World Journal of *Clinical Cases*

World J Clin Cases 2022 December 6; 10(34): 12462-12803

Published by Baishideng Publishing Group Inc

W J C C World Journal of Clinical Cases

Contents

Thrice Monthly Volume 10 Number 34 December 6, 2022

FIELD OF VISION

12462 Problematics of neurosurgical service during the COVID-19 pandemic in Slovenia Munda M, Bosnjak R, Velnar T

MINIREVIEWS

- 12470 Circulating angiotensin converting enzyme 2 and COVID-19 Leowattana W, Leowattana T, Leowattana P
- 12484 Evaluation of gut dysbiosis using serum and fecal bile acid profiles Monma T, Iwamoto J, Ueda H, Tamamushi M, Kakizaki F, Konishi N, Yara S, Miyazaki T, Hirayama T, Ikegami T, Honda A
- 12494 Pediatric kidney transplantation during the COVID-19 pandemic Tamura H

ORIGINAL ARTICLE

Clinical and Translational Research

12500 Coptis, Pinellia, and Scutellaria as a promising new drug combination for treatment of Helicobacter pylori infection

Yu Z, Sheng WD, Yin X, Bin Y

Case Control Study

12515 Effects of illness perception on negative emotions and fatigue in chronic rheumatic diseases: Rumination as a possible mediator

Lu Y, Jin X, Feng LW, Tang C, Neo M, Ho RC

Retrospective Study

12532 Significance of incidental focal fluorine-18 fluorodeoxyglucose uptake in colon/rectum, thyroid, and prostate: With a brief literature review

Lee H, Hwang KH

12543 Follow-up study on ThinPrep cytology test-positive patients in tropical regions

Chen YC, Liang CN, Wang XF, Wang MF, Huang XN, Hu JD

- 12551 Effect of teach-back health education combined with structured psychological nursing on adverse emotion and patient cooperation during 99mTc-3PRGD2.SPECT/CT Gong WN, Zhang YH, Niu J, Li XB
- Nosocomial infection and spread of SARS-CoV-2 infection among hospital staff, patients and caregivers 12559 Cheng CC, Fann LY, Chou YC, Liu CC, Hu HY, Chu D

World Journal of Clinical Cases

Contents

Thrice Monthly Volume 10 Number 34 December 6, 2022

Observational Study

- 12566 Effectiveness and safety of generic and brand direct acting antivirals for treatment of chronic hepatitis C Abdulla M, Al Ghareeb AM, Husain HAHY, Mohammed N, Al Qamish J
- 12578 Influence of group B streptococcus and vaginal cleanliness on the vaginal microbiome of pregnant women Liao Q, Zhang XF, Mi X, Jin F, Sun HM, Wang QX

Randomized Controlled Trial

12587 Clinical study on tri-tongue acupuncture combined with low-frequency electrical stimulation for treating post-stroke dysarthria

Man B, Li WW, Xu JF, Wang Q

META-ANALYSIS

12594 Three-dimensional time-of-flight magnetic resonance angiography combined with high resolution T2weighted imaging in preoperative evaluation of microvascular decompression

Liang C, Yang L, Zhang BB, Guo SW, Li RC

CASE REPORT

- 12605 Acute cytomegalovirus hepatitis in an immunocompetent patient: A case report Wang JP, Lin BZ, Lin CL, Chen KY, Lin TJ
- 12610 Long-term results of extended Boari flap technique for management of complete ureteral avulsion: A case report

Zhong MZ, Huang WN, Huang GX, Zhang EP, Gan L

12617 Amyloid β -related angiitis of the central nervous system occurring after COVID-19 vaccination: A case report

Kizawa M, Iwasaki Y

12623 Pseudoileus caused by primary visceral myopathy in a Han Chinese patient with a rare MYH11 mutation: A case report

Li N, Song YM, Zhang XD, Zhao XS, He XY, Yu LF, Zou DW

12631 Emergent use of tube tip in pharynx technique in "cannot intubate cannot oxygenate" situation: A case report Lin TC, Lai YW, Wu SH

12637 Inflammatory myofibroblastic tumor of the central nervous system: A case report Su ZJ, Guo ZS, Wan HT, Hong XY

- 12648 Atypical aggressive vertebral hemangioma of the sacrum with postoperative recurrence: A case report Wang GX, Chen YQ, Wang Y, Gao CP
- 12654 Closed reduction of hip dislocation associated with ipsilateral lower extremity fractures: A case report and review of the literature Xu Y, Lv M, Yu SO, Liu GP

