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Abstract
BACKGROUND 
Complete response after neoadjuvant chemotherapy (rNACT) elevates the 
surgical outcomes of patients with breast cancer, however, non-rNACT have a 
higher risk of death and recurrence.

AIM 
To establish novel machine learning (ML)-based predictive models for predicting 
probability of rNACT in breast cancer patients who intends to receive NACT.

METHODS 
A retrospective analysis of 487 breast cancer patients who underwent mastectomy 
or breast-conserving surgery and axillary lymph node dissection following 
neoadjuvant chemotherapy at the Hubei Cancer Hospital between January 1, 
2013, and October 1, 2021. The study cohort was divided into internal training and 
testing datasets in a 70:30 ratio for further analysis. A total of twenty-four 
variables were included to develop predictive models for rNACT by multiple ML-
based algorithms. A feature selection approach was used to identify optimal 
predictive factors. These models were evaluated by the receiver operating charac-
teristic (ROC) curve for predictive performance.

RESULTS 
Analysis identified several significant differences between the rNACT and non-
rNACT groups, including total cholesterol, low-density lipoprotein, neutrophil-
to-lymphocyte ratio, body mass index, platelet count, albumin-to-globulin ratio, 
platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. The areas under 
the curve of the six models ranged from 0.81 to 0.96. Some ML-based models 
performed better than models using conventional statistical methods in both ROC 
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curves. The support vector machine (SVM) model with twelve variables introduced was identified 
as the best predictive model.

CONCLUSION 
By incorporating pretreatment serum lipids and serum inflammation markers, it is feasible to 
develop ML-based models for the preoperative prediction of rNACT and therefore facilitate the 
choice of treatment, particularly the SVM, which can improve the prediction of rNACT in patients 
with breast cancer.

Key Words: Breast cancer; Neoadjuvant chemotherapy; Clinical response; Machine learning; Prediction

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: For predicting response after neoadjuvant chemotherapy (rNACT), some machine learning-based 
models performed better than models using conventional methods, and the support vector machine model 
performed best. Preoperative serum lipids and serum inflammation markers have contributed to predicting 
rNACT in breast cancer patients. These results suggested the need to raise awareness of the importance of 
minimally-invasive approaches for monitoring breast cancer patients who intended to undergo 
neoadjuvant chemotherapy. However, the current study needs to be validated with caution and require 
external validation in the future.

Citation: Ke ZR, Chen W, Li MX, Wu S, Jin LT, Wang TJ. Added value of systemic inflammation markers for 
monitoring response to neoadjuvant chemotherapy in breast cancer patients. World J Clin Cases 2022; 10(11): 
3389-3400
URL: https://www.wjgnet.com/2307-8960/full/v10/i11/3389.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i11.3389

INTRODUCTION
Worldwide, breast cancer is a major cause of human suffering and high mortality among women[1]. 
Neoadjuvant chemotherapy (NACT) as a treatment for early breast cancer, can make breast conserving 
surgery more feasible, and may achieve more than the same chemotherapy after surgery to eradicate 
micrometastasis[2]. More than 65% of the patients treated with NACT have a response, and more than 
15% have achieved a complete clinical response. Although some trials use the old chemotherapy 
regimen, more than 15% of the patients have undergone partial chemotherapy[2-4]. In other words, 
most patients who cannot achieve a complete pathological response after NACT may face a higher risk 
of death and recurrence. Therefore, it is necessary to develop a practical, convenient and efficient tool to 
predict the pathological response of patients with NACT breast cancer.

Machine learning (ML)-based integrated analysis is a new computer-based method, which has been 
widely used in medical data management in the past decade[5]. It appears at the intersection of statistics 
and computer science. The former attempts to learn relationships from data, while the latter emphasizes 
efficient computational algorithms[6,7]. Compared with traditional statistical prediction models such as 
logistic regression (LR), ML depends on a predetermined model. It can potentially find the interaction 
between variables and iteratively learn the update algorithm from the data[8,9]. Previously, several 
conventional predictive models have been made for predicting after NACT in breast cancer patients, 
including LR, GLM[10-14]. However, few reports have incorporated multiple ML-based ensemble 
analyses for predicting response after NACT (rNACT).

