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Abstract
BACKGROUND 
Microvascular tissue reconstruction is a well-established, commonly used 
technique for a wide variety of the tissue defects. However, flap failure is 
associated with an additional hospital stay, medical cost burden, and mental 
stress. Therefore, understanding of the risk factors associated with this event is of 
utmost importance.

AIM 
To develop machine learning-based predictive models for flap failure to identify 
the potential factors and screen out high-risk patients.

METHODS 
Using the data set of 946 consecutive patients, who underwent microvascular 
tissue reconstruction of free flap reconstruction for head and neck, breast, back, 
and extremity, we established three machine learning models including random 
forest classifier, support vector machine, and gradient boosting. Model per-
formances were evaluated by the indicators such as area under the curve of 
receiver operating characteristic curve, accuracy, precision, recall, and F1 score. A 
multivariable regression analysis was performed for the most critical variables in 
the random forest model.

RESULTS 
Post-surgery, the flap failure event occurred in 34 patients (3.6%). The machine 
learning models based on various preoperative and intraoperative variables were 
successfully developed. Among them, the random forest classifier reached the 
best performance in receiver operating characteristic curve, with an area under 
the curve score of 0.770 in the test set. The top 10 variables in the random forest 
were age, body mass index, ischemia time, smoking, diabetes, experience, prior 
chemotherapy, hypertension, insulin, and obesity. Interestingly, only age, body 
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mass index, and ischemic time were statistically associated with the outcomes.

CONCLUSION 
Machine learning-based algorithms, especially the random forest classifier, were very important in 
categorizing patients at high risk of flap failure. The occurrence of flap failure was a multifactor-
driven event and was identified with numerous factors that warrant further investigation. 
Importantly, the successful application of machine learning models may help the clinician in 
decision-making, understanding the underlying pathologic mechanisms of the disease, and 
improving the long-term outcome of patients.

Key Words: Machine learning; Flap failure; Microvascular procedure; Random forest; Risk factors

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Flap failure is a rare but severe event in microvascular tissue reconstruction. It is generally 
associated with the additional economic burden and mental stress to the patients. Therefore, identifying the 
risk factors and screening high-risk patients carries a significant value in the clinical practice. Machine 
learning is an artificial intelligence based on the computer learning to learn from data and thus automat-
ically make decisions. This retrospective study applied machine learning for the risk factor analysis of flap 
failure during microvascular tissue reconstruction.

Citation: Shi YC, Li J, Li SJ, Li ZP, Zhang HJ, Wu ZY, Wu ZY. Flap failure prediction in microvascular tissue 
reconstruction using machine learning algorithms. World J Clin Cases 2022; 10(12): 3729-3738
URL: https://www.wjgnet.com/2307-8960/full/v10/i12/3729.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i12.3729

INTRODUCTION
Microvascular reconstruction surgery is a commonly used technique to treat various defects, including 
remodeling after mastectomy[1], head and neck trauma repair[2], and profound burn tissue remodeling
[3]. However, even though this technique is quite robust, many adverse complications arise after the 
reconstruction procedure, such as postoperative incision infection and reoperation[4,5]. Among these 
complications, the failure of flap transplantation after microvascular tissue reconstruction is the most 
important event, as it is associated with the arterial blood supply, ischemia-reperfusion, and venous 
return of the flap[6,7]. Despite the rare occurrence of flap failure, it can result in devastating 
consequences for patients, such as permanent scarring of the face and breast. Moreover, it increases 
complication in postoperative care, length of hospital stays, financial burden, and mental stress to the 
patients[8,9]. Therefore, it is important to identify the relevant factors and screen out high-risk patients 
before surgery, which might result in flap failure.

Previous studies have analyzed the multifactorial aspect of flap failure[10,11]. Associated 
preoperative risk factors include, but are not limited to age, smoking, diabetes, hypertension, and 
obesity[12,13]. Related intraoperative factors included the surgeon’s lack of experience and the choice of 
free flaps[14]. However, these studies were based on traditional logistic regression methods and were 
limited to nonlinearity and variable set[15]. Of note, precise, logistic regression analysis assumes that 
variables are linearly correlated, and therefore potential nonlinear interactions can compromise the 
outcome[15,16]. Moreover, only a small number of variables could be included in the analysis, 
overlooking the many potentially relevant factors[16]. These deficiencies in the analytical methods 
needs to be addressed using an advanced algorithm. Therefore, the recently emerging algorithms of 
machine learning might be a better option for the data analysis.

