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Abstract
According to the developmental origin of health and disease concept, the risk of 
many age-related diseases is not only determined by genetic and adult lifestyle 
factors but also by factors acting during early development. In particular, 
maternal obesity and neonatal accelerated growth predispose offspring to 
overweight and type 2 diabetes (T2D) in adulthood. This concept mainly relies on 
the developmental plasticity of adipose tissue and pancreatic β-cell programming 
in response to suboptimal milieu during the perinatal period. These changes result 
in unhealthy hypertrophic adipocytes with decreased capacity to store fat, low-
grade inflammation and loss of insulin-producing pancreatic β-cells. Over the past 
years, many efforts have been made to understand how maternal obesity induces 
long-lasting adipose tissue and pancreatic β-cell dysfunction in offspring and 
what are the molecular basis of the transgenerational inheritance of T2D. In 
particular, rodent studies have shed light on the role of epigenetic mechanisms in 
linking maternal nutritional manipulations to the risk for T2D in adulthood. In 
this review, we discuss epigenetic adipocyte and β-cell remodeling during 
development in the progeny of obese mothers and the persistence of these marks 
as a basis of obesity and T2D predisposition.
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Core Tip: According to the developmental origin of health and disease concept, 
maternal obesity and neonatal accelerated growth predispose offspring to metabolic 
diseases. White adipose tissue and pancreatic β-cells are key targets of developmental 
programming, although the underlying mechanisms remain elusive. Human and rodent 
studies have contributed to decipher the role of epigenetic mechanisms in the 
transgenerational inheritance of obesity and type 2 diabetes (T2D). In this review, we 
discuss the current understanding of the link between obesogenic maternal nutritional 
environment, developmental epigenetic adipocyte and β-cell remodeling and 
predisposition to obesity and T2D later in life.

Citation: Lecoutre S, Maqdasy S, Breton C. Maternal obesity as a risk factor for developing 
diabetes in offspring: An epigenetic point of view. World J Diabetes 2021; 12(4): 366-382
URL: https://www.wjgnet.com/1948-9358/full/v12/i4/366.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i4.366

INTRODUCTION
Obesity and related metabolic diseases have doubled since 1980 and reached epidemic 
proportions over the past decades[1]. Obesity and expansion and dysfunction of white 
adipose tissue (WAT) are major drivers of type 2 diabetes (T2D), through induction of 
insulin resistance[2]. Insulin resistance is observed locally in hypertrophic adipocytes 
long before glucose intolerance develops[3]. The inability of further WAT expansion 
accelerates fat spillover, leading to ectopic fat deposition in skeletal muscle and liver 
and insulin resistance in those tissues[4,5]. Chronic inflammation in WAT is also 
considered a crucial causal factor for the development of insulin resistance and T2D in 
obese individuals[6,7]. Indeed, obesity-induced WAT remodeling provides intrinsic 
signals capable of initiating a local inflammatory response that may spread into the 
circulation, resulting in systemic insulin resistance and T2D[8]. An obesogenic 
environment and lipotoxic conditions also result in dysfunction and loss of insulin-
producing pancreatic β-cells due to dedifferentiation, transdifferentiation, or death. 
These phenotypic alterations ultimately hamper insulin secretion[9].

Although genetics account for the variation in body weight and T2D, the dramatic 
rise in their incidence cannot be solely explained by genetic predisposition. Hence, 
environmental factors such as overnutrition, sedentary lifestyle, xenobiotics, and 
chemical exposure appear to be major contributors to the rapidly increasing 
prevalence[1]. In particular, studies in both humans and animal models suggest that 
excess nutrient supply in the fetal or neonatal period result in long-term programming 
of body weight set-point and predispose individuals to obesity and T2D[10-12]. Thus, the 
developmental origin of obesity and T2D perpetuate the vicious cycle of metabolic 
diseases across generations[12]. Among different mechanisms of transmission, 
epigenetics has emerged as a very important determinant[13]. In this review, we will 
present data on how maternal obesity programs T2D risk via epigenetic mechanisms 
by focusing on changes in WAT and β-cell physiology.

HERITABILITY OF OBESITY AND T2D: THE DEVELOPMENTAL ORIGIN OF 
HEALTH AND DISEASE CONCEPT
The developmental origin of health and disease concept (DOHaD) proposes a link 
between environmental challenges during early stages of growth and predisposition to 
metabolic disorders later in life. In particular, this concept states that suboptimal 
nutritional environment (i.e., under or overnutrition) during the perinatal period can 
program or imprint the development of key tissues that play a central role in 
regulating energy homeostasis. Later in life, it might permanently determine 
physiological responses and ultimately produce energy balance dysfunction and 
metabolic diseases, such as obesity and T2D[10].