World Journal of Clinical Cases		
Contents Thrice Monthly Volume 10 Number 34 December 6, 2022		
12665	Repair of a large patellar cartilage defect using human umbilical cord blood-derived mesenchymal stem cells: A case report	
	Song JS, Hong KT, Song KJ, Kim SJ	
12671	Abdominal bronchogenic cyst: A rare case report	
	Li C, Zhang XW, Zhao CA, Liu M	
12678	Malignant fibrous histiocytoma of the axilla with breast cancer: A case report	
	Gao N, Yang AQ, Xu HR, Li L	
12684	Rapid hemostasis of the residual inguinal access sites during endovascular procedures: A case report	
	Kim H, Lee K, Cho S, Joh JH	
12690	Formation of granulation tissue on bilateral vocal cords after double-lumen endotracheal intubation: A case report	
	Xiong XJ, Wang L, Li T	
12696	Giant cellular leiomyoma in the broad ligament of the uterus: A case report	
	Yan J, Li Y, Long XY, Li DC, Li SJ	
12703	Pomolidomide for relapsed/refractory light chain amyloidosis after resistance to both bortezomib and daratumumab: A case report	
	Li X, Pan XH, Fang Q, Liang Y	
12711	Ureteral- artificial iliac artery fistula: A case report	
	Feng T, Zhao X, Zhu L, Chen W, Gao YL, Wei JL	
12717	How to manage isolated tension non-surgical pneumoperitonium during bronchoscopy? A case report	
	Baima YJ, Shi DD, Shi XY, Yang L, Zhang YT, Xiao BS, Wang HY, He HY	
12726	Amiodarone-induced muscle tremor in an elderly patient: A case report	
	Zhu XY, Tang XH, Yu H	
12734	Surgical treatment of Pitt-Hopkins syndrome associated with strabismus and early-onset myopia: Two case reports	
	Huang Y, Di Y, Zhang XX, Li XY, Fang WY, Qiao T	
12742	Massive low-grade myxoid liposarcoma of the floor of the mouth: A case report and review of literature	
	Kugimoto T, Yamagata Y, Ohsako T, Hirai H, Nishii N, Kayamori K, Ikeda T, Harada H	
12750	Gingival enlargement induced by cyclosporine in Medullary aplasia: A case report	
	Victory Rodríguez G, Ruiz Gutiérrez ADC, Gómez Sandoval JR, Lomelí Martínez SM	
12761	Compound heterozygous mutations in PMFBP1 cause acephalic spermatozoa syndrome: A case report	
	Deng TQ, Xie YL, Pu JB, Xuan J, Li XM	
12768	Colonic tubular duplication combined with congenital megacolon: A case report	
	Zhang ZM, Kong S, Gao XX, Jia XH, Zheng CN	

World Journal of Clinical Cases	
Thrice Monthly Volume 10 Number 34 December 6, 2022	
Perforated duodenal ulcer secondary to deferasirox use in a child successfully managed with laparoscopic drainage: A case report	
Alshehri A, Alsinan TA	
Complication after nipple-areolar complex tattooing performed by a non-medical person: A case report	
Byeon JY, Kim TH, Choi HJ	
Interventional urethral balloon dilatation before endoscopic visual internal urethrotomy for post-traumatic bulbous urethral stricture: A case report	
Ha JY, Lee MS	
Regression of gastric endoscopic submucosal dissection induced polypoid nodular scar after <i>Helicobacter pylori</i> eradication: A case report	
Jin BC, Ahn AR, Kim SH, Seo SY	
Congenital absence of the right coronary artery: A case report	
Zhu XY, Tang XH	

Contents

Thrice Monthly Volume 10 Number 34 December 6, 2022

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Giuseppe Lanza, MD, MSc, PhD, Associate Professor, Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy. glanza@oasi.en.it

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC's CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Si Zhao; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Clinical Cases	https://www.wignet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2307-8960 (online)	https://www.wignet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
April 16, 2013	https://www.wignet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Thrice Monthly	https://www.wignet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku	PUBLICATION MISCONDUCT https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2307-8960/editorialboard.htm	https://www.wignet.com/bpg/gerinfo/242
PUBLICATION DATE December 6, 2022	STEPS FOR SUBMITTING MANUSCRIPTS https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2022 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

W J C C World Journal of Clinical Cases

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2022 December 6; 10(34): 12578-12586

DOI: 10.12998/wjcc.v10.i34.12578

ISSN 2307-8960 (online)

ORIGINAL ARTICLE

Observational Study Influence of group B streptococcus and vaginal cleanliness on the vaginal microbiome of pregnant women

Qi Liao, Xiao-Fen Zhang, Xin Mi, Feng Jin, Hong-Min Sun, Qing-Xuan Wang

Specialty type: Microbiology

Provenance and peer review:

Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C, C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Colpaert C, Belgium; Dobrocky T, Switzerland

Received: August 1, 2022 Peer-review started: August 1, 2022 First decision: August 21, 2022 Revised: September 1, 2022 Accepted: November 14, 2022 Article in press: November 14, 2022 Published online: December 6, 2022

Qi Liao, Xin Mi, Hong-Min Sun, Qing-Xuan Wang, Department of Obstetrics and Gynecology, Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing 101300, China

Xiao-Fen Zhang, Feng Jin, Department of Genetics and Reproductive Medicine, Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing 101300, China

Corresponding author: Xin Mi, MD, Chief Physician, Doctor, Surgeon, Surgical Oncologist, Department of Obstetrics and Gynecology, Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, No. 1 Shunkang Road, Shunyi District, Beijing 101300, China. mxyzgzr@126.com

Abstract

BACKGROUND

The vaginal microbiome plays a critical role in the health of pregnant women and their newborns. Group B Streptococcus (GBS) and vaginal cleanliness significantly affect the vaginal microecosystem and are closely associated with vaginal diseases.

AIM

To explore the effects of GBS status and vaginal cleanliness on vaginal microecosystems.

METHODS

We collected 160 vaginal swabs from pregnant women and divided them into the following four groups based on GBS status and vaginal cleanliness: GBS-positive + vaginal cleanliness I-II degree, GBS-negative + vaginal cleanliness I-II degree, GBS-positive + vaginal cleanliness III-IV degree, and GBS-negative + vaginal cleanliness III-IV degree. Samples were subjected to 16S rRNA gene amplicon sequencing.