In this study, we aimed to develop a rNACT risk prediction model for breast cancer patients that 
utilizes pretreatment serum lipids and serum inflammation markers to stratify patients by rNACT risk 
on admission. We then analyzed the predictive performance of these ML-based models in a deviation 
cohort and then verified performance in an internal and external validation cohort.

MATERIALS AND METHODS
Patients
Between January 1, 2013 and October 1, 2021, we retrospectively collated data from consecutive patients 
who had been diagnosed with breast cancer at the Hubei Cancer Hospital. All patients had received 
NACT before surgery. This study was approved by the Institutional Ethics Committee of the Hubei 

https://www.wjgnet.com/2307-8960/full/v10/i11/3389.htm
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Figure 1 The flow chart of patient selection and data process. NACT: Neoadjuvant chemotherapy; ROC: Receiver operating characteristic.

Cancer Hospital (Reference: LLHBCH2021YN-021), in compliance with the Declaration of Helsinki. 
Written informed consent was obtained from all participants before any treatment. We confirmed that 
the data from all the patients were anonymized in this study. The inclusion and exclusion criteria were 
summarized in Figure 1. The study cohort was divided into internal training and testing datasets in a 
70:30 ratio for further analysis.

Blood data collection
The blood samples of all patients were taken from the fasting state before chemotherapy, and the blood 
tests were operated by professional personnel to ensure that the blood test results were not biased. The 
results of the blood test are as follows: Blood routine, liver and kidney function, electrolytes, and blood 
lipids.
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Figure 2 Statistical analysis of features included in machine learning based models. A: Heatmap representing the correlation between candidate 
variables included in predictive models using Spearman’s correlation coefficient; B: Scaled importance rank of all features included in predictive models for identifying 
risk of response after neoadjuvant chemotherapy (rNACT) in breast cancer patients; C-J: Box and jitter plots showing distribution of continuous features included in 
predictive models between rNACT and non-rNACT groups. BMI: Body mass index; PR: Partial response; NLR: Neutrophil-to-lymphocyte ratio; LMR: Lymphocyte-to-
monocyte ratio; PLR: Platelet-to-lymphocyte ratio; A/G: Albumin-to-globulin ratio; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; TC: Total cholesterol; 
TG: Triglyceride.

Evaluating the safety and efficacy of NACT
According to RECIST (version 1.1) criteria15, the efficacy of NACT is defined as follows: (1) Cardiol Res. 
The tumor is disappeared completely; (2) Partial response (PR). The diameter of the tumor is reduced (≥ 
30%); (3) Progressive disease (PD). The diameter of the tumor was reduced (≥ 20%); and (4) Stable 
disease (SD). The diameter of the tumor was altered between PR and PD. Collectively, patients were 
considered to be responsive to NACT provided that they were evaluated as CR or PR after NACT 
treatment. On the contrary, patients with SD or PD were regarded as non-responsive to NACT.
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Figure 3 Validation and comparison of the predictive model. A: Area under the receiver operating characteristic curve (AUC) to assess the performance 
of response after neoadjuvant chemotherapy (rNACT) risk prediction of machine learning based models; B: AUC to assess the performance of rNACT risk prediction 
of generalized linear model (GLM); C: Discriminative evaluation of support vector machine in predicting rNACT; D: Discriminative evaluation of GLM in predicting 
rNACT. SVM: Support vector machine; GLM: Generalized linear model.

