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Abstract
Hepatitis A virus (HAV) infection is still an important health issue worldwide. 
Although several effective HAV vaccines are available, it is difficult to perform 
universal vaccination in certain countries. Therefore, it may be better to develop 
antivirals against HAV for the prevention of severe hepatitis A. We found that 
several drugs potentially inhibit HAV internal ribosomal entry site-dependent 
translation and HAV replication. Artificial intelligence and machine learning 
could also support screening of anti-HAV drugs, using drug repositioning and 
drug rescue approaches.

Key Words: Artificial intelligence; Hepatitis A virus internal ribosomal entry sites; Cap-
independent translation; Antivirals; Severe hepatitis A; Glucose-regulated protein 78
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Core Tip: In certain areas, it is difficult to perform universal hepatitis A virus (HAV) 
vaccination. We found that several drugs potentially inhibit HAV internal ribosomal 
entry sites-dependent translation and HAV replication. After the application of 
machine and deep learning, artificial intelligence identified effective anti-HAV drugs 
more quickly, using drug repositioning and drug rescue.
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INTRODUCTION
Infection with hepatitis A virus (HAV) can lead to acute hepatitis, occasionally 
resulting in acute liver failure, which is associated with death or liver transplant-ation[
1,2]. In developing countries, HAV generally infects humans in childhood, and people 
have immunity against HAV without HAV vaccination[3]. In India, however, the 
prevalence of anti-HAV antibodies is lower now in adolescents and young adults 
(approximately 55% in 5-15 years in India) than before (approximately 90%)[3]. In 
some developed countries where there are no universal vaccination programs, such as 
Japan, people have less immunity against HAV than levels observed in the past[4,5].

HAV infects humans through the fecal-oral route when HAV-contaminated foods 
and water are ingested[6]. Recently, hepatitis A has also been recognized as a sex-
transmitted disease[7]. Several effective HAV vaccines are available, but they are 
relatively expensive, and in some countries, it is difficult to perform universal 
vaccination[4,5]. Therefore, to prevent severe hepatitis A, it may be better to develop 
antivirals against HAV[8].

Recently, information and communication technology, and artificial intelligence (AI) 
have played roles in daily clinical practice[9,10]. AI also plays an important role in 
drug discovery[11]. With the progress of machine learning methods and the accumu-
lation of pharmacological data, AI has become a powerful data mining tool in the area 
of drug discovery, such as in silico screening, quantitative structure-activity 
relationship (QSAR) analysis, de novo drug design, and in silico evaluation of 
absorption, distribution, metabolism, excretion and toxicity[12].

Structure-based drug design is becoming an essential tool for faster, more cost-
efficient drug discovery, compared to traditional methods[13]. The combination of AI 
and deep learning, which is a family of machine learning models that use artificial 
neural networks, may be a more powerful tool for drug discovery. The associations of 
machine learning, deep learning and AI are shown in Figure 1. Moreover, network-
based in silico drug efficacy screening allows us to predict novel drug-disease associ-
ations, which may provide us with drug repositioning or drug rescue information[14]. 
In this minireview article, we discuss the recent involvement of AI in drug discovery 
and its application in the development of antivirals against HAV in the near future.

HAV INTERNAL RIBOSOMAL ENTRY SITE-DEPENDENT TRANSLATION 
AND HAV REPLICATION
Translation of HAV protein is performed in a cap-independent manner under the 
control of the internal ribosomal entry site (IRES), which is mainly located at 5' 
untranslated region (5'UTR)[15]. It was reported that the HAV 5'UTR was more than 
25-fold less active than the encephalomyocarditis virus IRES in producing translated 
proteins[16]. Thus, the relatively weaker activity of the HAV IRES may be due to a 
reduced affinity for several cellular translation factors[16]. Mutations within the HAV 
5'UTR could enhance cap-independent translation in African green monkey kidney 
BS-C-1 cells[17]. Further studies are needed to identify specific mutations related to the 
severity of hepatitis A[18-20], although among HAV strains from HAV outbreaks in 
Korea and Japan, we did not identify specific mutations associated with severe 
hepatitis A in the HAV 5'UTR[21,22]. We also demonstrated that the inhibition of HAV 
IRES activity by small interfering RNAs (siRNAs) targeting HAV IRES could lead to 
the suppression of HAV replication[23]. Therefore, HAV IRES is an attractive target of 
antivirals against HAV.

IMPORTANT FACTORS INTERACTING WITH HAV IRES
HAV is a nonenveloped and enveloped positive-sense single-stranded RNA virus 
approximately 7.6 kb in length[24,25]. The HAV genome includes a 5′UTR, one open 
reading frame encoding structural (VP4, VP2, VP3, VP1 and 2A) and nonstructural 
proteins (2B, 2C, 3A, 3B, 3C and 3D) and a 3′UTR[26].

