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Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease 
characterized by decreased bone mass, bone fragility, and recurrent fractures. The 
phenotypic spectrum varies considerably ranging from prenatal fractures with 
lethal outcomes to mild forms with few fractures and normal stature. The basic 
mechanism is a collagen-related defect, not only in synthesis but also in folding, 
processing, bone mineralization, or osteoblast function. In recent years, great 
progress has been made in identifying new genes and molecular mechanisms 
underlying OI. In this context, the classification of OI has been revised several 
times and different types are used. The Sillence classification, based on clinical 
and radiological characteristics, is currently used as a grading of clinical severity. 
Based on the metabolic pathway, the functional classification allows identifying 
regulatory elements and targeting specific therapeutic approaches. Genetic classi-
fication has the advantage of identifying the inheritance pattern, an essential 
element for genetic counseling and prophylaxis. Although genotype-phenotype 
correlations may sometimes be challenging, genetic diagnosis allows a person-
alized management strategy, accurate family planning, and pregnancy manage-
ment decisions including options for mode of delivery, or early antenatal OI 
treatment. Future research on molecular pathways and pathogenic variants 
involved could lead to the development of genotype-based therapeutic app-
roaches. This narrative review summarizes our current understanding of genes, 
molecular mechanisms involved in OI, classifications, and their utility in 
prophylaxis.

Key Words: Osteogenesis imperfecta; Heterogeneity; Classification; Molecular mecha-
nism; Genetic counseling; Prophylaxis
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Core Tip: Osteogenesis imperfecta (OI) is a genetically heterogeneous systemic collagenous disorder with 
high phenotypic variability. Recent discoveries of new genes and molecular mechanisms underlying the 
disease have led to revisions of classical classification. Identifying the causative gene and molecular 
mechanisms allows a personalized management strategy, accurate family planning, and pregnancy 
management decisions including options for mode of delivery, or early antenatal OI treatment.

Citation: Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for 
prophylaxis and genetic counseling. World J Clin Cases 2023; 11(12): 2604-2620
URL: https://www.wjgnet.com/2307-8960/full/v11/i12/2604.htm
DOI: https://dx.doi.org/10.12998/wjcc.v11.i12.2604

INTRODUCTION
Osteogenesis imperfecta (OI) is a rare monogenic disorder with an incidence estimated at about 1 per 
10000 individuals[1]. It is a genetically and clinically heterogeneous disease characterized by decreased 
bone mass and bone fragility. This generates susceptibility to fractures with minimal or no trauma, 
vertebral compressions, variable skeletal deformities, and growth deficiency. Bone tissue is charac-
terized by alterations of trabecular architecture, thin cortex, high bone turnover, and hypermineralized 
matrix. Patients with OI have a broad phenotypic spectrum ranging from prenatal fractures and pre and 
perinatal lethal outcome to mild forms with few fractures and normal stature. This phenotypic 
variability is only partially explained by the type of mutation or causative gene. Patients with the same 
pathogenic variant may present variable degrees of phenotype expression. The basic mechanism is a 
collagen-related defect, not only in structure or production, but also in folding, posttranslational 
processing, bone mineralization or osteoblast differentiation[2]. The disorder is a systemic collagen 
disorder and it also has extra-skeletal manifestations like blue-gray sclera, dentinogenesis imperfecta, 
conductive or sensory hearing loss, ligamentous laxity, muscle weakness, respiratory impairment, 
increased fragility of vessels, and cardiac valve abnormalities[1,3-5].

COLLAGEN SYNTHESIS
Collagen is a major component of the extracellular matrix, with essential roles in mechanical resistance 
and regulation of several signaling pathways. Type I collagen is a crucial skin, bone, tendons, lungs, 
heart, and blood vessels constituent. This collagen is a heterotrimer synthesized in a precursor form, 
procollagen, containing two proα1(I) and one proα2(I) chains. The procollagen has a rod-like central 
triple-helical domain with globular extensions at the N- and C- ends. The helical core contains repeating 
Gly-Xaa-Yaa tripeptides, where X is often proline and Y hydroxyproline. Type I procollagen synthesis is 
a complex process, involving numerous phases and many proteins necessary for post-translational 
modifications, folding, transport, and secretion. The proα1(I) and proα2(I) polypeptide chains, encoded 
by the COL1A1 and COL1A2 genes, are translated in the rough endoplasmic reticulum (ER). The post-
translational modifications include 4hydroxylation of most prolines in the Yaa position – essential for 
triple helical stability. The complex formed by P3H1 – CRTAP – PPIB and the FKBP10 protein have an 
important role in triple helix formation. Serpin H1 is involved in the stabilization of the triple helix and 
transport to the Golgi apparatus. The terminal procollagen extensions are cleaved by specific proteases: 
Disintegrin, metalloproteinase with thrombospondin motifs 2 (ADAMTS2) and bone morphogenetic 
protein 1 (BMP1). Three specific regions, relevant to the interaction of collagen with other collagen 
molecules or extracellular matrix proteins, were identified along the α1chain - major ligand-binding 
regions (MLBRs), which are very important for matrix quality[6-9]. Pathogenic variants in gene-
encoding key players in these processes lead to collagen defects and OI phenotype.