Originally called the Barker hypothesis or fetal programming, this concept arises 
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from epidemiological studies. Indeed, David Barker was the first to report that 
intrauterine growth retardation (IUGR) and low birth weight were associated with 
increased risk of metabolic syndrome-related diseases during adulthood[10]. As 
illustrated by the Dutch famine of 1944-45, offspring of mothers exposed to the famine 
presented with low birth weight associated with an increase in the incidence of 
dyslipidemia, obesity, and T2D later in life[13]. More recently, adults born during the 
Chinese famine of 1959-61 were also predisposed to overweight and T2D, constituting 
a major contributor to China’s current T2D epidemic[14]. David Barker proposed the 
notion of a “thrifty phenotype,” which placed an emphasis on development, arguing 
that nutritionally inadequate conditions in pregnancy not only affected fetal growth 
but also induced permanent changes in insulin secretory capacity and in glucose 
metabolism[15]. In humans with low birth weights, postnatal hypercaloric nutrition, and 
more specifically rapid catch-up growth, are also important accelerators in the etiology 
of adult-onset diseases[16]. As stated by the predictive adaptive response concept, the 
degree of mismatch between the pre-and postnatal environments is the key paradigm 
in developmental metabolic programming[17].

This concept has evolved from undernutrition to overnutrition. As shown in 
Figure 1, epidemiological and clinical studies have reported that individuals exposed 
to maternal overnutrition and/or obesity during pregnancy and lactation are also 
predisposed to increased risk of metabolic syndrome-related diseases later in life[18]. 
Subsequent meta-analyses have highlighted birth weight as a predictor of obesity and 
T2D. A U-shaped curve was proposed to explain the relationship between birth weight 
(a marker of fetal nutritional exposure) and the propensity to develop obesity in 
adulthood. Hence, it is currently well accepted that individuals born small or large (
i.e., low or high body fat percentage) have similar increased risks of obesity and related 
diseases later in life[19]. Over the past decades, animal studies have confirmed that 
maternal obesity during gestation and lactation, gestational diabetes, and accelerated 
growth of neonates predispose offspring to obesity and T2D[20,21].

Two main questions arise about the DOHaD concept. First, what is the basis of the 
persistent cellular memory of a developmental event, even when the initial stimulus 
has disappeared and despite continuous cellular turnover? Second, how two opposite 
maternal nutritional manipulations (under- vs overnutrition) may result in similar 
outcomes in adult offspring. Little is known about the cellular and molecular 
mechanisms underlying the phenomenon known as developmental programming. 
Among them, epigenetic modifications are likely to play a key role in the heritability of 
obesity and T2D[12,22,23].

EPIGENETIC MECHANISMS AS A BASIS OF THE DOHaD CONCEPT
Epigenetics can be defined as somatically heritable states of gene expression resulting 
from changes in chromatin structure without alterations in the DNA sequence[24]. 
Epigenetic modifications are transmitted from one cell generation to the next (mitotic 
inheritance) and can also be transmitted across generations (meiotic inheritance)[25]. 
These processes include DNA (hydroxy) methylation, histone post-translational 
modifications (PTMs) such as acetylation, phosphorylation, ubiquitination, and 
sumoylation, and noncoding RNA that regulates gene expression at both 
transcriptional and post-transcriptional levels[26]. DNA methylation, which results from 
the transfer of a methyl group, by DNA methyltransferase (DNMT), takes place at 
cytosines, mainly in the CpG islands, to form 5-methylcytosine (5mC). It serves to 
establish long-term gene silencing[27]. 5-hydroxymethylcytosine (5hmC) is another 
important cytosine modification catalyzed by the enzymes of the ten-eleven 
translocation methylcytosine dioxygenase (TET) family[28]. It serves as an intermediate 
for demethylation of 5hmC and is enriched in active transcriptional regulatory regions. 
Based on the histone code hypothesis, PTMs play crucial roles in controlling gene 
expression by adapting the local chromatin architecture and accessibility, allowing the 
recruitment of partners that modulate the transcriptional machinery. For example, 
acetylation of histone H3 lysine residues (H3Kac) and methylation of H3K4 
(H3K4me1/3) are associated with active transcription while methylation of H3K9 
(H3K9me3) generally indicates silenced chromatin. These histone PTMs are catalyzed 
by various enzymes including histone acetyltransferase (HAT), histone deacetylase 
(HDAC), histone methyltransferases (MTs)/demethylases[29,30]. Thus, the term 
epigenome refers to the combination of all chromatin modifications (i.e., DNA 
methylation and PTMs) of a given cell type in an individual.