RESULTS

Alpha diversity analysis showed that the Shannon index did not significantly differ between the four groups. We identified significant variation in taxa abundance between the GBS-positive and GBS-negative groups and between the vaginal cleanliness I-II degree and III-IV degree groups. Principal coordinate analysis and non-metric multidimensional scaling analysis further confirmed the microbial diversity of the four groups. Moreover, the linear discriminant analysis demonstrated that Lactobacillus jensenii and Actinobacteria were strongly associated

WJCC https://www.wjgnet.com

with GBS-positive status, and *Lactobacillus iners*, *Lactobacillaceae*, *Lactobacillus*, *Lactobacillales*, *Bacilli* and *Firmicutes* were closely correlated with GBS-negative status.

CONCLUSION

GBS status and vaginal cleanliness significantly affect vaginal microbiome differences in pregnant women. Our findings provide instructional information for clinical antibiotic treatment in pregnant women with different GBS statuses and vaginal cleanliness degrees.

Key Words: Vaginal microbiome; Pregnant women; 16S rRNA gene amplicon sequencing; Group B *Streptococcus*; Vaginal cleanliness

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: To explore the correlation between Group B Streptococcus (GBS) status and vaginal cleanliness with the vaginal microbiome, we collected 160 vaginal swabs from pregnant women and the samples were subjected to 16S rRNA gene amplicon sequencing. We identified significant variation in taxa abundance between the GBS-positive and GBS-negative groups and between the vaginal cleanliness I–II degree and III–IV degree groups. Our findings provide new insights into understanding the vaginal microenvironment.

Citation: Liao Q, Zhang XF, Mi X, Jin F, Sun HM, Wang QX. Influence of group B *streptococcus* and vaginal cleanliness on the vaginal microbiome of pregnant women. *World J Clin Cases* 2022; 10(34): 12578-12586 URL: https://www.wjgnet.com/2307-8960/full/v10/i34/12578.htm DOI: https://dx.doi.org/10.12998/wjcc.v10.i34.12578

INTRODUCTION

The vagina is a complex and sensitive microecosystem controlled by the vaginal anatomy, endocrine regulation, microbial composition, and the local immune system[1]. In dynamic equilibrium, the vaginal microbiome species are mutually interdependent, antagonistic, and controlled by the local immune system, endocrine system, and internal environment[2]. Vaginal pH, estrogen levels, local immunity, *Lactobacillus* species, and vaginal cleanliness play essential roles in maintaining the microecological balance of the vagina[2]. The vaginal microbiome significantly affects vaginal homeostasis. Hence, understanding the vaginal microbiome is essential for vaginal health.

Group B *Streptococcus* (GBS) is a gram-positive bacterium that transiently and asymptomatically colonizes the vagina and gastrointestinal tracts of healthy women. Thus, it is the principal reason for invasive bacterial disorders in newborns and lethal diseases in infants[3]. Globally, more than three million annual neonatal deaths are caused by GBS infections[4]. The features of GBS have been primarily studied in 4025 women, and a significantly low likelihood of detecting coagulase-negative *Lactobacillus, Prevotella*, and *Staphylococcus* has been observed in GBS-positive patients[5,6]. Vaginal cleanliness significantly affects vaginal health. However, the correlation between GBS status and vaginal cleanliness with the vaginal microbiome is still elusive.

In this study, we aimed to investigate the effects of GBS status and vaginal cleanliness on the vaginal microbiome of pregnant women. We successfully identified a novel landscape in which GBS status and vaginal cleanliness significantly affected vaginal microbiome differences in pregnant women.

MATERIALS AND METHODS

Sample collection and study design

A total of 160 vaginal swab samples from pregnant women were collected at our hospital between June 2018 and January 2019. The samples were divided based on GBS status and vaginal cleanliness into the following four groups: GBS-positive + vaginal cleanliness I-II degree (group A, n = 24), GBS-negative + vaginal cleanliness I-II degree (group B, n = 53), GBS-positive + vaginal cleanliness III-IV degree (group C, n = 35), and GBS-negative + vaginal cleanliness III-IV degree (group D, n = 48). Samples were acquired from the patients and healthy participants after obtaining written informed consent. This study was approved by the Ethics Committee of the Shunyi Women and Children's Hospital of Beijing Children's Hospital.

WJCC https://www.wjgnet.com

16S rRNA gene amplicon sequencing

DNA samples were obtained from vaginal swabs using a DNA isolation kit (Omega, USA). DNA was quantified using NanoDrop ND-2000 (Thermo Fisher Scientific, USA). The V1-V2 hypervariable regions were also measured. Two standard bacterial 16S rRNA amplicon polymerase chain reaction (PCR) primers were used. A QIAquick PCR Purification Kit (Qiagen, USA) was used to purify the amplicons, followed by quantification using NanoDrop ND-2000 (Thermo Fisher Scientific, USA). Further, 16S rRNA sequencing was performed using HiSeq 2500 (Illumina, USA).

16S rRNA gene amplicon processing

The 16S rRNA sequencing datasets were filtered and merged using the FLASH method [7]. Sequencing was performed using Quantitative Insights into Microbial Ecology (QIIME, version 1.9.1) software (http://qiime.org/)[8]. Chimeric sequences were deleted applying usearch61 using *de novo* methods[9]. Sequencing was clustered on the 2013 Greengenes (13_8 release) ribosomal database 97% reference dataset (http://greengenes.secondgenome.com/?prefix=downloads/greengenes_database/). Taxonomy was assigned to all operational taxonomic units (OTUs) using the RDP classifier within the QIIME and Greengenes reference datasets[10].