Machine learning, a branch of artificial intelligence (AI), literally meaning where machines can 
understand and learn from data to make decisions like humans[17,18]. In 2017, an AI called AlphaGo 
won worldwide attention by beating the international GO master Li Shiming. Due to its advantages in 
computational capacity and problem-solving techniques, machine learning has been widely used in 
medicine for many purposes, including the interpretation of test results[19], diagnosis of skin diseases
[20], pathology[21], prediction of adverse complications[22], and the prognosis of cancer patients[23]. 
However, in plastic surgery the use of clinical application of machine learning is still rare[24]. Therefore, 
this study aimed to apply AI in the field of plastic surgery, assessing the factors associated with the 
prognosis of microvascular tissue reconstruction for identifying high-risk patients with flap failure.

https://www.wjgnet.com/2307-8960/full/v10/i12/3729.htm
https://dx.doi.org/10.12998/wjcc.v10.i12.3729
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MATERIALS AND METHODS
Study population
A total of 946 consecutive patients were recruited in the study from January 1, 2006 to December 12, 
2020. These recruited patients underwent microvascular tissue reconstruction of free flap for head and 
neck, breast, back, and extremity at the Department of Plastic Surgery of Affiliated Hospital in 
Guangdong Medical University. Exclusion criteria included: patients with more than 30% data loss and 
who refused surgical treatment. Inclusion criteria/variables included: (1) Preoperative variables such as 
sex, age, body mass index (BMI), smoking, alcohol use, blood pressure, medication history, complic-
ations, laboratory findings, preoperative chemotherapy, preoperative radiotherapy, free flap location, 
and recipient surgical site; and (2) Intraoperative variables like duration of operation, duration of 
anesthesia, hypotensive events, use of vasoactive agents, duration of flap ischemia, number of vascular 
anastomoses, use of venous grafts, and surgeon’s experience measured as the time since the flap 
procedures.

Statistical analysis
Open-source software Python (version 3.6) and Scikit-learn package (https://scikit-learn.org/) were 
used for the data processing and analysis. Univariate analyses were done using the χ2 and Fisher’s exact 
tests for categorical variables, whereas the t-test and Mann-Whitney U tests were used for the 
continuous variables. A subset of data was usually selected from the entire database for model training 
to train a suitable algorithm. The rest of the subset was used for the performance test of the model. 
Conceptually, the whole data set was divided into a training and testing subset according to the ratio of 
5:5. Then, GridSearch was performed with the 5-fold cross-validation, where the training data set was 
further split into five parts and five repetitions. At each repetition, there were four random parts that 
served as the training set, whereas the remaining part served as the testing set. Multivariable regression 
was performed for the most critical variables in the random forest model to identify the risk factors in 
the traditional logistic regression model. A P value less than 0.05 was considered statistically significant.

Machine learning technique
We employed the following machine learning methods:

Random forest: The random forest classifier, one of the most used techniques in the data mining or 
automatic learning, was developed from the training data set using the python programming software. 
Random forest, introduced by Ishwaran, was used as decision tool based on a binary tree. It uses a 
branching structure like a binary tree to form a decision model and analyze possible results. Each node 
in these binary tree structures represents a decision (based on selected variables), whereas the two 
branches of the node represent the two kinds of classification results. Each branch produces two leaf 
nodes and other subtrees, depending on the classification when the variable is analyzed. For assessing 
the variables importance, variables in the random forest are determined by the average distance of the 
branching nodes in the tree structure from the roots. Thus, the higher a variable is in an inverted binary 
tree, the closer it would be to the root, with the higher ranking.

Support vector machine: Support vector machine is an algorithm for creating nonlinear discriminative 
classifier, governed by an optimal hyperplane that separates examples of different classes (the notable 
kernel trick).

Gradient boosting machine: Gradient boosting is a supervised machine learning technique for solving 
regression and classification problems that yield predictive models in the form of an ensemble of weak 
predictive models (e.g., decision trees). Through pooling weak predictive models into a more powerful 
and reliable prediction model, the gradient tree boosting technique incorporated in the eXtreme 
Gradient Boosting system becomes a robust machine learning classifier.

Performance evaluation
The model evaluation used performance indicators used in the machine learning. The primary 
evaluation method was the receiver operating characteristic curve and the area under the curve (AUC) 
score. Other relevant indicators included accuracy, precision, recall, and F1 score. The higher value 
indicators represented the better predictive performance of the model.

