. Hepatic virus infections activate many 
abnormal signaling pathways, which cause aberrant 
functions and expression of metabolism related 
enzymes[87]. As a consequence, HBV infection in 
patients is associated with increased free fatty acids 
(FFAs) and acyl-carnitines and decreased triglycerides, 
phospholipids, and sphingomyelins[88]. Thus, in the TME 
of HBV-related liver cancer, the increased FFAs and 
decreased glucose may result from increased β-oxidation 
and glycolysis, respectively. HBV-related inflammation 
can stimulate the expression of HIF-1α through the 
PI3K/AKT and mitogen-activated protein kinase 
(MAPK)-Ras-Raf pathways. The latter up-regulates 
GLUT1 and glycolytic enzymes, increases the glycolytic 
flow, and induces ROS accumulation. These alterations 
eventually cause DNA oxidative damage and malig
nant transformation[89-92]. HBx activates the adenosine 
5’-monophosphate-activated protein kinase (AMPK) and 
fatty acid oxidation (FAO) pathways as well as the HBx-
LXRα-SREBP1/FAS pathway, which allows HCC cells to 
survive under metabolic stress[93-95]. HCV establishes 
an insulin-resistant TME in the liver through several 

mechanisms[96,97]. For instance, HCV protein can induce 
the overexpression of protein phosphatase 2A (PP2A), 
which dysregulates hepatic glucose homeostasis by 
inhibiting AKT and the dephosphorylation of FoxO1[98]. 
However, the molecular mechanism of viral hepatitis-
related metabolic alternations is not well understood. 
HBV integration into the tumor suppressor gene region 
causes metabolic alterations. Signaling molecules, such 
as TGF-β, mammalian target of rapamycin (mTOR), 
Smad3, and c-Myc, are activated by HBV and HCV, 
which is closely correlated with tumor progression[87,96].

Participation of other concomitant diseases
Liver cancer has a higher incidence in people with 
chronic non-infectious liver diseases. Therefore, 
the metabolic changes of liver cancer are related to 
cirrhosis and nonalcoholic fatty liver disease (NAFLD), 
which typically includes lipid anomalies, particularly 
dysregulated de novo lipogenesis[99]. For instance, 
peripheral insulin resistance together with enhanced 
mitochondrial β-oxidation and oxidative stress are the 
most prominent features of NAFLD and nonalcoholic 
steatohepatitis (NASH)[100]. Thus, NAFLD-related liver 
cancer is associated with elevated oxidative metabolism 
and amplified anaplerosis/cataplerosis[101]. With the 
increasing content of hepatic FFAs, liver cells may 
endure a mild respiratory dysfunction. The increasing 
import of FFAs into the mitochondria is accompanied 
by an elevated rate of β-oxidation. The overloaded fatty 
acid β-oxidation triggers the subsequent accumulation 
of ROS, which further leads to lipid peroxidation and 
severe mitochondrial oxidative damage[102,103]. These 
strong oxidizing products promote inflammation, fibrosis, 
and even carcinogenesis. Lipid metabolism shows 
an alteration from β-oxidation to ω-oxidation during 
liver cirrhosis[104]. Intriguingly, a metabolic switch from 
oxidative phosphorylation to glycolysis in hepatocytes 
in early-stage cirrhosis may satisfy the extreme energy 
requirements under such conditions[105]. This evidence 
demonstrates that concomitant liver diseases or even 
systemic metabolic diseases, such as diabetes mellitus, 
can influence the function of immune cells and their 
functions in promoting tumor progression.

Metabolic reprogramming of local immune cells in liver 
cancer
The role of metabolism in regulating immune cells has 
recently aroused general concerns. Evidence collected 
in several types of solid tumors indicated the impor
tance of tumor immunometabolic reprogramming and 
suggested a novel and crucial area for future research 
of liver cancer[106]. The complicated crosstalk between 
metabolically reprogrammed immune cells and liver 
cancer cells has been suggested, but the molecular 
mechanisms need further exploration (Figure 2).