Statistical analyses

Data are presented as mean ± standard deviation. The Wilcoxon rank-sum test was used to evaluate alpha diversity. Analysis of similarities (ANOSIM) of beta diversity matrices was performed to analyze significant differences in microbial communities using QIIME. The microbial biomarkers were analyzed using linear discriminant analysis effect size with the web-based Galaxy interface (http://huttenhower.sph.harvard.edu/galaxy)[11]. The threshold value of > 3 was applied to analyze the discriminative characteristics for the linear discriminant analysis (LDA) score.

RESULTS

Alpha diversity analysis

The effect of GBS status and vaginal cleanliness on the vaginal microbiome was determined using 16S rRNA gene amplicon sequencing. Significantly, the rarefaction curve of the observed species revealed that the depth of 16S rRNA gene amplicon sequencing satisfactorily demonstrated sequencing diversity among the four groups (Figure 1A). In addition, alpha diversity analysis revealed that the Shannon index failed to exhibit significant differences among the four groups (Figure 1B, Wilcoxon rank-sum test, *P* > 0.05).

Comparison of relative taxa abundance

We then compared the taxa abundance and identified the top ten significant taxa at the phylum, genus, and species levels. At the phylum level, the abundance of Firmicutes, Actinobacteria, Bacteroidetes, Fusobacteria, Tenericutes, Proteobacteria, Acidobacteria, Planctomycetes, Chloroflexi, and some unidentified bacteria differed between the GBS-positive and GBS-negative groups, as well as between the vaginal cleanliness I-II and III-IV degree groups (Figure 2A). At the genus level, the abundance of Lactobacillus, Gardnerella, Bifidobacterium, Megasphaera, Prevotella, Atopobium, Aerococcus, Sneathia, Ureaplasma, and Dialister were different between the GBS-positive and GBS-negative groups and between the vaginal cleanliness degrees I-II and III-IV (Figure 2B). At the species level, the abundance of Lactobacillus iners, Lactobacillus jensenii, Prevotella amnii, Lactobacillus delbrueckii, Atopobium vaginae, Prevotella timonensis, Aerococcus christensenii, Lactobacillus mucosae, Lactobacillus reuteri, and Sneathia amnii were different between the GBS-positive and GBS-negative groups and between the vaginal cleanliness I-II and III-IV degree groups (Figure 2C).

Principal coordinates analysis and non-metric multidimensional scaling analysis

We further explored the microbiome differences between the GBS-positive and GBS-negative groups and between the vaginal cleanliness degrees groups I-II and III-IV using beta diversity analyses, including principal coordinates analysis (PCoA) and non-metric multidimensional scaling (NMDS). The PCoA (Figure 3A), unweighted Unifrac Distance, ANOSIM), NMDS analysis (Figure 3B), and unweighted Unifrac Beta analysis showed significant difference between group A and B, C and D, A and C, and B and D, respectively (Figure 3C).

Specific taxa analysis

Additionally, we investigated the association of specific taxa with GBS status and vaginal cleanliness based on LDA. Significantly, we observed several specific taxa between the GBS-positive and GBSnegative groups based on groups A and B and groups C and D (Figure 4). Lactobacillus jensenii and Actinobacteria were closely correlated with GBS-positive status. Lactobacillus iners, Lactobacillaceae, Lactobacillus, Lactobacillales, Bacilli, Firmicutes, and Bacteria were strongly associated with GBS-negative

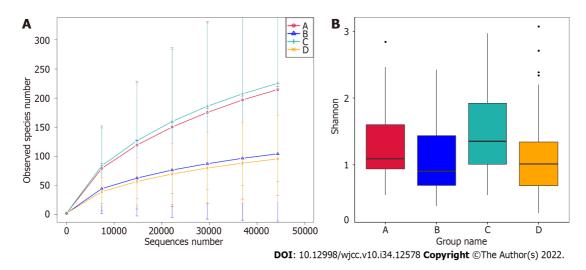


Figure 1 Alpha diversity analysis. A: Rarefaction curves of observed species of the four groups in the 16S rRNA gene amplicon sequencing are shown; B: The Shannon index was assessed using alpha diversity analysis of the four groups in the 16S rRNA gene amplicon sequencing, Wilcoxon rank-sum test, *P* > 0.05.