RESULTS
Patient characteristics
A total of 946 patients who underwent free flap transplantation for head and neck (40.2%), breast 
(38.3%), and extremity reconstruction (21.5%) were recruited. Overall, 58.3% of the recruited population 
was female, with an average age of 42 years (range: 13-65 years). The average BMI of the studied 

https://scikit-learn.org/
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population was 24.9 ± 6.3 (mean ± standard deviation). Other potential factors for flaps failure were 
obesity (23.4%), smoking (30.3%), diabetes (6.3%), insulin (1.3%), hypertension (16.2%), preoperative 
tumor chemotherapy (25.3%), and preoperative tumor radiotherapy (19.2%). Table 1 showed the clinical 
characteristics of the patients in the training and the test sets. However, no significant statistical 
difference was observed between the two subsets.

Clinical outcomes
Major complications after flap transplantation were hematoma in 69 cases (7.3%), infection in 49 cases 
(5.2%), and damaged flap circulation in 65 cases (6.9%). Salvage measures were implemented for 95 
cases (10%), where 61 cases were successfully saved, with a success rate of 64.2%. Finally, 34 patients 
(3.6%) had flap failure, with the most common cause of postoperative infection followed by hematoma 
formation.

Model performance
We developed three machine learning-based models based on the various preoperative and intraop-
erative data for analyzing the potential risk factors associated with the flap failure after microvascular 
tissue reconstruction. A total of 473 patients and 16 events were included in the training set, while a 
total of 473 patients and 18 events were included in the test set. The receiver operating characteristic 
graph was drawn based on model sensitivity and specificity, whereas the random forest model yielded 
the highest AUC score in the test set (AUC = 0.770, 95% confidence interval: 0.726-0.854) (Figure 1). The 
random forest model maintained a very high predictive ability for predicting the flap failure events, 
indicating that the classification model based on the binary tree could accurately divide the samples into 
with and without flap failure events. Other model indicators in the random forest were: (1) The value of 
precision based on the true positive divided by the sum of true positive and false positive was 0.82; (2) 
The values of recall obtained by dividing true positive by the sum of the true positive and false negative 
was 0.69; and (3) The values of the F1 score obtained by the precision-recall curve was 0.75 (Table 2).

Importance rank
Figure 2 represents the importance ranking of tested variables in the random forest model to predict 
flap failure. The variables were ranked based on the average distance from the split branch to the tree 
root in the binary tree. The line length measured the variable importance in the random forest model 
(Figure 2). The top ten variables in the random forest model were age, BMI, ischemia time, smoking, 
diabetes, experience, prior chemotherapy, hypertension, insulin, and obesity.

Multivariate regression
Table 3 outlines the statistical analysis results of the top ten variables of the random forest model in the 
traditional logistic regression analysis. Of note, among the top ten variables, only age, BMI, and 
ischemic time were significantly associated with the outcomes of the multivariate analysis. For the 
remaining seven variables, P values for diabetes and prior chemotherapy were 0.06 and 0.07, 
respectively. Interestingly, surgeon’s experience was not found to be statistically significant in the 
multivariate analysis.

DISCUSSION
Free flap transplantation is a robust technique, ensuring the success of tissue reconstruction even with 
various postoperative complications through timely rescue attempts[25]. However, though the 
incidence of flap failure is relatively low, once it occurs it is generally detrimental for the patient, as it 
results in the permanent scarring of the graft area, especially at the region of the face and breast[26]. 
Therefore, in this study a random forest model based on machine learning was used for a series of 
preoperative and intraoperative variables, aiming to assess and analyze the risk factors associated with 
the flap failure after microvascular tissue reconstruction and to screen out the high-risk groups in 
clinical practice. To best of our knowledge, this is the first report about the application of the random 
forest model for flap failure after microvascular tissue reconstruction.