CLASSIFICATION
Lately, OI classification has been the subject of extensive debates and has been revised several times. In 
1979, Sillence proposed a classification based on clinical/radiological characteristics and mode of 
inheritance: OI type I - autosomal dominant (AD) with blue sclerae, OI type II - perinatal lethal form 
with radiographically broad, crumpled femora and beaded ribs, OI type III - progressively deforming, 

https://www.wjgnet.com/2307-8960/full/v11/i12/2604.htm
https://dx.doi.org/10.12998/wjcc.v11.i12.2604
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and OI type IV – dominant with normal sclerae[10] (Figure 1). This classification included only patients 
with defects in the primary structure of collagen. The discovery of pathogenic variants in new genes 
with clinical overlap with previous types has caused many debates. In 2014, Van Dijk and Sillence 
suggested the addition of OI type V – a form with calcification in the intraosseous membranes[11]. The 
revised nosology and classification of genetic skeletal disorders recognizes these five clinical types (but 
Arabic numerals are used), with subclasses based on inheritance patterns and genes involved[12]. Some 
types (e.g. 3 or 4) have many genes and different inheritance (dominant/ recessive) resulting in 
challenges for genetic counseling. An alternative functional classification based on the metabolic 
mechanism was also proposed: Group A - defects in collagen synthesis, structure, or processing, group 
B - defects in collagen modification, group C - collagen folding and cross-linking defects, group D - 
compromised bone mineralization, and group E - defects in osteoblast development with collagen 
insufficiency[8,13]. The Online Mendelian Inheritance in Man database uses a mixed-genetic classi-
fication, with types I–IV according to the Sillence classification and pathogenic variants in COL1A1 or 
COL1A2, and the new gene-classified type[1] (Table 1). The advantages of genetic classification are the 
identification of the inheritance pattern for counseling, prophylaxis, and the possibility of grouping for 
etiology-based therapies research.

GENES AND PROTEINS INVOLVED IN OI
COL1A1 and COL1A2
Over 85% of OI cases are associated with pathogenic variants in COL1A1 and COL1A2 genes, which lead 
to quantitative or qualitative alterations of collagen. These mutations generate OI types I - IV. 
Pathogenic variants (mostly nonsense mutations) lead to haploinsufficiency and reduce the amount of 
normal collagen, thus generating a milder phenotype. In contrast, pathogenic variants leading to 
structural collagen defects cause a more severe phenotype. The most common mutations are single-
nucleotide variants resulting in the substitution of a glycine residue. Substitutions in gene regions that 
encode branched-chain or charged amino acids interfere with triple helix folding and are associated 
with severe clinical consequences. Substitutions on the α1(I) chain have a more severe/Lethal outcome 
than those in α2(I). The nature of the substituting amino acid, the chain in which it is located, and its 
position along the chain influence the phenotype. Pathogenic variants in the 3' or 5' splice sites that 
produce exon skipping do not affect the Gly-Xaa-Yaa triplet pattern but may cause local looping out of 
chains[1,2]. Pathogenic variants in the C-terminal propeptide, which is cleaved from the mature 
collagen, impair chain association or delay the incorporation into the collagen trimer[14]. Deletions or 
duplications of the codons for one or two Gly-Xaa-Yaa triplets shift the chain alignment without 
interrupting the sequence and produce severe or lethal phenotypes[15]. Due to the direction of the 
zipper-like folding of the chains, pathogenic variants in the N-terminal region have minimal 
consequences, whereas those in the C-terminal region cause moderate to lethal outcomes. Substitutions 
in MLBR3 regions impair extracellular matrix organization and usually have lethal consequences. In the 
α2(I) chain, severe pathogenic variants are gathered in clusters that are correlated with the proteoglycan 
binding site on collagen fibrils[16-19] .

IFITM5
Interferon-induced transmembrane protein 5 (IFITM5), also known as bone-restricted IFITM-like, is a 
short transmembrane protein expressed specifically in osteoblasts and attached to the cell membrane by 
palmitoylation of cysteines 50 and 5, with a regulatory role in mineralization. IFITM5 plays a crucial role 
in the regulation of SERPINF1 expression and the resultant production of the protein pigment 
epithelium-derived factor (PEDF). Different pathogenic variants in IFITM5 gene lead to a distinct OI 
phenotype, named OI V. A heterozygous gain of (new) function variant in the 5' untranslated region (c.-
14C>T) is associated with a moderate type of OI with distinctive radiographic findings. This pathogenic 
variant creates a new start codon, resulting in the elongation of the cytoplasmic N- terminus of IFITM5 
protein by five amino acids and inducing increased bone formation[2,20,21]. The characteristic 
radiographic findings include hyperplastic callus formation, calcification of the interosseous membrane 
of the forearm, and hyperdense metaphyseal band. Some patients may present radial head dislocation. 
Histologic examination of bone under polarized light reveals a “mesh-like pattern” of irregularly 
arranged lamellar deposition[22]. Heterozygous missense variants lead to substitution of the serine at 
position 40 (c.119C>T and c.119C>G), impairment of the palmitoylation process, and are associated with 
a more severe phenotype. Patients present prenatal fractures or shortening/ bowing of long bones, a 
severe deforming course, and a fish-scale lamellar pattern at the bone examination under polarized 
light. Patients do not show radial head dislocation or signs from the radiographic triad. Lim et al[23] 
reported a case of gonadal mosaicism in the unaffected mother[24]. Bisphosphonates (BPs) are more 
effective in patients with c.119C>T variant than in cases with other variants[25].
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Table 1 Genes and proteins in osteogenesis imperfecta[1,2,8,13,17-19]