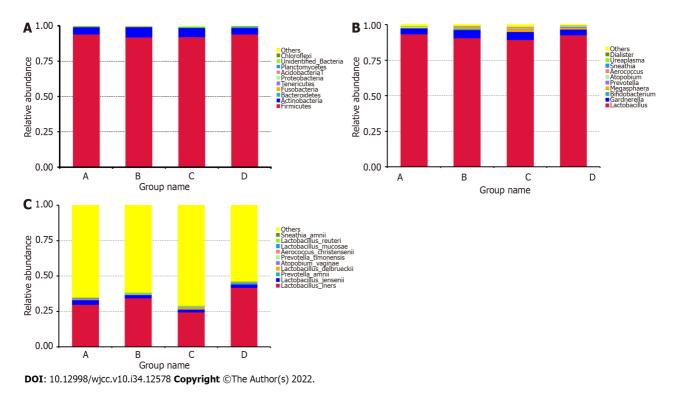
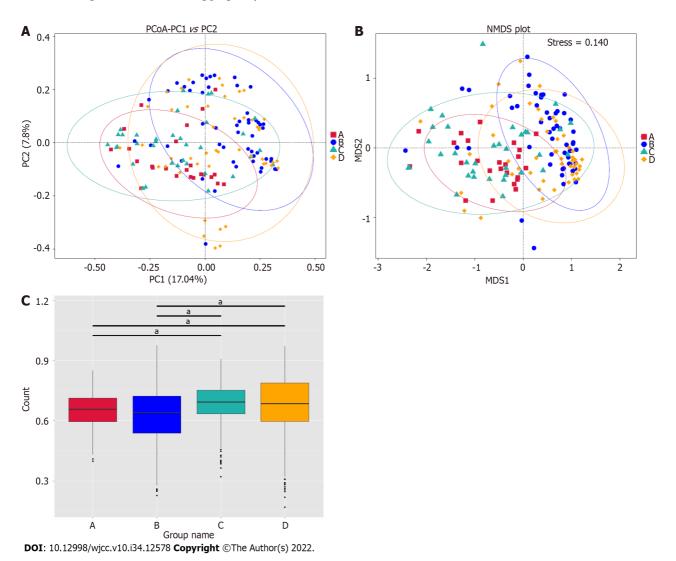


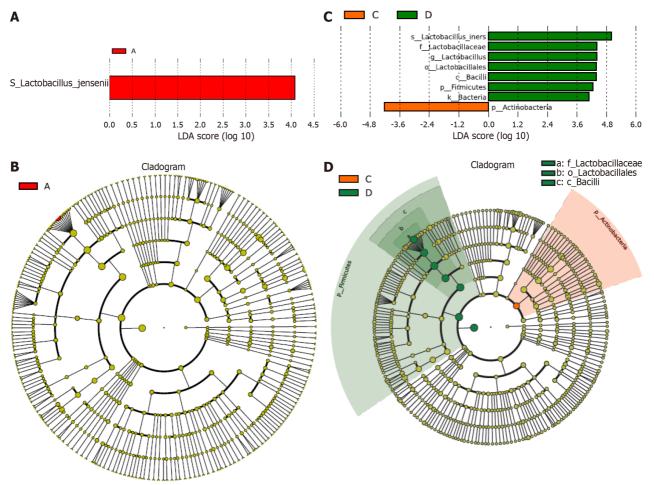
Figure 2 Comparison of relative taxa abundance. A-C: The taxa abundance was compared among the four groups at the phylum (A), genus (B), and species (C) levels.

status.

DISCUSSION

Diseases associated with vaginal infections cause significant burden to society[12]. Clinical data plus microbiome may be a good model to predict the personalized health status[13]. The vaginal microbiome plays an essential role in women's reproductive health, and GBS status and vaginal cleanliness are crucial in maintaining the vaginal microbiome remains unclear. In this study, we demonstrated the influence of GBS status and vaginal cleanliness on the vaginal cleanliness on the vaginal microbiome remains unclear. In this study, we demonstrated the influence of GBS status and vaginal cleanliness on the vaginal microbiome of 160 vaginal swab samples using 16S rRNA gene amplicon sequencing.




Figure 3 Principal coordinates analysis and non-metric multidimensional scaling analysis. A: The Principal coordinates analysis based on the unweighted UniFrac distance is shown. Red, blue, green, and orange represent groups A, B, C, and D, respectively. The distance of the points represents comparability; B: The non-metric multidimensional scaling analysis based on the microbial clusters is shown. Red, blue, green, and orange represent groups A, B, C, and D, respectively. The distance of the points represents comparability; C: Unweighted Unifrac Beta analysis based on microbial clusters was shown. Red represented group A, blue represented group B, green represented group C, and orange represented group D. ^aP < 0.01.

Several 16S rRNA gene amplicon sequencing studies have characterized the vaginal microbiome, including the relationship between the vaginal microbiome and polycystic ovary syndrome[16]. Two 16S rRNA gene investigations have also reported the role of the vaginal microbiome in reproductiveaged women and preterm newborns[17,18]. Another 16S rRNA gene amplicon sequencing identified the vagina-uterine microbiome features and showed that elucidating the vaginal microbiome may help detect prevalent diseases in the upper reproductive tract^[19]. Although both GBS and vaginal cleanliness are critical factors for the vaginal microbiome of pregnant women, the combined analysis of GBS and vaginal cleanliness using 16S rRNA gene amplicon sequencing remains limited. Here, we focused on the correlation of GBS status and vaginal cleanliness with the vaginal microbiome. Our data showed no alpha diversity between the GBS-positive and GBS-negative groups and between the vaginal cleanliness I-II degree and III-IV degree groups. However, the PCoA and NMDS analysis showed significant microbiome differences between the GBS-positive and GBS-negative groups and between the vaginal cleanliness I-II degree and III-IV degree groups, respectively. These data suggest that GBS status and vaginal cleanliness degree can affect the vaginal microbiome, providing new evidence of the association between GBS status and vaginal cleanliness in the vaginal microenvironment. Moreover, our study provides an example of a comprehensive combined analysis of the GBS status and vaginal cleanliness in pregnant women.