When the event-to-variable ratio was greater than 10, an ideal prediction model in multivariate 
logistic regression analysis was successfully constructed[27]. However, owing to the low incidence of 
flap failure, the event-to-variable ratio in this study was approximately 1. Therefore, even reducing the 
variables of the analysis could not achieve the ideal ratio value. Moreover, the traditional logistic 
regression could not consider the nonlinear relationship between the variables[15]. Therefore, in this 
study, due to the potential overfitting phenomenon, the utility of the prediction model based on the 
traditional multivariate analysis might be compromised. The phenomenon partially explains that only 
three factors, including age, BMI, and ischemia time, were considered statistically significant for flap 
failure using the multivariate analysis.
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Table 1 Patient characteristics

Variables Training set Test set P value

Patient population, n 473 473

Age (yr) 41 (13-64) 43 (15-65) 0.115

Male, n (%) 274 (57.9) 278 (58.8) 0.258

BMI (kg/m2) 25.3(16.9-32.8) 25.9 (16.7-35.5) 0.079

Systolic blood pressure 119 (87-165) 121(85-177) 0.658

Smoking, n (%) 142 (30.0) 145 (30.7) 0.583

Alcohol, n (%) 163 (34.5) 172 (36.4) 0.158

Diabetes, n (%) 34 (7.2) 26 (5.5) 0.098

Insulin, n (%) 8 (1.7) 4 (0.8) 0.059

Hypertension, n (%) 73 (15.4) 80 (16.9) 0.113

Preoperative chemotherapy, n (%) 117 (24.7) 122 (25.8) 0.358

Preoperative radiotherapy, n (%) 100 (21.1) 82 (17.3) 0.663

Obesity, n (%) 112 (23.7) 109 (23.0) 0.487

WBC (× 103/µL) 7.5 (3.2-14.3) 7.2 (3.1-15.9) 0.226

Hemoglobin (mg/dL) 12.6 (9.8-16.6) 12.9 (10.1-16.9) 0.460

PLT (× 103/µL) 156 (102-253) 165 (113-267) 0.115

Creatinine (mg/dL) 0.89 (0.69-1.20) 0.83 (0.65-1.15) 0.328

Glucose (mg/dL) 10.5(5.1-16.5) 11.3 (4.4-18.8) 0.085

Cholesterol (mg/dL) 159.2 (137.3-195.3) 144.0 (127.4-199.8) 0.075

Beta blockers, n (%) 51 (10.8) 55 (11.6) 0.165

Aspirin, n (%) 43 (9.1) 47 (9.9) 0.392

Flap ischemia time (min) 123 (108-145) 117 (101-153) 0.558

Hypotensive events, n (%) 11 (2.3) 15 (3.2) 0.663

BMI: Body mass index; PLT: Platelet; WBC: White blood cell.

Table 2 The model performance of the machine learning classifiers for predicting flap failure

Accuracy Precision Recall F1 score AUC

Random forest 0.78 0.82 0.69 0.75 0.770

Support vector machine 0.71 0.79 0.58 0.67 0.720

Gradient boosting 0.68 0.76 0.53 0.65 0.707

AUC: Area under the curve.

Other research has widely explored the comparison between the traditional logistic regression and 
emerging machine learning for the data analysis. In 2018, Lee et al[15] published a study for predicting 
acute kidney injury after liver transplantation. Their research indicated that the AUC score of the 
prediction model based on machine learning could reach up to 0.90, while that of the logistic regression 
model was only 0.61[15]. In 2020, Arkin et al[28] analyzed 30-d survival prediction of cancer patients by 
comparing the machine learning and logistic regression to understand the better statistical methods for 
the relatively accurate prediction of survival. Their results showed that the machine learning-based 
artificial neural network yielded a higher AUC score of 0.86 than the AUC score of 0.76 in the logistic 
regression model[28]. Considering the abovementioned pitfall of event-to-variable ratio, several 
techniques, such as GridSearch, 5-fold cross-validation, and oversampling to avoid potential overfitting 
defects were used in the current study. We found the adopted machine learning models achieved the 
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Table 3 Multivariate logistic regression model for top 10 variables in random forest

Variables Odds ratio (95%CI) P value

Age 1.56 (0.57-5.87) 0.04

Body mass index 2.83 (0.68-5.54) 0.02

Ischemia time 1.98 (0.53-3.24) 0.001

Smoking 1.13 (0.28-2.89) 0.87

Diabetes 1.15 (0.53-3.28) 0.06

Experience 0.86 (0.18-4.87) 0.79

Prior chemotherapy 1.15 (0.56-2.68) 0.07

Hypertension 1.08 (0.25-2.64) 0.28

Insulin 1.27 (0.64-3.21) 0.54

Obesity 1.09 (0.57-2.95) 0.13

CI: Confidence interval.