Histone-modifying enzyme activity is sensitive to cellular energy status and 
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Figure 1 Maternal obesity and the developmental origin of health and disease concept. Maternal obesity results in impaired growth of offspring 
during fetal and perinatal period as well as metabolic and tissue programming. These developmental changes may have long-term consequences in the susceptibility 
to obesity and type 2 diabetes later in life.

hormonal response. In particular, it is highly dependent on intermediary metabolites 
that act as enzyme cofactors[6,31]. For example, HATs use acetyl-coenzyme A (CoA), 
histone MTs use S-adenosyl methionine (SAM), HDACs can use nicotinamide adenine 
dinucleotide, and histone demethylases can use flavin adenine dinucleotide or symbol-
ketoglutarate as coenzymes[29,30]. Interestingly, sirtuin 1 is a nutrient-sensing HDAC 
and is associated with the risk of metabolic syndrome including T2D[32]. Hence, 
modifications of nutritional and hormonal milieu in offspring from obese dams may 
affect the developmental program of adipocyte and β-cells by impairing chromatin 
remodeling activities and DNA methylation[30]. Several studies have also reported the 
role of noncoding RNAs in WAT and pancreas development as well as in adipocyte 
and β-cell differentiation and function[33,34].

However, here we emphasize DNA methylation and chromatin modifications in 
progenitor cells, whose inappropriate editing during gestation and lactation may serve 
as a deleterious memory of exposure to a maternal obesogenic environment. The 
persistence of these marks throughout life and across generations may program 
permanent changes in gene expression and may account for inheritance of metabolic 
diseases.

DEVELOPMENTAL ORIGIN OF ADIPOSITY AND T2D
Based on the DOHaD concept, there are two main reasons why adipocyte and β-cells 
are key targets of perinatal programming. First, numerous studies have shown that 
manipulation of epigenetic machinery can alter cell fate and identity as well as cell-
type-specific gene expression during both adipogenesis[33] and β-cell neogenesis (i.e., 
adipocyte and β-cell formation, respectively)[35-41]. Epigenetic mechanisms are also 
known to play a crucial role in the control of β-cell identity and plasticity (i.e., 
dedifferentiation and transdifferentiation) in adulthood[42-45]. Second, adipogenesis and 
β-cell neogenesis occur primarily during the second part of gestation in rodents, 
accelerate during early postnatal life, and remain active after weaning. The deleterious 
effects of maternal obesity operate during periods of development in which precursor 
cells are plastic (i.e., possess the flexibility to adapt to the changing microenvironment) 
and where epigenetic remodeling is particularly dynamic and sensitive to the 
nutritional and hormonal milieu[12,19,46,47]. Hence, disturbance of the developmental 
program might result in severe dysfunctions in fetal pancreatic β-cells and adipose 
tissue and a profound perturbation of systemic glucose homeostasis in adulthood.
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Adipose tissue development
WAT exists in multiple locations in the body and has two major subtypes, visceral and 
subcutaneous[12,48]. Unlike visceral WAT (vWAT), the metabolic plasticity of subcu-
taneous WAT (sWAT) is associated with increased insulin sensitivity and decreased 
occurrence of T2D[49]. In rodents, adipogenesis is particularly active during the 
perinatal period. These processes occur primarily during the last week of gestation 
(the first fat cells appear between the fourteenth and the eighteenth days of 
gestation)[50-52] and accelerate during early postnatal life until pups are weaned. 
However, sWAT develops during late gestation and lactation whereas vWAT 
formation is mainly initiated after birth[50]. The developmental origin of adipocytes 
remains elusive. Cell lineage tracing, adipocyte precursor fate studies and subsequent 
molecular analysis demonstrated a heterogeneity of the adipose lineage between fat 
depots, but also within individual adipose depots, in terms of cell origin, spatio-
temporal adipogenic potential, gene expression profile, growth rate, and biological 
properties. Hence, the ability of adipose precursors to differentiate during adipo-
genesis is dependent on the anatomical location and the local microenvironment, 
leading to the concept of depot-specific adipogenesis[53,54].

Adipocytes are derived from multipotent mesenchymal stem cells (MSCs), which 
are first committed to the adipogenic lineage and then transformed into preadipocytes. 
This phase is then followed by terminal differentiation during which preadipocytes 
become mature adipocytes that develop the ability to store lipids in a large 
monolocular lipid droplet and display endocrine properties. The process of adipocyte 
differentiation involves three defined steps. The first step is the commitment of MSCs 
to the adipocyte lineage. The second step is mitotic clonal expansion involving DNA 
replication and duplication of cells. The third step is terminal differentiation, which 
involves transcriptional factors such as CCAAT-enhancer-binding proteins (C/EBP) , β 
and δ, peroxisome proliferator-activated receptor γ (PPARγ), and significant 
expression of adipocyte-specific genes such as adiponectin and leptin[55-58].