Development and validation of ML-based models
Four ML-based algorithms were performed to build predictive models, we used the caret package to 
randomly divide the data set into two parts, 70% for model training and 30% for model testing. A total 
of 6 ML-based algorithms were executed to establish the predictive model. According to the principle of 
"two-step estimation"[16], We obtained the prediction model through variable screening and algorithm, 
as follows: M is the intersection of M3 and M4.The characteristic variable is marked as X and the target 
variable is marked as Y. The X and Y were evenly divided into two parts, namely X1, Y1, and X2, Y2. 
Through univariate screening, the variable quantum set M1was screened on X1 and Y1, and M2was 
filtered by X2 and Y2. Then, a lasso was used to fit the model again, and the filtered variables were 
marked asM3 and M4 Briefly, by sorting the intersection of variable sets, the optimal subset modeling is 
obtained. The model was evaluated by inspection, discrimination, and calibration.The receiver 
operating characteristic (ROC) curve was used to evaluate the recognition ability of the prediction 
model in the training data set and the test data set; The discrimination ability of each model was 
quantified by the area under the ROC curve (AUC), decision curve analysis, and clinical impact curve 
(CIC).

Statistical analysis
Continuous variables are expressed as mean ± SD and compared using the two-tailed t-test or the 
Mann-Whitney test. Categorical variables were compared using the chi-square test or Fisher's exact test. 
Univariate and multivariate logistic analyses were used to explore the risk factors for rNACT. Several 
ML-based algorithms were applied to predict rNACT, including support vector machine (SVM), 
random forest (RF), Naive Bayes (NB), neural network (NN), decision tree (DT), and generalized linear 
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model (GLM)[17,18]. Among all 6 algorithms, the GLM is considered conventional methods, and the 
others are representative supervised ML-based algorithms. The prediction ability of the 6 models was 
first evaluated by the ROC curve. All analysis was performed using the Python programming language 
(version 3.9.2, Python Software Foundation, https://www.python.org/) and R Project for Statistical 
Computing (version 4.0.4, http://www.r-project.org/). Statistical analyses were performed using a two-
tailed Student's t-test in PRISM software (GraphPad 6 Software) to compare the differences between 
rNACT and non-rNACT groups assuming equal variance. All P values were two-tailed, and P < 0.05 
was considered statistically significant.

RESULTS
Clinicopathological characteristics
During the period of enrollment, 287 consecutive patients with breast cancer underwent mastectomy or 
breast-conserving surgery and axillary lymph node dissection following NACT. Besides, 201 patients 
were validated as external data sets for the prediction model. Demographics and baseline data were 
summarized in Table 1. According to the RECIST (version 1.1) criteria, rNACT was identified in 255 
(88.9%) and 32 (11.1%) patients with non-rNACT in the internal whole cohort. In the external cohort, 176 
(88.0%) patients were confirmed to have rNACT, and 24 (12.0%) patients represented non-rNACT. 
Overall, most patients with breast cancer presenting with rNACT were positively associated with 
pretreatment serum lipids and serum inflammation markers. No statistically significant difference was 
detected between two cohorts with regard to age, menopause, grade, smoking, estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) (P ≥ 0.05).

Variable importance and candidate features selection
By feature selection, the twenty-four variables for each algorithm were screened by their predictive 
importance. As depicted in Figure 2A, only twelve of the candidate features were eventually chosen for 
modeling, among which eight features had a positive association with rNACT, including PLT, 
monocyte count (MONO), neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), 
platelet-to-lymphocyte ratio (PLR), low-density lipoprotein (LDL), A/G, and total cholesterol (TC). Four 
features were negatively correlated with rNACT, including high-density lipoprotein (HDL), triglyceride 
(TG), BMI, and age. The weight of the top eight variables was shown in Figure 2B. The pretreatment 
serum lipids and serum inflammation markers also showed significant differences between rNACT and 
non-rNACT groups (Figure 2C-J). Multivariable logistic analysis using raw data of the candidate 
features proved that the features selected by stepwise analysis exhibited similar risk implications 
(Supplementary Table 1). Based on our results, NLR (OR: 1.02, 95%CI: 0.78-1.26), LMR (OR: 1.44, 95%CI: 
1.32-1.56), PLR (OR:2.54, 95%CI: 1.81-6.94), PLT (OR:1.87, 95%CI: 1.76-1.98), LDL (OR:1.01, 95%CI: 0.89-
1.13), BMI (OR:1.23, 95%CI: 0.78-1.68), A/G (OR:1.69, 95%CI: 1.24-2.14), TC (OR:0.71, 95%CI: 0.26-1.16), 
and TG (OR:0.42, 95%CI: 0.17-0.68) were positively correlated with rNACT.