Figure 1 Receiver operating characteristic curve of the machine learning models in the testing set. AUC: Area under the curve; CI: Confidence 
interval.

highest AUC score of 0.772 in the random forest classifier, as to the interesting outcome of flap failure. 
The effectiveness of our machine learning model was similar to that of the predictive models 
demonstrated in other studies. Formeister et al[29] yielded a decision tree model that could correctly 
classify outcomes with an accuracy ranging from 65% to 75%. O’Neill et al[30] achieved an AUC of 0.95 
in the training set and 0.67 in the testing set for 2012 patients within microvascular breast 
reconstruction.

The potential risk factors involved in the development of flap failure and the contribution ranking in 
a random forest classifier is shown in Figure 2. These observations are suggestive that the occurrence of 
flap failure is a multifactor-driven event with the identified numerous factors. Reported preoperative 
risk factors included BMI, ischemia time, and limited surgical experience[31-33]. Specifically, it is widely 
accepted that there was an increase in the postoperative complications for the free flap transplantation 
in the obese patients[34]. At the same time, Chang et al[35] recommended that the microvascular tissue 
reconstruction should be performed with full discretion of patients with high BMI. Additionally, 
prolonged ischemia time of the free flap and subsequent ischemia-reperfusion injury can also increase 
the risk of postoperative complications and eventually flap failure[36].
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Figure 2 Ranked variable value of the random forest algorithm. The variables were ranked based on the average distance from the split branch to the 
tree root in the binary tree. The line length in the graph measures the variable importance in the random forest model. The top ten variables in the random forest 
model were age, body mass index, ischemia time, smoking, diabetes, experience, prior chemotherapy, hypertension, insulin, and obesity. BMI: Body mass index.

There were some limitations for our study. First, this was a single-center retrospective study. Thus, 
although the model achieved high accuracy, relatively few factors and limited cases were included. 
Second, we did not perform the external validation of the samples from other institutions, so there 
might be differences that occur in the results obtained from other institutions and larger data sets. Third, 
we only developed one machine learning model of the random forest classifier, which may become 
more efficient if we would have used more algorithms during the data analysis. Finally, although we 
showed the importance of ranking variables in the random forest models, the black-box effect of the 
predictive models and the analytical decision on the samples remain ambiguous.

CONCLUSION
In our study, the random forest machine learning technique predicted the flap failure in patients 
following the microvascular tissue reconstruction for head and neck, breast, and extremities. We also 
identified the relevant risk factors of the outcome and further analysis in the traditional multivariate 
logistic regression. The findings of our study will help plastic surgeons to identify the potential risk 
factors associated with the flap failure and in screening high-risk events. These observations will 
eventually assist the clinician in decision-making by understanding the underlying pathologic 
mechanisms of the disease and improving the long-term outcome of the patients. Future multicentric 
research is required to develop an AI-based, big-data-driven clinical decision support system with a 
larger sample size.

ARTICLE HIGHLIGHTS
Research background
Microvascular tissue reconstruction is a well-established technique used for the wide variety of tissue 
defects. However, still a risk of experiencing flap failure exist that eventually results in additional 
hospital stays, financial burden, and mental stress of the patients.

Research motivation
The application of the machine learning technique in flap failure events remains an underestimated 
area.
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Research objectives
The objective of the current study was to develop machine learning-based predictive models for the flap 
failure to identify potential factors and screening the high-risk patients.

Research methods
To establish machine learning classifiers, we used a data set with 945 consecutive patients who 
underwent microvascular tissue reconstruction. Model performances were evaluated by the indicators 
including area under the receiver operating characteristic curve, accuracy, precision, recall, and F1 score. 
A multivariable regression analysis was also performed for the essential variables in the random forest 
model.

Research results
The flap failure event occurred in 152 patients (1.9%) after the operation. The random forest classifier 
based on various preoperative and intraoperative variables performed the best, with an area under the 
curve score of 0.770 in the test set. The top variables in the random forest were age, body mass index, 
ischemia time, smoking, diabetes, experience, prior chemotherapy, hypertension, insulin, and obesity.

Research conclusions
Machine learning models were successfully developed for identifying the potential factors and 
screening out the high-risk patients for the interesting outcome of flap failure.

Research perspectives
In our study, the machine learning technique correctly predicted flap failure in the patients who 
followed microvascular tissue reconstruction. Results from our research will help the clinician in 
decision-making by better understanding the underlying pathologic mechanisms of the disease and 
improving the long-term outcome of patients.
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