Our understanding of adipogenesis comes mainly from studies using preadipocyte 
cells such as 3T3-L1[33,59]. Adipogenesis involves a dynamic reorganization of the 
chromatin landscape at specific developmental stages that is associated with the 
recruitment of multiple transcription factors controlling the expression of adipocyte-
specific genes. This process is regulated through the remodeling of cell-specific histone 
marks and DNA (hydroxy)methylation[60,61]. Thus, in undifferentiated adipocytes, the 
master adipogenic transcription factors, zinc finger protein 423 (ZFP423), C/EBPβ, and 
PPARγ, are in a poised state owing to the bivalent presence of the active H3K4me3 
and repressive H3K9me3 marks in their promoters[59]. ZFP423 was identified as crucial 
for adipogenesis by promoting PPARγ expression[62]. During the early phase of 
adipocyte differentiation, the reorganization of the chromatin structure and chromatin 
opening along with the recruitment of several early transcription factors, such as 
C/EBPβ/δ, coincide with the removal of repressive histone marks (i.e., H3K9me3) and 
the enrichment of active chromatin marks, including H3K27ac, and H3K4me3, as well 
as DNA hydroxymethylation, in their promoters[60]. During differentiation, chromatin 
remodeling primes genomic regions to allow the expression of CEBPα and PPARγ, 
their specific binding on the chromatin as well as their target genes[60]. For instance, 
H3K4 MT mixed-lineage leukemia (MLL) 3 and MLL4 are recruited by C/EBPβ to 
activate the enhancers of C/EBPα and PPARγ and induce C/EBPα and PPARγ 
expression during adipogenesis. Once induced, C/EBPα and PPARγ recruit 
MLL3/MLL4 to further activate enhancers of downstream target genes[63].

Beta cell development
The pancreas is derived from the ventral and dorsal endoderm, which stepwise 
differentiate into exocrine and endocrine lineages. Most of our current understanding 
of neogenesis is derived from rodent studies. In the developing pancreas, cell fate 
commitment towards specific endocrine subtypes is controlled by a complex 
orchestrated expression of specific transcription factors. In rodents, pancreas 
development undergoes two transitionary periods, a first wave transition (from 
embryonic days E9.5-E12.5) during which the endocrine cells that are formed are 
primarily -cells or multi-hormonal cells and a second wave transition (from E12.5 to 
birth), which is the main period of endocrine cell formation including β-cells[34,64-66].

Pancreatic endocrine cells arise from multipotent endocrine progenitor-precursors 
(EPs) that express PDX1. The master regulator of EP formation and differentiation is 
Ngn3, which is indispensable for endocrine cell formation. Higher expression levels of 
Arx and Pax4 favor formation of - and β/δ-cells, respectively. Differentiation toward 
β-cell fate depends on the expression of several other transcription factors such as 
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FOXA2, NKX6-1, NEUROD1, NKX2-2 and MAFA which are important for the 
establishment and maintenance of β-cell identity. In rodents, embryonic β-cells appear 
during the perinatal period, are immature, highly proliferative, and plastic but 
respond poorly to glucose stimulation[67,68]. After birth, β-cells follow a biphasic pattern 
of maturation[69]. The first 2 wk of life define a first maturation wave characterized by 
active proliferation that results in an increase in the β-cell mass, a characteristic that is 
progressively lost. The second wave of maturation coincides with the third week of life 
and the weaning period[70]. During that time, β-cells differentially regulate metabolic 
pathways and acquire physiological functions, such as glucose-stimulated insulin 
secretion in response to extracellular glucose[71,72]. In rodents, the postnatal maturation 
of β-cells is driven by weaning (dietary change from high-fat milk to high-
carbohydrate chow), and studies have suggested that microRNAs (miRNAs) have a 
central role in regulating postnatal β-cell maturation[70,73].