Because they exist at a considerable quantity, 
macrophages play a leading role in the crosstalk 
between liver cancer cells and immune cells. The 
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phenotypes and functions of macrophages are hot 
topics in the field of immunometabolism. Professor O’
Neill’s group and other investigations have conducted 
several pioneering and important studies to decipher 
macrophage immunometabolism. Recent evidence 
has suggested that the energy source (e.g., glucose 
and fatty acids) participates in the determination of 
macrophage polarization[107,108]. However, the role of 
FAO in the alternative activation of macrophages is still 
under debate. Huang et al[108] initially demonstrated 
an essential role for FAO in the alternative activation 
of mouse macrophages, while two groups in Germany 
and the United States subsequently provided convincing 
evidence that FAO was indispensable for the M2 
polarization of human and mouse macrophages, 
respectively[109,110]. This discrepancy may partially reflect 
differences between mouse and human macrophages 
and the potential off-target effects of etomoxir (a 
carnitine palmitoyltransferase I A, CPT1A inhibitor used 
to inhibit FAO by some researchers). Although the 
role of FAO in macrophage activation has not yet been 
determined, FAO enhances the functions of M2 polarized 
macrophages[111]. 

Generally, M2 polarized macrophages use oxidative 
phosphorylation, FAO in particular, to obtain the 

required energy and exert pro-tumor function in various 
scenarios, including liver cancer[108,112,113]. Mechanistically, 
IL-4 induces the expression of peroxisome proliferator-
activated receptors (PPAR) and PPAR gamma coactivator 
1-beta (PGC-1b), which orchestrate alteration of FAO 
as well as mitochondrial respiration[114]. Similar to 
liver cancer cells in a background of chronic fatty liver 
disease, FFA accumulation attenuates mitochondrial 
respiration and increases FFA uptake via CD36, resulting 
in a predominant FAO mode in macrophages[115,116]. 
In addition, IL-4 signaling also increases glucose 
metabolism by the AKT/mTOR pathway[117-119]. Lactic 
acid produced by liver cancer cells through glycolysis 
is another non-negligible issue when considering the 
metabolic reprogramming of liver cancer-associated 
macrophages. The polarization of macrophages to an 
immunosuppressive and pro-tumoral phenotype is 
mediated by lactic acid via a different, as yet unidentified 
pathway[119-121] in liver cancer. M2 polarized macrophages 
also take up insulin growth factor 1 for a self-
immunometabolic reprogramming, leading to reduced 
phagocytosis and lower energy expenditure[122], which 
may consequently regulate liver cancer progression.

However, M1 polarized macrophages have enhanced 
glycolytic metabolism and impaired oxidative phosph
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orylation through the AKT/mTOR/HIF-1α pathway[123]. This 
association is consistent with the fact that many glycolytic 
enzymes facilitate inflammatory cytokine production. For 
example, PKM2, which is critical for glycolysis, activates 
HIF-1α and induces IL-1β production[124]. Although 
under some conditions, FAO was also found to support 
inflammasome activation in M1 polarized macrophages 
by regulating CPT1A activity[125,126].

Other metabolites in the TME can also influence the 
phenotype and function of macrophages. Succinate is a 
known inflammation inducer of macrophages. Succinate 
enhances IL-1β secretion via succinate receptor 1 
(SUCNR1, also known as GPR91)-mediated amplification 
of TLR signaling[127]. In addition, intracellular succinate, 
derived from the γ-aminobutyric acid (GABA) shunt 
and anerplerosis of α-KG upon stimulation of TLR4, 
enhances IL-1β production through the repurposing 
of mitochondrial function from ATP production to ROS 
generation[128,129].

Neutrophils are metabolically similar to M1 polarized 
macrophages and rely on aerobic glycolysis and the 
pentose phosphate pathway (PPP) as their principal 
mode of energy metabolism, by which the formation 
of neutrophil extracellular traps produces biological 
effects[130].

During differentiation, a switch from FAO to glycolysis 
and glutaminolysis triggers the maturation of T effector 
cells[131]. The rapid supply of ATP helps CTLs to meet their 
increasing bioenergetic and biosynthetic requirements[132]. 
Nevertheless, glucose shortage and lactic acid abundance 
limit the function of CTLs, and the enhancement of FAO 
preserves the cytotoxicity of CTLs in tumors[133]. By 
contrast, Treg cells favor FAO rather than glycolysis, by 
which these cells survive in the persistent low-glucose 
and hypoxic tumor microenvironment and suppress the 
tumor-killing function of CTLs[131,134]. Moreover, Treg cells 
rely on oxidative phosphorylation for energy supply, on 
FAO for cell differentiation, and on glutaminolysis for cell 
proliferation[134,135]. Taken together, these observations 
demonstrate that environment-related metabolism 
regulates the anti- and pro-tumor functions of tumor-
infiltrating lymphocytes.