Comparison Between ML-Based Models
A total of twelve preoperative variables were used to develop predictive models for rNACT based on 
six algorithms. The predictive performance of all models was shown in Figure 3A and B and Table 2. 
The best performance was observed in the SVM model (AUC = 0.96, 95%CI: 0.91-1.01), which performed 
similarly to RF model (AUC = 0.94, 95%CI: 0.87-1.01), superior than NB model (AUC = 0.86, 95%CI: 
0.79-0.93), NN model (AUC = 0.88, 95%CI: 0.82-0.94), DT model (AUC = 0.83, 95%CI: 0.77-0.89), and 
GLM (AUC = 0.81, 95%CI: 0.71-0.91). All ML-based models were better than conventional model. 
Furthermore, the optimal model SVM showed superior to the traditional linear model in discrimination 
(Figure 3C and D).

Internal and external validation of the optimal predictive model
To further validate the performance of the SVM model, we also adopted CIC to evaluate the prediction 
efficiency, as illustrated in Figure 4A, the CIC demonstrated that the stratification of rNACT could be 
distinguished in the training cohorts. These results were also parallel to risk factors of rNACT 
delineated in the validation cohorts (Figure 4B), indicating that the selected features were highly 
relevant to rNACT.

DISCUSSION
Reliable markers of chemosensitivity help select patients who most benefit from NACT[19]. Previous 
studies on the candidate predictors of NACT efficacy in breast cancer patients are discordant, 
suggesting that the potential predictors to predict efficacy is insufficient[20-23]. In addition, whilst many 
studies report the predictive outcomes of breast cancer patients who have received NACT, however, 

https://www.python.org/
http://www.r-project.org/)
https://f6publishing.blob.core.windows.net/3b4a5238-2c96-4d8b-b37f-ec339d37a9f2/WJCC-10-3389-supplementary-material.pdf


Ke ZR et al. Monitoring response to neoadjuvant chemotherapy

WJCC https://www.wjgnet.com 3395 April 16, 2022 Volume 10 Issue 11

Table 1 Demographics and baseline characteristics of the breast cancer patients undergoing neoadjuvant chemotherapy

Training cohort Testing cohort
Variables Dummy 

variables Overall (n = 
287)

Yes (n = 
255) No (n = 32) P value Overall (n = 

200)
Yes (n = 
176) No (n = 24) P value

Age [median 
(IQR)],yr

61.00 (55.00, 
70.00)

61.00 (54.00, 
70.00)

64.00 (58.75, 
69.25)

0.11 61.00 (55.75, 
70.25)

61.00 (55.00, 
70.25)

64.00 (57.75, 
70.25)

0.28

Menopausal (%) Yes 35 (12.2) 30 (11.8) 5 (15.6) 0.73 28 (14.0) 24 (13.6) 4 (16.7) 0.93

No 252 (87.8) 225 (88.2) 27 (84.4) 172 (86.0) 152 (86.4) 20 (83.3)

T stage (%) T1-2 216 (75.3) 196 (76.9) 20 (62.5) 0.12 156 (78.0) 140 (79.5) 16 (66.7) 0.24

T3-4 71 (24.7) 59 (23.1) 12 (37.5) 44 (22.0) 36 (20.5) 8 (33.3)

N stage (%) N0-1 71 (24.7) 58 (22.7) 13 (40.6) 0.04 52 (26.0) 40 (22.7) 12 (50.0) 0.01

N2-3 216 (75.3) 197 (77.3) 19 (59.4) 148 (74.0) 136 (77.3) 12 (50.0)

Grade (%) I-II 195 (67.9) 175 (68.6) 20 (62.5) 0.61 134 (67.0) 118 (67.0) 16 (66.7) 0.11