Numerous studies have shown that the dominance of a single OTU mainly characterizes the normal vaginal microbiome, most closely related to Lactobacillus species [20-22]. The Lactobacillus species repress pathogenic microorganisms by maintaining an acidic vaginal pH[23,24]. Lactobacillus dominates the healthiest vaginal microbiota, and Prevotella, generally identified in the vagina, is associated with bacterial vaginosis and has been correlated with GBS-positive status[25-28]. Megasphaera is also

WJCC | https://www.wjgnet.com

DOI: 10.12998/wjcc.v10.i34.12578 Copyright ©The Author(s) 2022.

Figure 4 Specific taxa analysis. A-D: The correlation of specific taxa with GBS status was analyzed using linear discriminant analysis (LDA). The LDA biomarkers and trees are shown.

> associated with a GBS-positive status, which is closely related to bacterial vaginosis[25-27,29]. Nevertheless, investigation of the correlation between vaginal cleanliness and the vaginal microbiome is remarkably limited. In this study, we identified that Lactobacillus iners, Lactobacillus jensenii, Prevotella amnii, Lactobacillus delbrueckii, Atopobium vaginae, Prevotella timonensis, Aerococcus christensenii, Lactobacillus mucosae, Lactobacillus reuteri, and Sneathia amnii differed between the GBS-positive and GBSnegative groups, and between the vaginal cleanliness I-II and III-IV degree groups at the species level. Moreover, we found that Lactobacillus jensenii and Actinobacteria were strongly correlated with GBSpositive status, and Lactobacillus iners, Lactobacillaceae, Lactobacillus, Lactobacillales, Bacilli, Firmicutes, and Bacteria were strongly associated with the GBS-negative status. In Pace et al study, they assessed positive GBS clinical cultivation, and found a limited number of differentially abundant taxa, including an increased enrichment of Ureaplasma urealyticum, Corynebacterium glucuronolyticum, Propionibacterium acnes, and Haemophilus haemolyticus[30]. These data indicated a correlation between GBS status and vaginal cleanliness in the vaginal microenvironment. Importantly, we present a landscape of the specific vaginal microbiome, such as Lactobacillus iners, Prevotella timonensis, and Sneathia amnii, associated with the GBS status and vaginal cleanliness, and demonstrate the precise vaginal microbiome associated with GBS-positive or -negative status, providing instructional information for clinical antibiotic treatment of pregnant women with different GBS status and vaginal cleanliness degrees.

CONCLUSION

In summary, we discovered that GBS status and vaginal cleanliness significantly affect vaginal microbiota differences in pregnant women. We identified several specific vaginal microbiomes, including Lactobacillus iners, Prevotella timonensis, and Sneathia amnii, in patients with varying GBS statuses. We also found that Lactobacillus jensenii and Actinobacteria were particularly associated with GBS-positive status, and Lactobacillus iners, Lactobacillaceae, Lactobacillus, Lactobacillales, Bacilli, Firmicutes, and Bacteria strongly correlated with GBS-negative status. Our findings provide new insights into

understanding the vaginal microenvironment, presenting a landscape of the association of GBS status and vaginal cleanliness with the vaginal microbiome of pregnant women. Our results provide instructional information for clinical antibiotic treatment in pregnant women with different GBS statuses and vaginal cleanliness degrees.

ARTICLE HIGHLIGHTS

Research background

The vaginal microbiome significantly affects vaginal homeostasis. Hence, understanding the vaginal microbiome is essential for vaginal health. Group B Streptococcus (GBS) is a gram-positive bacterium that transiently and asymptomatically colonizes the vagina and gastrointestinal tracts of healthy women. However, the correlation between GBS status and vaginal cleanliness with the vaginal microbiome is still elusive.

Research motivation

This study explored the effects of GBS status and vaginal cleanliness on vaginal microecosystems. This study would provide instructional information for clinical antibiotic treatment in pregnant women with different GBS statuses and vaginal cleanliness degrees.

Research objectives

We aimed to investigate the effects of GBS status and vaginal cleanliness on the vaginal microbiome of pregnant women.

Research methods

We collected 160 vaginal swabs from pregnant women and divided them into the following four groups based on GBS status and vaginal cleanliness: GBS-positive + vaginal cleanliness I-II degree, GBSnegative + vaginal cleanliness I-II degree, GBS-positive + vaginal cleanliness III-IV degree, and GBSnegative + vaginal cleanliness III-IV degree. Samples were subjected to 16S rRNA gene amplicon sequencing.

Research results

Alpha diversity analysis showed that the Shannon index did not significantly differ between the four groups. We identified significant variation in taxa abundance between the GBS-positive and GBSnegative groups and between the vaginal cleanliness I-II degree and III-IV degree groups. Principal coordinate analysis and non-metric multidimensional scaling analysis further confirmed the microbial diversity of the four groups. Moreover, the linear discriminant analysis demonstrated that Lactobacillus jensenii and Actinobacteria were strongly associated with GBS-positive status, and Lactobacillus iners, Lactobacillaceae, Lactobacillus, Lactobacillales, Bacilli and Firmicutes were closely correlated with GBSnegative status.

Research conclusions

We identified several specific vaginal microbiomes, including Lactobacillus iners, Prevotella timonensis, and Sneathia amnii, in patients with varying GBS statuses. We also found that Lactobacillus jensenii and Actinobacteria were particularly associated with GBS-positive status, and Lactobacillus iners, Lactobacillaceae, Lactobacillus, Lactobacillales, Bacilli, Firmicutes, and Bacteria strongly correlated with GBS-negative status.