Several studies support the notion that the development and heterogeneity of EPs 
are regulated at the chromatin level. Our understanding of epigenetic mechanisms 
involved in β-cell formation and maintenance of identity comes from in vitro 
differentiation protocols of pluripotent stem cells[74] and studies using inhibitors of 
epigenetic enzymes or employing mice deficient models for different classes of 
epigenetic modifiers. First, the use of HDAC inhibitors on embryonic pancreas 
explants resulted in increased numbers of endocrine progenitors and β-cells whereas 
embryonic pancreatic overexpression of HDAC reduced the β-cell mass[35]. Generation 
of HDAC5- or -9-deficient mice increased the insulin-secreting β-cell mass[36,44]. Second, 
deletion of Jmjd3, a histone demethylase for the repressive H3K27me3 mark at the 
pancreatic progenitor stage, impaired the efficiency of endocrine cell fate transition 
and subsequent islet formation in mice[38]. Third, numerous genes critical for β-cell 
function that are bivalently marked in -cells by both active H3K4me3 and repressive 
H3K27me3 histone modifications are monovalently marked by active H3K4me3 in β-
cells. This bivalency suggests a plastic epigenetic state for key β-cell genes in α-cells 
indicating a paused state with potential for activation[45]. To maintain β-cell identity, 
genes important for -cell function have to be actively repressed by the DNA methy-
transferases DNMT1 and DNMT3a in β-cells, suggesting that repression of the cell 
program (i.e., methylation of the ARX promoter) is necessary for β cell identity to be 
maintained[40]. Recent studies have also shown that inhibiting DNA methylation in 
pancreatic progenitor cells promotes α-cell production[39]. In addition, the 
hypermethylation of CpG islands can reduce the expression of Hnf4α (hepatocyte 
nuclear factor 4 ) gene and affect the differentiation of β-cells[75]. Four, the β-cell-
specific deletion of embryonic ectoderm development, a component of the polycomb 
repressive complex 2 (PRC2) in mice results in β-cell dysfunction, dedifferentiation, 
and diabetes development associated with chromatin-state-associated transcriptional 
dysregulation[76]. Of note, PRC2 methylates the histone lysine residue H3K27, 
especially H3K27me3 that acts to silence gene expression[77]. βEedKO cells exhibited 
reduced levels of the mature β-cell markers Pdx1, MafA, Nkx2-2, and Nkx6-1, and 
thus loss of β-cell identity. At the same time, they upregulated immature β-cell and 
progenitor-specific genes[76]. The finding of the role of loss of PRC2 activity in β-cell 
plasticity suggests that maintaining proper and specific histone marks and chromatin 
state at precise loci is crucial to maintain normal β-cell development and functionality.

PROGRAMMING MECHANISMS OF OBESITY AND T2D
Adipose tissue programming
Clinical observations among human and animal studies have determined two major 
determinants for metabolic health and insulin sensitivity. On one hand, the ability of 
sWAT to store excess fat (i.e., storage capacity) rather than allowing it to accumulate in 
ectopic depots such as liver, muscle and vWAT, is of prime importance. On the other 
hand, the ability to recruit and differentiate new adipocytes (i.e., activation of 
adipogenesis resulting in increased storage capacity) in sWAT also reduces risk of 
metabolic diseases including T2D in overweight individuals[78]. In obesity, WAT 
expands either by hyperplasia (increase in adipocyte number) or hypertrophy 
(increase in adipocyte size), where the latter is associated with insulin resistance and 
inflammation.

Numerous studies have shown that maternal obesity modifies the expansion 
capacity of WAT in offspring throughout life. In particular, the activity of key 
adipogenic transcription factors was impacted by maternal obesity during 
development, leading to impaired expandability of WAT in offspring[46,47,79]. One of the 
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most well-studied mechanisms is the modulation of Zfp423 gene expression and 
activity in rodents. Zfp423 expression defines committed preadipocytes, and its 
expression persists throughout adipocyte differentiation[62,80]. Inactivation of Zfp423 
during WAT development results in arrested differentiation, specifically of sWAT[81]. 
As a key developmental gene, Zfp423 promoter has a bivalent region with enrichment 
of both H3K27me3 and H3K4me3 histone marks[82]. Offspring of obese mice were 
overweight, with an increased fat mass that was correlated with persistently elevated 
Zfp423 activity in WAT[83]. Developmental epigenomic remodeling of these marks in 
the Zfp423 promoter accounts for persistent higher Zfp423 expression later in life. 
During the second part of gestation (E14.5) in which adipogenic activity was elevated, 
the H3K27me3 histone mark and DNA methylation were lower in the Zfp423 
promoter, whereas the H3K4me3 histone mark was higher in the fetuses of obese 
dams[83]. At weaning, WAT neonates still showed elevated Zfp423 activity and 
exacerbated adipogenesis resulting in increased numbers of adipocytes and 
adiposity[83-85]. Overweight adult mice showed persistent increased gene expression 
with DNA hypomethylation in the Zfp423 promoter despite impaired hyperplasia 
when fed a high-fat (HF) diet[84].

A possible interpretation is that individuals from obese mothers with dysfunctional 
WAT (i.e., hypertrophic adipocytes), inflammation, and insulin resistance displayed a 
failure of WAT plasticity and inappropriate expansion of the adipose progenitors in 
sWAT. This might be due to maternal obesogenic environment and premature 
exhaustion of the stock of resident adipocyte progenitors during development that 
favors hypertrophy vs hyperplasia to store excess energy later in life[12]. In line with 
these findings, human MSC from the umbilical cords of infants born to obese mothers 
exhibit a greater potential for adipogenesis[86]. Godfrey et al[87], also reported a strong 
association between methylation of the retinoid-X-receptor α (RXRα) promoter region 
from DNA extracted from the umbilical cord of infants born to mothers with low 
carbohydrate intake during pregnancy and the degree of adiposity 6-9 years later. 
High methylation in the RXRα promoter reduces gene expression and alters insulin 
sensitivity and glucose metabolism in differentiated adipocytes[88].