III 92 (32.1) 80 (31.4) 12 (37.5) 66 (33.0) 58 (33.0) 8 (33.3)

Histology (%) IDC 111 (38.7) 106 (41.6) 5 (15.6) 0.02 80 (40.0) 77 (43.8) 3 (12.5) 0.03

ILC 91 (31.7) 79 (31.0) 12 (37.5) 61 (30.5) 51 (29.0) 10 (41.7)

IMC 48 (16.7) 41 (16.1) 7 (21.9) 36 (18.0) 29 (16.5) 7 (29.2)

Others 37 (12.9) 29 (11.4) 8 (25.0) 23 (11.5) 19 (10.8) 4 (16.7)

Molecular subtyping 
(%)

HER2-LuB 108 (37.6) 100 (39.2) 8 (25.0) < 0.01 76 (38.0) 71 (40.3) 5 (20.8) 0.01

HER2+ 71 (24.7) 66 (25.9) 5 (15.6) 53 (26.5) 50 (28.4) 3 (12.5)

HER2+LuB 29 (10.1) 24 (9.4) 5 (15.6) 18 (9.0) 15 (8.5) 3 (12.5)

LuA 54 (18.8) 41 (16.1) 13 (40.6) 37 (18.5) 25 (14.2) 12 (50.0)

TN 25 (8.7) 24 (9.4) 1 (3.1) 16 (8.0) 15 (8.5) 1 (4.2)

BMI (%) ≤ 18 21 (7.3) 21 (8.2) 0 (0.0) 0.22 11 (5.5) 11 (6.2) 0 (0.0) 0.42

≥ 27 36 (12.5) 31 (12.2) 5 (15.6) 27 (13.5) 23 (13.1) 4 (16.7)

18 - 27 230 (80.1) 203 (79.6) 27 (84.4) 162 (81.0) 142 (80.7) 20 (83.3)

Smoking (%) No 258 (89.9) 231 (90.6) 27 (84.4) 0.43 182 (91.0) 161 (91.5) 21 (87.5) 0.79

Yes 29 (10.1) 24 (9.4) 5 (15.6) 18 (9.0) 15 (8.5) 3 (12.5)

ER (%) Negative 103 (35.9) 91 (35.7) 12 (37.5) 0.99 73 (36.5) 66 (37.5) 7 (29.2) 0.56

Positive 184 (64.1) 164 (64.3) 20 (62.5) 127 (63.5) 110 (62.5) 17 (70.8)

PR (%) Negative 165 (57.5) 141 (55.3) 24 (75.0) 0.05 109 (54.5) 91 (51.7) 18 (75.0) 0.05

Positive 122 (42.5) 114 (44.7) 8 (25.0) 91 (45.5) 85 (48.3) 6 (25.0)

HER2 (%) Negative 157 (54.7) 140 (54.9) 17 (53.1) 0.99 110 (55.0) 96 (54.5) 14 (58.3) 0.89

Positive 130 (45.3) 115 (45.1) 15 (46.9) 90 (45.0) 80 (45.5) 10 (41.7)

PLT [median (IQR)] 
× 109/L

200.00 
(154.50, 
268.50)

187.00 
(152.50, 
245.50)

388.00 
(334.50, 
454.00)

< 0.01 202.50 
(158.75, 
267.25)

190.50 
(154.00, 
246.50)

377.00 
(332.50, 
443.50)

< 0.01

Neutrophil [median 
(IQR)] × 109/L

4.35 (3.52, 
5.13)

4.54 (3.76, 
5.23)

3.09 (2.02, 
3.39)

< 0.01 4.44 (3.50, 
5.21)

4.60 (3.78, 
5.27)

3.09 (2.02, 
3.35)

< 0.01

MONO [median 
(IQR)] × 109/L

0.40 (0.25, 
0.57)

0.38 (0.24, 
0.50)

0.88 (0.80, 
0.94)

< 0.01 0.41 (0.25, 
0.58)