Among HAV proteins, HAV proteinase 3C suppressed HAV IRES-dependent 
translation[27]. Furthermore, HAV 3C cleaves the polypyrimidine tract-binding 
protein (PTB), which interacts with the HAV IRES[27,28]. Among host proteins, 
autoantigen La[27], glyceraldehyde-3-phosphate dehydrogenase[29], PTB[28], poly(C) 
binding protein 2[30], polyadenylate-binding protein-1[31], eukaryotic translation 
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Figure 1 Association of artificial intelligence, machine learning and deep learning.

initiation factor 4E[32] and eukaryotic translation initiation factor 4E[33] are reported 
to interact with HAV IRES.

We demonstrated that siRNA against cellular cofactors for HAV IRES could inhibit 
HAV IRES-mediated translation[34]. The Janus kinase (JAK) inhibitors SD-1029 and 
AG490 could reduce La protein expression and inhibit HAV IRES-mediated 
translation as well as HAV replication[34]. The JAK2 inhibitor AZD1480 could reduce 
La expression and inhibit HAV IRES activity and HAV replication[35]. We also 
reported that the sirtuin inhibitor sirtinol[36] and broad-spectrum antivirals, such as 
amantadine[20,37,38], interferon-alpha[38] and interferon-lambda (interleukin-29)[39], 
could inhibit HAV IRES-mediated translation and HAV replication. Thus, in vitro drug 
screening with human hepatocytes revealed that several drugs inhibit HAV replication 
through the inhibition of HAV IRES activity.

BIOINFORMATICS AND CHEMINFORMATICS
Bioinformatics and cheminformatics are newer strategies to screen and design various 
drug candidates for HAV, as performed for severe acute respiratory syndrome 
coronavirus 2 in the coronavirus disease 2019-era[40]. Das et al[41] performed a 
genome-wide CRISPR screen and identified 39 candidate essential hepatovirus host 
factors, which form 4 clusters as follows: HAV IRES-mediated translation, chaperone 
activity, mitochondrial integrity and ganglioside synthesis. This strategy seems to 
result in the generation of more accurate approaches and techniques for HAV 
management.

STRUCTURE-BASED DRUG DESIGN
Crystallization of HAV IRES and formation of its drug modification
HAV needs a HAV 3C protease to form its viral replication complex. X-ray structures 
were reported for HAV 3C protease with HAV 3C protease inhibitor N-benzyloxy-
carbonyl-l-serine-β-lactone (1a), resulting in a lead compound that was further 
developed to produce a potent inhibitor of HAV 3C protease through the alkylation of 
the sulfur atom at the active site Cys172[42]. Furthermore, soaking N-iodoacetyl-
valine-phenylalanine-amide, which inhibited HAV 3C protease activity, into HAV 
3C–1a crystals through the modification of His102 Nε2-alkylated protein could lead to 
the successful utilization of this new crystal form in the study of enzyme–inhibitor 
interactions in the proteolytic active site[42]. In general, antivirals are used after 
hepatitis virus infects the liver. It may be better to prevent infection rather than to treat 
HAV.

Koirala et al[43] also reported a 2.84-Å resolution crystal structure of HAV IRES 
domain V in complex with a synthetic antibody fragment - a crystallization chaperone. 
This is useful for drug repositioning to compare other picornaviral HAV structures 
with those of HAV.



Kanda T et al. AI supports drug development for HAV IRES

AIG https://www.wjgnet.com 4 February 28, 2021 Volume 2 Issue 1

AI, MACHINE LEARNING AND DEEP LEARNING
AI and machine learning can contribute to drug development for viral infection by 
improving the speed and efficiency of repurposing and proposing new potent 
molecules to inhibit viral replication[40]. Both AI and machine learning can also be 
employed to make network-based predictions of drug-target interactions[44] or associ-
ations between gene expression and HAV infection[45]. This information is crucial to 
feed into AI and machine learning systems for the development of potent anti-HAV 
drugs. Although new drug discovery typically takes more than 10 years[46], this 
method may be useful for drug repositioning and drug rescue, which allows us to 
develop anti-HAV drugs more quickly. For example, the hepatitis C virus (HCV) NS5B 
polymerase inhibitor sofosbuvir and its derivatives could suppress HAV replication[47
,48].

Many human proteins are involved in viral replication and pathogenesis[8,48]. The 
advantage of host-targeted antivirals is that the target is abundant. Another advantage 
is that they are less prone to resistance than those directly targeting the virus[8,49]. We 
and others also reported that host-targeted antivirals are useful for the suppression of 
HAV replication[8,34,35,50-53]. We would like to apply AI, machine learning and deep 
learning methods for drug repositioning and rescue to discover anti-HAV drug 
candidates (Figure 2). AI, machine learning and deep learning methods may also be 
useful for the avoidance of drug side effects.