Another well-studied epigenetic mechanism is the modulation of Pparγ expression 
and activity in offspring of obese dams. The regulation of Pparγ expression in WAT via 
DNA methylation and histone modification at its promoter region is well 
illustrated[89-91]. Decreased Pparγ2 expression in the WAT of adult rat offspring is 
generally associated with tissue dysfunction[92]. Several studies suggest that the 
reduction in Pparγ2 expression may be due to epigenomic remodeling occurring 
during WAT development. In weanling rats from obese dams, reduced Pparγ2 mRNA 
levels were observed together with DNA hypermethylation and decreased enrichment 
of H3ac and H3K4me3 active marks in the Pparγ2 promoter region. In adulthood, 
DNA hypermethylation of the Pparγ2 promoter and the reduction of Pparγ2 mRNA 
expression levels were still observable[92]. It is tempting to speculate that the decreased 
expression of the master regulator of adipogenesis and lipid storage is an adaptative 
mechanism to avoid further deleterious adipocyte hypertrophy[93]. Interestingly, adult 
offspring from dams fed an HF diet only during lactation were predisposed to obesity, 
with increased expression of stearoyl-CoA desaturase 1 (SCD1), a key enzyme of lipid 
storage. Higher Scd1 gene expression was associated with reduced DNA methylation 
in the Scd1 promoter surrounding a Pparγ-binding region[94].

Maternal obesity also predisposes to the development of a chronic low-grade 
proinflammatory state associated with insulin resistance in WAT offspring[12,95,96]. 
Several studies showed that elevated proinflammatory adipocytokine production such 
as leptin, WAT inflammation, and macrophage infiltration can be transmitted across 
generations via epigenetic mechanisms. For instance, obesity-prone offspring from 
obese rats displayed elevated leptin gene expression, hyperleptinemia, and adipocyte 
hypertrophy in WAT[79,97]. During lactation, increased leptin gene expression arises 
from higher DNA hydroxymethylation and active histone H3K4me1/H3K27ac marks 
in an enhancer region[97]. These histone marks persisted in the WAT of adult offspring 
in hypertrophic adipocytes[97]. Maternal obesity in mice also results in persistent 
hypermethylation of the. H4K20 histone mark in the promoter region in offspring that 
persists across generations[98-100]. Interestingly, multigenerational HF diet feeding in 
female mice resulted in gradually increased WAT weight, proinflammatory markers, 
and immune cell infiltration associated with a gradual decrease in DNA methylation 
of inflammation-associated genes (i.e., Toll-like receptors) in WAT across generations 
(up to F2)[12]. However, the effects of a maternal HF diet vs maternal obesity on 
offspring WAT inflammation and glucose homeostasis remain to be determined[12,101].

It is interesting to note that programmed changes in miRNAs may also account for 
both adipose tissue expandability and insulin resistance in offspring from 
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malnourished dams. On the one hand, an increase in miR-483 and parallel reduction in 
growth differentiation factor 3 have been reported in WAT from the offspring of dams 
fed a low protein (LP) diet[102]. That may lead to a reduction in the expandability of 
WAT, and therefore, increased ectopic fat deposition. Similar observations were also 
described in WAT from individuals with low birthweights, showing conservation of 
this programmed mechanism. On the other hand, maternal obesity resulted in higher 
miR-126 levels in WAT of mice offspring which led to reduced expression of key 
insulin signaling proteins, including insulin receptor substrate-1[103,104].

β-cell programming
The pancreas is an organ that is particularly sensitive to nutritional imbalance during 
intrauterine organogenesis[34]. Rodent models have been mainly used to investigate the 
effects of maternal obesity on islet development and function and to decipher 
underlying programming mechanisms. In rodent models, maternal obesity results in 
decreased β-cell mass and insulin secretion at birth[105]. Islets from offspring born to 
obese or HF diet-fed mothers have decreased pancreatic insulin content, Pdx1 
expression in adult islets[106,107] with remodeling of the architecture of the islets, 
characterized by an increase of α-cells in the centers of pancreatic islets[108,109]. 
Interestingly, pancreatic β-cell dysfunctions occur in offspring from obese dams in a 
sex-dependent manner. Very few data are available regarding the effects of maternal 
obesity on the β-cell programming in offspring in terms of epigenetics. However, 
consistent with the DOHaD concept, several studies highly suggest that maternal 
nutritional manipulations have a transgenerational influence on β-cell development 
and function through long-lasting effects on the offspring epigenome, predisposing to 
T2D later in life.