0.37 (0.23, 
0.49)

0.86 (0.75, 
0.91)

< 0.01

Lymphocyte [median 
(IQR)] × 109/L

3.09 (2.92, 
3.30)

3.13 (2.96, 
3.32)

1.64 (1.14, 
2.16)

< 0.01 3.08 (2.92, 
3.30)

3.12 (2.98, 
3.32)

1.67 (1.14, 
2.16)

< 0.01

NLR [median (IQR)] 1.43 (1.20, 
1.67)

1.42 (1.20, 
1.64)

1.56 (1.21, 
2.68)

0.03 1.48 (1.20, 
1.70)

1.47 (1.20, 
1.67)

1.56 (1.22, 
2.75)

< 0.01

7.62 (5.59, 8.51 (6.18, 1.86 (1.51, 7.59 (5.60, 8.53 (6.26, 1.87 (1.59, LMR [median (IQR)] < 0.01 < 0.01
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12.96) 13.31) 2.47) 13.07) 13.46) 2.52)

PLR [median (IQR)] 64.45 (49.59, 
85.43)

61.99 (47.81, 
78.50)

237.76 
(189.53, 
342.96)

< 0.01 65.33 (50.30, 
85.89)

62.36 (49.02, 
78.10)

226.10 
(189.53, 
305.51)

< 0.01

ALB [median 
(IQR)],g/L

47.00 (39.00, 
55.00)

48.00 (41.00, 
56.00)

32.50 (27.50, 
37.00)

< 0.01 47.00 (39.00, 
55.25)

49.00 (41.00, 
56.00)

31.50 (27.50, 
37.00)

< 0.01

GLB [median 
(IQR)],g/L

23.00 (20.00, 
26.00)

22.00 (20.00, 
25.00)

35.00 (30.75, 
41.00)

< 0.01 23.00 (20.00, 
26.00)

23.00 (20.00, 
25.00)

35.50 (30.75, 
41.25)

< 0.01

A/G [median (IQR)] 2.11 (1.76, 
2.53)

2.18 (1.88, 
2.57)

0.88 (0.82, 
1.03)

< 0.01 2.11 (1.71, 
2.50)

2.18 (1.85, 
2.55)

0.88 (0.82, 
1.03)

< 0.01

LDL [median 
(IQR)],mmol/L

3.00 (2.88, 
3.10)

2.97 (2.87, 
3.08)

3.13 (3.05, 
3.24)

< 0.01 3.00 (2.90, 
3.08)

2.97 (2.88, 
3.07)

3.13 (3.04, 
3.22)

< 0.01

HDL [median 
(IQR)],mmol/L

1.26 (1.19, 
1.33)

1.29 (1.20, 
1.34)

1.17 (1.08, 
1.20)

< 0.01 1.25 (1.18, 
1.32)

1.28 (1.20, 
1.33)

1.15 (1.08, 
1.19)

0.02

TC [median (IQR)], 
mmol/L

0.52 (0.49, 
0.56)

0.52 (0.48, 
0.56)

0.56 (0.52, 
0.58)

< 0.01 0.52 (0.48, 
0.56)

0.52 (0.48, 
0.56)

0.56 (0.52, 
0.57)

< 0.01

TG [median (IQR)], 
mmol/L

1.82 (1.61, 
2.15)

1.78 (1.59, 
2.04)

2.34 (2.27, 
2.39)

< 0.01 1.85 (1.60, 
2.15)

1.79 (1.59, 
2.04)

2.34 (2.27, 
2.39)

< 0.01

rNACT: Response to neoadjuvant chemotherapy; Non-rNACT: None response to neoadjuvant chemotherapy; IQR: Interquartile range; ER: Estrogen 
receptor; PR: Progesterone receptor. HER2: Human epidermal growth factor receptor 2; IDC: Invasive ductal carcinoma; ILC: Invasive lobular carcinoma; 
IMC: Invasive mammary carcinoma; BMI: Body mass index; PLT: Platelet count; MONO: Monocyte count; NLR: Neutrophil-to-lymphocyte ratio; LMR: 
Lymphocyte-to-monocyte ratio; PLR: Platelet-to-lymphocyte ratio; ALB: Albumin; GLB: Globulin; A/G: Albumin-to-globulin ratio; LDL: Low density 
lipoprotein; HDL: High density lipoprotein; TC: Total cholesterol; TG: Triglyceride.