Research perspectives

Our findings provide new insights into understanding the vaginal microenvironment, presenting a landscape of the association of GBS status and vaginal cleanliness with the vaginal microbiome of pregnant women. Our results provide instructional information for clinical antibiotic treatment in pregnant women with different GBS statuses and vaginal cleanliness degrees.

FOOTNOTES

Author contributions: Liao Q wrote the manuscript; Mi X designed the research study; Zhang XF performed the research and analyzed the data; Jin F and Sun HM contributed new reagents and analytic tools; Liao Q and Wang QX contributed to revise the manuscript; and all authors have read and approve the final manuscript.

Institutional review board statement: The study was reviewed and approved by the Medical Ethics Committee Institutional Review Board (Approval No. 2021-01).

WJCC | https://www.wjgnet.com

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: None conflict of interest.

Data sharing statement: No additional data are available.

STROBE statement: The authors have read the STROBE Statement checklist of items, and the manuscript was prepared and revised according to the STROBE Statement checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Qi Liao 0000-0001-5923-5240; Xiao-Fen Zhang 0000-0002-5971-2569; Xin Mi 0000-0003-3669-2187; Feng Jin 0000-0002-3071-9003; Hong-Min Sun 0000-0001-6077-8840; Qing-Xuan Wang 0000-0003-1435-4304.

S-Editor: Wang JL L-Editor: A P-Editor: Zhao S

REFERENCES

- 1 Yu F, Tang YT, Hu ZQ, Lin XN. Analysis of the Vaginal Microecological Status and Genital Tract Infection Characteristics of 751 Pregnant Women. Med Sci Monit 2018; 24: 5338-5345 [PMID: 30065240 DOI: 10.12659/MSM.909051]
- 2 Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol 2012; 66: 371-389 [PMID: 22746335 DOI: 10.1146/annurev-micro-092611-150157]
- Korir ML, Manning SD, Davies HD. Intrinsic Maturational Neonatal Immune Deficiencies and Susceptibility to Group B 3 Streptococcus Infection. Clin Microbiol Rev 2017; 30: 973-989 [PMID: 28814408 DOI: 10.1128/CMR.00019-17]
- Rick AM, Aguilar A, Cortes R, Gordillo R, Melgar M, Samayoa-Reyes G, Frank DN, Asturias EJ. Group B Streptococci Colonization in Pregnant Guatemalan Women: Prevalence, Risk Factors, and Vaginal Microbiome. Open Forum Infect Dis 2017; 4: ofx020 [PMID: 28480290 DOI: 10.1093/ofid/ofx020]
- 5 Kubota T, Nojima M, Itoh S. Vaginal bacterial flora of pregnant women colonized with group B streptococcus. J Infect *Chemother* 2002; **8**: 326-330 [PMID: 12525892 DOI: 10.1007/s10156-002-0190-x]
- Altoparlak U, Kadanali A, Kadanali S. Genital flora in pregnancy and its association with group B streptococcal 6 colonization. Int J Gynaecol Obstet 2004; 87: 245-246 [PMID: 15548398 DOI: 10.1016/j.ijgo.2004.08.006]
- 7 Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011; 27: 2957-2963 [PMID: 21903629 DOI: 10.1093/bioinformatics/btr507]
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7: 335-336 [PMID: 20383131 DOI: 10.1038/nmeth.f.303]
- 9 Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26: 2460-2461 [PMID: 20709691 DOI: 10.1093/bioinformatics/btq461]
- 10 Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids *Res* 2009; **37**: D141-D145 [PMID: 19004872 DOI: 10.1093/nar/gkn879]
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery 11 and explanation. Genome Biol 2011; 12: R60 [PMID: 21702898 DOI: 10.1186/gb-2011-12-6-r60]
- 12 Ding W, Ma Y, Ma C, Malone DC, Ma A, Tang W, Si L. The Lifetime Cost Estimation of Human Papillomavirus-related Diseases in China: A Modeling Study. J Transl Int Med 2021; 9: 200-211 [PMID: 34900631 DOI: 10.2478/jtim-2021-0039]
- 13 Huang Q, Fang Q, Hu Z. A P4 Medicine Perspective of Gut Microbiota and Prediabetes: Systems Analysis and Personalized Intervention. J Transl Int Med 2020; 8: 119-130 [PMID: 33062587 DOI: 10.2478/jtim-2020-0020]
- Martín V, Cárdenas N, Ocaña S, Marín M, Arroyo R, Beltrán D, Badiola C, Fernández L, Rodríguez JM. Rectal and 14 Vaginal Eradication of Streptococcus agalactiae (GBS) in Pregnant Women by Using Lactobacillus salivarius CECT 9145, A Target-specific Probiotic Strain. Nutrients 2019; 11 [PMID: 30974819 DOI: 10.3390/nu11040810]
- Zheng N, Guo R, Yao Y, Jin M, Cheng Y, Ling Z. Lactobacillus iners Is Associated with Vaginal Dysbiosis in Healthy Pregnant Women: A Preliminary Study. Biomed Res Int 2019; 2019: 6079734 [PMID: 31781627 DOI: 10.1155/2019/6079734]