The first evidence comes from a rat model of IUGR caused by bilateral uterine 
artery ligation leading to a lower body weight at birth[110]. This deficient intrauterine 
environment affects fetal development through progressive and permanent 
dysregulation of gene expression and function of β-cells resulting in the development 
of T2D. For instance, adult IUGR rats exhibited a persistent reduction of Pdx1 
expression levels in β-cells associated with chromatin remodeling throughout 
development. In the fetus, prior to the onset of T2D, deacetylation of histones H3 and 
H4 and recruitment of Hdac1 in the promoter of Pdx1 were associated with decreased 
mRNA expression levels. Loss of acetylation was accompanied by loss of binding of 
the key transcription factor Usf-1. In neonates, the active histone H3K4me3 mark was 
lower, and the repressive histone H3K9me2 mark was higher, at the hypomethylated 
Pdx1 promoter of IUGR islets. Once T2D occurs in adulthood, the promoter was 
hypermethylated, resulting in permanent silencing of the Pdx1 gene[111]. To achieve a 
more complete picture of DNA methylation changes, Thompson et al[112] have 
generated a whole DNA methylation map of the rat genome in IUGR pancreatic islet 
cells. They showed that IUGR changes cytosine methylation at approximately 1400 loci 
in IUGR rats before the onset of diabetes. Interestingly, epigenetic dysregulation 
occurred preferentially at intergenic sequences close to genes regulating cellular 
processes that were impaired in IUGR islets, including β-cell proliferation, insulin 
secretion, and apoptosis. The modifications of the DNA methylation were associated 
with changes in mRNA expression levels[112]. Consistent with this notion, early 
postnatal overnutrition (newborns suckled in a small litter) accelerates aging-
associated epigenetic DNA hypermethylation in dysfunctional pancreatic islets of 
weaned and adult offspring[113].

Data obtained from a rat model of maternal protein restriction (LP) during 
pregnancy and lactation that resulted in IUGR reinforce this hypothesis. Maternal LP 
altered the pancreatic structure, islet areas and quantities and resulted in abnormal 
morphological changes during pancreatic development[114]. LP offspring had normal 
glucose tolerance in young adult life but suffered from an age-dependent loss of 
glucose tolerance and developed T2D in adulthood[115]. The authors showed that the 
Hnf4a gene encoding a transcription factor required for β-cell differentiation, and 
which has been implicated in the etiology of T2D, is epigenetically regulated by 
maternal LP diet and aging in rat islets[116]. IUGR offspring have progressive epigenetic 
silencing at the promoter-enhancer regions (i.e., decreased active H3ac and 
H3K4me1/3 and increased repressive H3K9me2 and H327me3 histone marks), which 
weakens their interaction and results in a permanent reduction in Hnf4a expression[116]. 
It is interesting to note that changes in DNA methylation also take place in the 
pancreatic islets of mice born to mothers with gestational diabetes mellitus. In the 
offspring, hypermethylation of the imprinted Igf2/H19 (insulin-like growth factor-2) 
locus in pancreatic islets may account, at least in part, for impaired islet ultrastructure 
and function that has been shown to be transmitted to subsequent generations[117]. 
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Although precise mechanisms linking offspring β-cell programming and maternal 
obesity are lacking, it is tempting to speculate that the developmental pathways of 
pancreatic endocrine lineages could be epigenetically reprogrammed through similar 
mechanisms, ultimately resulting in impaired β-cell number and plasticity.

INTER- AND TRANSGENERATIONAL INHERITANCE OF OBESITY AND 
T2D
Growing evidence suggests that epigenetic dysregulation of key metabolic genes 
implicated in adipocyte and β-cell development and function in offspring contribute to 
developmental programming of T2D[118]. As summarized in Figure 2, chromatin 
remodeling and changes in DNA methylation may account, at least in part, for the 
molecular basis of intergenerational effects. The establishment of epigenetic marks on 
somatic stem cells will give rise to mature adipocytes and β-cells of the fetus (F1) as 
well as the germline of the fetus (the future F2). The persistence of these marks into 
adulthood may program obesity-associated insulin resistance up to F2. Consistent 
with this notion, maternal obesity before and throughout pregnancy and lactation 
results in altered development of the pancreas in F1 and F2 mouse offspring[119]. 
However, it is less clear so far how developmentally induced epigenetic modifications 
may persist beyond the F2. Only persistent phenotypes in the F3 and subsequent 
generations represent true transgenerational epigenetic inheritance, as they are stably 
transmitted through the F2 germline, which is not directly exposed to the initial 
maternal nutritional insult[120,121]. While the mitotic heritability of epigenetic marks is 
widely accepted, the existence and role of transgenerational epigenetic inheritance in 
mammals remain controversial. Most of our knowledge concerning germ cell 
formation in mammals comes from mouse models. In mice, primordial germ cells 
undergo a global epigenetic remodeling during germline development and following 
fertilization resulting in a complete resetting of the epigenetic memory arising from 
the parents and the establishment of sex-specific gamete identity. This event limits the 
stable transmission of epigenetic marks acquired during development or imposed by 
the environment from one generation to the next. However, In rodents, it has been 
clearly demonstrated that the epigenetic states are not entirely reprogrammed. Some 
imprinted genes escape demethylation processes resulting in intergenerational 
inheritance[122].