Table 2 Performance for response to neoadjuvant chemotherapy risk prediction of models in breast cancer patients

Model AUC (95%CI) Sensitivity Specificity PPV NPV Kappa Brier

SVM 0.96 (0.91-1.01) 96.58 45.28 88.63 75.00 0.68 0.06

RF 0.94 (0.87-1.01) 94.44 68.75 86.67 68.75 0.65 0.07

NB 0.86 (0.79-0.93) 96.36 35.80 83.14 75.00 0.62 0.07

NN 0.88 (0.82-0.94) 93.15 25.00 93.15 53.15 0.62 0.07

DT 0.83 (0.77-0.89) 94.50 24.14 74.12 65.63 0.59 0.07

GLM 0.81 (0.71-0.91) 95.70 23.76 69.80 75.00 0.57 0.08

AUC: Area under the curve.area under the receiver operating characteristics curve; PPV: Positive predictive value; NPV: Negative predictive value, 95%CI: 
95% confidence interval; SVM: Support vector machine; RF: Random forest; NB: Naive bayes ; NN: Neural network; DT: Decision tree; GLM: Generalized 
linear model.

relatively few have investigated the individual contribution of multiple models to accuracy, especially 
prediction efficiency[24-27]. Whilst this study indicates that ML-based predictive algorithms should be 
included in NACT risk assessments in breast cancer patients, it also highlights the importance of 
conducting newly predictive models for clinical management.

Supervised ML algorithms have been a dominant method in the data mining field[17]. In recent years, 
ML-based algorithms were widely used for the evaluation of disease prognosis[28-30]. In this study, 
extensive variables were made to identify those predictive that applied more than one supervised ML 
algorithm on rNACT prediction. Based on the ML algorithm, we employed a variety of statistical, 
probabilistic, and optimization methods to learn from experience and detect useful patterns from large, 
unstructured, and complex datasets. To sum up, we extracted the data from the patient’s medical 
records as much as possible. With the help of different algorithms, such as automated text categorisation
[31], network intrusion detection[32], optimizing manufacturing process[33], etc., we finally obtained 
meaningful candidate variables. Given the growing applicability and effectiveness of supervised ML 
algorithms on predictive disease modeling. Interestingly, we found that the SVM algorithm is applied 
most robust in predicting rNACT, which denotes superior performance than the conventional linear 
prediction model. Besides, the remaining machine prediction models are better than GLM. Therefore, 
our research demonstrated that, compared with the traditional model, machine learning modeling 
prediction rNACT could obtain better prediction performance.
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Figure 4 Prediction performance of support vector machine model via clinical impact curve. A: Training set; B: Validation set. The green line 
predicts the probability of poor response after neoadjuvant chemotherapy (rNACT), and the blue line shows how many patients will be at high risk of non-rNACT.

Inflammation is associated with the development and malignant progression of most cancers[34]. 
Inflammatory blood markers have emerged as potential prognostic factors in various cancers, such as 
NLR, LMR, and PLR. Activated inflammatory cells are sources of reactive oxygen species and reactive 
nitrogen intermediates that can promote cancer initiation[35]. In breast cancer, pretreatment NLR values 
are associated with patient prognosis[36]. Similarly, our study indicated that NLR, LMR, and PLR 
values can be reliably used to predict breast patient responses to NACT treatment, which can effectively 
stratify patients based upon their likelihood of achieving rNACT. Besides, we also found that 
pretreatment abnormal A/G ratio, which might be attributable to rNACT. Indeed, a low pretreatment 
A/G ratio is associated with poor prognosis in human cancers[37]. The importance of lipids in tumor 
progression, invasion, and metastasis has been described in the previous studies[38]. High triglycerides 
and low levels of HDL are observed to promote tumor growth[39]. In the present study, we observed 
that LDL, TC, and BMI were highly associated with rNACT, consistent with previous studies[37,38]. 
Collectively, clinicians can more effectively weigh the relative costs and benefits of pretreatment serum 
lipids and serum inflammation markers to ensure that they act in the optimal choice of breast cancer 
patients.