- 16 Hong X, Qin P, Huang K, Ding X, Ma J, Xuan Y, Zhu X, Peng D, Wang B. Association between polycystic ovary syndrome and the vaginal microbiome: A case-control study. Clin Endocrinol (Oxf) 2020; 93: 52-60 [PMID: 32311120 DOI: 10.1111/cen.14198]
- 17 Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA 2011; 108 Suppl 1: 4680-4687 [PMID: 20534435 DOI: 10.1073/pnas.1002611107]
- 18 Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, Huang B, Arodz TJ, Edupuganti L, Glascock AL, Xu J, Jimenez NR, Vivadelli SC, Fong SS, Sheth NU, Jean S, Lee V, Bokhari YA, Lara AM, Mistry SD, Duckworth RA 3rd, Bradley SP, Koparde VN, Orenda XV, Milton SH, Rozycki SK, Matveyev AV, Wright ML, Huzurbazar SV, Jackson EM, Smirnova E, Korlach J, Tsai YC, Dickinson MR, Brooks JL, Drake JI, Chaffin DO, Sexton AL, Gravett MG, Rubens CE, Wijesooriya NR, Hendricks-Muñoz KD, Jefferson KK, Strauss JF 3rd, Buck GA. The vaginal microbiome and preterm birth. Nat Med 2019; 25: 1012-1021 [PMID: 31142849 DOI: 10.1038/s41591-019-0450-2]
- Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, Li F, Yu X, Feng Q, Wang Z, Xie H, Chen X, Zeng C, Wen B, Zeng L, 19 Du H, Tang H, Xu C, Xia Y, Xia H, Yang H, Wang J, Madsen L, Brix S, Kristiansen K, Xu X, Li J, Wu R, Jia H. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 2017; 8: 875 [PMID: 29042534 DOI: 10.1038/s41467-017-00901-0]
- Ahmed A, Earl J, Retchless A, Hillier SL, Rabe LK, Cherpes TL, Powell E, Janto B, Eutsey R, Hiller NL, Boissy R, 20 Dahlgren ME, Hall BG, Costerton JW, Post JC, Hu FZ, Ehrlich GD. Comparative genomic analyses of 17 clinical isolates of Gardnerella vaginalis provide evidence of multiple genetically isolated clades consistent with subspeciation into genovars. J Bacteriol 2012; 194: 3922-3937 [PMID: 22609915 DOI: 10.1128/JB.00056-12]
- Albert AY, Chaban B, Wagner EC, Schellenberg JJ, Links MG, van Schalkwyk J, Reid G, Hemmingsen SM, Hill JE, 21 Money D; VOGUE Research Group. A Study of the Vaginal Microbiome in Healthy Canadian Women Utilizing cpn60-Based Molecular Profiling Reveals Distinct Gardnerella Subgroup Community State Types. PLoS One 2015; 10: e0135620 [PMID: 26266808 DOI: 10.1371/journal.pone.0135620]
- 22 Paramel Jayaprakash T, Schellenberg JJ, Hill JE. Resolution and characterization of distinct cpn60-based subgroups of Gardnerella vaginalis in the vaginal microbiota. PLoS One 2012; 7: e43009 [PMID: 22900080 DOI: 10.1371/journal.pone.0043009]
- 23 Rosen GH, Randis TM, Desai PV, Sapra KJ, Ma B, Gajer P, Humphrys MS, Ravel J, Gelber SE, Ratner AJ. Group B Streptococcus and the Vaginal Microbiota. J Infect Dis 2017; 216: 744-751 [PMID: 28934437 DOI: 10.1093/infdis/jix395]
- Bhandari P, Prabha V. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model. 24 Indian J Med Res 2015; 142: 79-84 [PMID: 26261170 DOI: 10.4103/0971-5916.162127]
- Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, Li L, Nelson KE, Xia Y, Xiang C. Molecular analysis of the diversity of 25 vaginal microbiota associated with bacterial vaginosis. BMC Genomics 2010; 11: 488 [PMID: 20819230 DOI: 10.1186/1471-2164-11-488
- Dols JA, Smit PW, Kort R, Reid G, Schuren FH, Tempelman H, Bontekoe TR, Korporaal H, Boon ME. Microarray-based 26 identification of clinically relevant vaginal bacteria in relation to bacterial vaginosis. Am J Obstet Gynecol 2011; 204: 305.e1-305.e7 [PMID: 21272848 DOI: 10.1016/j.ajog.2010.11.012]
- Datcu R. Characterization of the vaginal microflora in health and disease. Dan Med J 2014; 61: B4830 [PMID: 24814599] 27
- O'Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. 28 PLoS One 2013; 8: e80074 [PMID: 24223212 DOI: 10.1371/journal.pone.0080074]
- 29 Balkus JE, Srinivasan S, Anzala O, Kimani J, Andac C, Schwebke J, Fredricks DN, McClelland RS. Impact of Periodic Presumptive Treatment for Bacterial Vaginosis on the Vaginal Microbiome among Women Participating in the Preventing Vaginal Infections Trial. J Infect Dis 2017; 215: 723-731 [PMID: 28007924 DOI: 10.1093/infdis/jiw622]
- Pace RM, Chu DM, Prince AL, Ma J, Seferovic MD, Aagaard KM. Complex species and strain ecology of the vaginal 30 microbiome from pregnancy to postpartum and association with preterm birth. Med (N Y) 2021; 2: 1027-1049 [PMID: 34617072 DOI: 10.1016/j.medj.2021.06.001]

WJCC | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