INFLUENCE OF REPROGRAMMED 
IMMUNE CELLS ON LIVER CANCER 
PROGRESSION
Immunometabolic reprogramming has a dual-function in 
tumor progression. Typically, M1 polarized macrophages 
facilitate inflammation and the antitumor response via 
elevated glycolysis, while M2 polarized macrophages play 
an FAO predominant role, secreting IL-10 to suppress the 
immune reaction. The switch in the metabolism of TAMs 
leads to an ample signaling transition by which these cells 
suppress immune reactions (by presenting PD-1, etc.), 
accelerate tumor proliferation (by releasing TNF, Wnt 
signals, etc.), promote angiogenesis (by secreting VEGF, 

FGF2, etc.), and enhance tumor invasion and metastasis 
(by MMP9, TGF-β, etc.)[26,136]. We further revealed that IL-
1β facilitated epithelial-to-mesenchymal transition and 
subsequent metastasis in liver cancer, and this effect was 
mediated by a group of pro-inflammatory M2-like TAMs 
with an up-regulated level of glycolysis[137]. Interestingly, 
the function of TANs is opposite that of TAMs under 
different circumstances. For instance, the absence of 
TGF-β leads to a TANs-induced anti-tumor response by 
CTLs, whereas this situation is completely different in the 
presence of TGF-β[37].

The influence of metabolic reprogramming on 
lymphocytes differs in the presence of high functional 
heterogeneity. CTLs enhance glycolysis, glutaminolysis, 
and even FAO to exert anti-tumoral cytotoxicity, while 
CD4+ T cells develop into two phenotypes with contrary 
functions. With a similar switch characterized by up-
regulated glycolysis as well as increased glutaminolysis 
and PPP, Th1 cells induce macrophage- and NK cell-
related anti-tumoral responses, whereas Th2 cells 
induce immunosuppressive reactions[113]. 

PERSPECTIVES OF LIVER CANCER 
THERAPY FROM IMMUNOMETABOLISM
Theoretically, it is feasible to target metabolic enzymes 
or metabolites in immune cells for therapeutic purposes. 
Indeed, several cancer-related immunometabolic 
molecules are suitable as potential targets for drug 
development (Table 1).

Considering carbohydrate metabolism, glycolysis is 
important to activated immune cells. Inhibition of HIF-
1α can attenuate TAM/TAN-mediated IL-1β secretion, 
reduce hypoxic adaptation of tumor cells, and regulate 
the differentiation and function of lymphocytes[137,138]. 
The regulation of PI3K signaling by PTEN in immune cells 
may also show some effects on macrophage activation 
and Treg cell function with a concurrent influence on 
glycolysis[139,140]. 

The mTOR pathway may be a suitable target to 
regulate immune cells by manipulating cellular lipid 
metabolism. Inhibition of mTOR by rapamycin can block 
the development of macrophages and CD4+ T cells in 
several scenarios, including liver cancer[141,142]. Moreover, 
FAO plays a predominant role in the metabolism of M2 
polarized macrophages. Hence, inhibition of FAO by 
etomoxir or other methods (e.g., targeted delivery of 
CPT1A siRNA/shRNA) may limit the immunosuppressive 
function of M2 macrophages. However, in a resource-
deficient microenvironment, CTLs also take up FFA and 
exert cytotoxicity; thus, the selective increase of FFA 
import to CTLs enhances the anti-tumoral capacity of 
these cells[133]. It is also feasible to target proteins that 
play central roles in metabolic pathways (i.e., iNOS, 
PKM2, Foxp3, etc.). The difficulty of this strategy is 
that targeting should be cell specific because the same 
metabolic pathway can have diverse effects on different 
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immune cells.
Furthermore, drugs targeting tumor specific meta

bolic changes can also regulate the function of immune 
cells by altering the metabolites of the tumor. For 
instance, IDH1/2 inhibitors specifically reduce 2-HG 
production leading to destabilization of HIF-1α in immune 
cells, which can cause reduction of IL-1β secretion by 
macrophages.

CONCLUSION
Immunometabolism has increasingly become a 
component of immunology in the past decade. The 
current understanding suggests that a complicated 
metabolic network regulates the various functions of 
immune cells. This network can either be functionally 
oriented or environmentally adapted, but together, these 
complex interactions lead to immune microenvironment 
homeostasis, which affects the progression of liver 
cancer. However, numerous findings indicate that almost 
all types of immune cells present a self-contradictory 
function under different conditions, although the 
mechanisms are still unknown. In the future, more 
subtypes among immune cells will be defined as single 
cell detection systems are further developed, which may 
provide a key for functional heterogeneity. Therefore, 
liver cancer therapy that targets immunometabolism is 
a promising approach. Further work is urgently needed 
to explore the utility of targeting specific immunometa
bolic events in the liver cancer microenvironment for 
therapeutic gain.
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