There are multiple strengths to this study. First, our observations were limited to retrospective 
studies from a single-center, these findings need further multi-institutional validation with larger 
sample size. Second, our nomograms were merely validated via an internal training set, external 
verification using independent patient set is necessary. Third, this is a retrospective study that could not 
completely avoid missing data and measurement biases, more candidate useful biomarkers may be 
needed to develop predictive models in the future.

CONCLUSION
In summary, for predicting rNACT, some ML-based models performed better than models using 
conventional methods, and the SVM model performed best. Preoperative serum lipids and serum 
inflammation markers have contributed to predicting rNACT in breast cancer patients. These results 
suggested the need to raise awareness of the importance of minimally-invasive approaches for 
monitoring breast cancer patients who intended to undergo NACT. However, the current study needs 
to be validated with caution and require external validation in the future.

ARTICLE HIGHLIGHTS
Research background
Complete response after neoadjuvant chemotherapy (rNACT) elevates the surgical outcomes of patients 
with breast cancer, however, non-rNACT have a higher risk of death and recurrence.

Research motivation
In this study, we aimed to develop an rNACT risk prediction model for breast cancer patients that 
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utilizes pretreatment serum lipids and serum inflammation markers to stratify patients by rNACT risk 
on admission. We then analyzed the predictive performance of these ML-based models in a deviation 
cohort and then verified performance in an internal and external validation cohort.

Research objectives
In this study, we aimed to develop an rNACT risk prediction model for breast cancer patients that 
utilizes pretreatment serum lipids and serum inflammation markers to stratify patients by rNACT risk 
on admission. We then analyzed the predictive performance of these ML-based models in a deviation 
cohort and then verified performance in an internal and external validation cohort.

Research methods
A retrospective analysis of 487 breast cancer patients who underwent mastectomy or breast-conserving 
surgery and axillary lymph node dissection following NACT at the Hubei Cancer Hospital between 
January 1, 2013, and October 1, 2021. The study cohort was divided into internal training and testing 
datasets in a 70:30 ratio for further analysis. A total of twenty-four variables were included to develop 
predictive models for rNACT by multiple ML-based algorithms. A feature selection approach was used 
to identify optimal predictive factors. These models were evaluated by the receiver operating charac-
teristic (ROC) curve for predictive performance.

Research results
Analysis identified several significant differences between the rNACT and non-rNACT groups, 
including total cholesterol, low-density lipoprotein, neutrophil-to-lymphocyte ratio, body mass index, 
platelet count, albumin-to-globulin ratio (A/G), platelet-to-lymphocyte ratio, and lymphocyte-to-
monocyte ratio. The areas under the curve of the six models ranged from 0.81 to 0.96. Some ML-based 
models performed better than models using conventional statistical methods in both ROC curves. The 
support vector machine (SVM) model with twelve variables introduced was identified as the best 
predictive model.

Research conclusions
By incorporating pretreatment serum lipids and serum inflammation markers, it is feasible to develop 
ML-based models for the preoperative prediction of rNACT and therefore facilitate the choice of 
treatment, particularly the SVM, which can improve the prediction of rNACT in patients with breast 
cancer.

Research perspectives
For predicting rNACT, some ML-based models performed better than models using conventional 
methods, and the SVM model performed best. Preoperative serum lipids and serum inflammation 
markers have contributed to predicting rNACT in breast cancer patients. These results suggested the 
need to raise awareness of the importance of minimally-invasive approaches for monitoring breast 
cancer patients who intended to undergo NACT. However, the current study needs to be validated with 
caution and require external validation in the future.
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