MACHINE LEARNING AND DRUG DEVELOPMENT FOR HEPATITIS 
VIRUSES AND GLUCOSE-REGULATED PROTEIN 78
Hepatitis B virus
Qureshi et al[54] developed virus-specific as well as general QSAR models and 
computed approximately 18000 chemical descriptors (1D, 2D and 3D), including 
geometric, constitutional, electrostatic, topological, hydrophobic and binary finger-
prints, using PaDEL, an open-source software to calculate molecular descriptors and 
fingerprints[54]. They also employed SVMlight software (Freely available at 
http://svmlight.joachims.org) for machine learning. After attribute selection, there 
were 15 relevant descriptors for HBV. Arora et al[55] performed a QSAR study based 
on a series of anti-hepatitis B virus (HBV) agents, namely, a series of novel bis(Lamino 
acid) ester prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine, a similar series of 
compounds comprising 2-amino-6-arylthio-9-[2-(phosphonoethoxy)ethyl] purine 
bis(2,2,2-trifluoroethyl) esters, and a series of 1-isopropylsulfonyl-2-amine benzim-
idazoles. These systems may also be useful for the development of anti-HAV drugs.

Deep learning has been applied for the diagnosis and treatment of chronic hepatitis 
B. Compared with two-dimensional shared wave elastography and fibrosis 
biomarkers, deep learning radiomics of elastography is valuable and practical as a 
noninvasive accurate diagnosis of liver fibrosis in HBV-infected patients[56]. Analysis 
of the quasispecies pattern of HBV genomes by the combination of deep sequencing 
and machine learning is also useful for the prediction of hepatocellular carcinoma 
(HCC) and direct therapeutic strategies[57,58]. A valid systematic approach based on 
big data mining and genome-wide RNA-seq data may be imperative to further 
investigate the pathogenic mechanism and identify biomarkers for drug design[59].

HCV
Weidlich et al[60] developed SAR with advanced machine learning methods and 
performed in vitro antiviral assays, resulting in the identification of the candesartan 
cilexetil, which is used to treat hypertension, as an HCV NS5B inhibitor. Using a 
support vector machine (SVM), three classification models were built in HCV NS3 
protease inhibitors[61] or HCV NS5B polymerase inhibitors[62]. Qin et al[63] reported 
that the combination of the best sub- and whole dataset SVM models can be used as 
reliable lead design tools for new NS3/4A protease inhibitors.

Wei et al[64] reported that the multiple QSAR method is useful in predicting 
chemical-protein interactions for the discovery of multitarget inhibitors for the 
treatment of HIV/HCV coinfection. This strategy may be useful for the treatment of 
the cooccurrence of HAV infection and chronic liver disease[65].

Combination information from yeast-based library screening, next-generation 
sequencing, and structure-based modeling in a supervised machine learning approach 
is useful for the comprehensive sequence-energetics-function mapping of the 

http://svmlight.joachims.org
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Figure 2 Drug screening and drug discovery for anti-hepatitis A virus using artificial intelligence-based drug repositioning and rescue. 
HAV: Hepatitis A virus; AI: Artificial intelligence; IRES: Internal ribosomal entry-site; La: Lupus La protein/SSB; JAK: Janus kinase; GRP: Glucose-regulated protein; 
IFN: Interferon; FDA: Food and Drug Administration.

specificity landscape of the HCV NS3/4A protease, whose function-site-specific 
cleavages of the viral polyprotein are a key determinant of viral fitness[66]. Deep 
learning recurrent neural network models could be used to identify patients with 
HCV-related cirrhosis with a high risk of developing HCC for risk-based HCC 
outreach and surveillance strategies[67]. Deep learning should also be helpful for the 
development of antivirals.

Glucose-regulated protein 78
We previously found that glucose-regulated protein 78 (GRP78) is an antiviral target 
for HAV (Table 1)[50-52]. Computational drug discovery using the structure of HAV 
and GRP78 may lead to the discovery of new anti-HAV drugs or drug repositioning 
and drug repurposing for anti-HAV drugs[68-71].

CONCLUSION
We found that several drugs potentially inhibit HAV IRES-dependent translation and 
HAV replication. Approaches that utilize AI, machine learning and deep learning 
methods could have the most promise in the discovery of new anti-HAV drugs. A 
systematic approach based on big data mining with AI is also useful for the 
development of anti-HAV drugs[71].
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Table 1 Target and mechanism of anti-hepatitis A virus candidates

Target or mechanism Drug Ref.

La antigen SD-1029, AG490 Jiang et al[34]

JAK2-STAT3 AZD1480 Jiang et al[35]

GRP78 Japanese rice-koji miso extracts Shubin et al[50]; Choi et al[51]

GRP78 Zinc sulfate Ogawa et al[52]

Inflammatory cytokines Zinc chloride Mo et al[53]

La: Lupus La protein/SSB; JAK: Janus kinase; STAT: Signal transducer and activator of transcription; GRP78: Glucose-regulated protein 78.
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