Increasing evidence suggests that epigenetic modifications of the sperm and the 
spermatozoa are key players in transgenerational epigenetic inheritance in subsequent 
F2 male generations and beyond[98,123-127]. Indeed, a significant increase in body size, 
adiposity and reduced insulin sensitivity were reported in F1 and F2 after maternal 
obesity through both maternal and paternal lineages[128]. However, in the F3 
generation, those metabolic alterations were only displayed by females and only via 
paternal lineage in the absence of any further nutritional stimulus[129,130]. Although the 
implication of DNA methylation and histone modifications cannot be totally excluded, 
noncoding RNAs have emerged as an alternative mode of transgenerational epigenetic 
inheritance from the male germline[129-131].

To our knowledge, there are very few data providing evidence for transgenerational 
epigenetic inheritance in humans. Human epidemiological studies suggest that 
grandparental overnutrition increases the rates of diabetes and cardiovascular diseases 
risk in F2[132]. Increased risk for obesity and related metabolic diseases was observed in 
children whose parents were of normal weight but whose grandparents were obese[133].

CONCLUSION
Consistent with the DOHaD concept, epigenetic research conducted on inter- and 
transgenerational inheritance of obesity and T2D has shed light on new molecular 
mechanisms. An important challenge for the scientific community is that the solutions 
to the transmission of obesity and T2D beyond the scope of health system prevention 
programs. In this context, a better understanding of the underlying mechanisms 
involved in the epigenetic regulation of adipocyte and β-cells programming becomes a 
necessity. Of high interest, deciphering the epigenetic mechanisms leading to 
enhanced β-cell mass, β-cell proliferation, and function defects during T2D should 
guide toward the identification of novel therapeutic targets.

The reversible nature of epigenetic modifications, together with recent advances in 
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Figure 2 Epigenetic programming mechanisms and offspring gene targets. Gene targets with epigenetic modifications in the offspring of obese 
mothers are indicated. Gene targets indicated with a question mark have been evidenced by maternal nutritional manipulations other than maternal obesity. ZFP423: 
Zinc finger protein 423; SCD1: Stearoyl-coenzyme A desaturase 1; PPAPγ: Peroxisome proliferator-activated receptor γ; GDF-3: Growth differentiation factor 3; RXR: 
Retinoid-X-receptor; IRS1: Insulin receptor substrate-1; HNF4α: Hepatocyte nuclear factor 4 α; Igf2: Insulin-like growth factor-2.

epigenome-targeting methods, provide a new opportunity for alternative epigenetic 
therapies[134,135]. Indeed, targeting epigenetic machinery during early development is an 
attractive way to reduce adverse outcomes of maternal obesity. On one hand, it is 
crucial to better understand when and how an obesogenic environment may affect the 
fate of stem cells during adipocyte and β-cell development via epigenetic mechanisms. 
In the near future, determining the nature and kinetics of recruitment of enzymes 
controlling the PTMs of histones and DNA methylation involved in the complex 
transcriptional program will be needed. High-throughput DNA sequencing 
approaches in epigenomics for genome-wide profiling of global DNA methylation and 
histone modifications should allow determining changes in chromatin landscape 
throughout development. As a follow-up, high-throughput CRISPR-Cas9 technologies 
for epigenome editing might allow efficient targeting of key epigenetic marks as 
therapeutic option[136].

On the other hand, the use of natural compounds or pharmacological agents leading 
to DNA methylation and histone modifications, such as DNMT inhibitors and HDAC 
inhibitors have been already validated as an innovative approach[132]. Dietary 
supplementation of methyl donors during perinatal period was found to alleviate the 
adverse consequences of maternal malnutrition[137,138]. For instance, pharmacological 
modulation of epigenetic enzymatic machineries via drugs to improve β-cell 
functionality has already been recognized as promising new avenue for future 
therapeutic purposes[135,139-141]. Most important, targeting transient and reversible 
epigenetic modifications during early stages of life, either by genetic or pharma-
cological means, provides a promising therapeutic way to counteract adverse 
programming effects on maternal obesity in the progeny.
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