OI 
type OMIM Gene 

symbol Approved gene name Location Protein name Functional 
group

I 166200 COL1A1 Collagen type I alpha 1 chain 17q21.33 Collagen alpha-1(I) chain A

COL1A1 Collagen type I alpha 1 chain 17q21.33 Collagen alpha-1(I) chainII 166210

COL1A2 Collagen type I alpha 2 chain 7q21.3 Collagen alpha-2(I) chain

A

COL1A1 Collagen type I alpha 1 chain 17q21.33 Collagen alpha-1(I) chainIII 259420

COL1A2 Collagen type I alpha 2 chain 7q21.3 Collagen alpha-2(I) chain

A

COL1A1 Collagen type I alpha 1 chain 17q21.33 Collagen alpha-1(I) chainIV 166220

COL1A2 Collagen type I alpha 2 chain 7q21.3 Collagen alpha-2(I) chain

A

V 610967 IFITM5 Interferon induced transmembrane 
protein 5

11p15.5 Interferon-induced transmembrane protein 5 D

VI 613982 SERPINF1 Serpin family F member 1 17p13.3 Pigment epithelium-derived factor D

VII 610682 CRTAP Cartilage associated protein 3p22.3 Cartilage-associated protein B

VIII 610915 P3H1 Prolyl 3-hydroxylase 1 1p34.2 Prolyl 3-hydroxylase 1 B

IX 259440 PPIB Peptidylprolyl isomerase B 15q22.31 Peptidyl-prolyl cis-trans isomerase B B

X 613848 SERPINH1 Serpin family H member 1 11q13.5 Serpin H1 C

XI 610968 FKBP10 FKBP prolyl isomerase 10 17q21.2 Peptidyl-prolyl cis-trans isomerase FKBP10 C

XII 613849 SP7 Sp7 transcription factor 12q13.13 Transcription factor Sp7 E

XIII 614856 BMP1 Bone morphogenetic protein 1 8p21.3 Bone morphogenetic protein 1 A

XIV 615066 TMEM38B Transmembrane protein 38B 9q31.2 Trimeric intracellular cation channel type B B

XV 615220 WNT1 Wnt family member 1 12q13.12 Proto-oncogene Wnt-1 E

XVI 616229 CREB3L1 cAMP responsive element binding 
protein 3 like 1

11p11.2 Cyclic AMP-responsive element-binding 
protein 3-like protein 1

E

XVII 616507 SPARC Secreted protein acidic and cysteine rich 5q33.1 SPARC E

XVIII 617952 TENT5A Terminal nucleotidyltransferase 5A 6q14.1 Terminal nucleotidyltransferase 5A Unclassified

XIX 301014 MBTPS2 Membrane bound transcription factor 
peptidase, site 2

Xp22.12 Membrane-bound transcription factor site-2 
protease 

E

XX 618644 MESD Mesoderm development LRP chaperone 15q25.1 LRP chaperone MESD Unclassified

XXI 619131 KDELR2 KDEL ER protein retention receptor 2 7p22.1 ER lumen protein-retaining receptor 2 C

XXII 619795 CCDC134 Coiled-coil domain containing 134 22q13.2 Coiled-coil domain-containing protein 134 Unclassified

OI: Osteogenesis imperfecta; OMIM: Online Mendelian Inheritance in Man; ER: Endoplasmic reticulum; LRP: Lipoprotein receptor-related protein.

SERPINF1
PEDF, encoded by SERPINF1 gene, is a ubiquitously expressed protein, with anti-angiogenic, anti-
tumorigenic, and anti-metastatic properties. The binding of PEDF to type I collagen is essential for anti-
angiogenic properties. PEDF induces the expression of osteoprotegerin which interacts with the receptor 
activator of nuclear factor-κβ ligand (RANKL) pathway and regulates the activity of osteoclasts. Kang et 
al[26] suggest that antagonism between PEDF and TGF-β pathways controls osteogenesis and bone 
vascularization[8,27]. Patients with biallelic pathogenic variants in SERPINF1 have postnatal fractures, 
progressive skeletal deformity, vertebral compressions, and a fish-scale pattern at bone examination 
under polarized light (similar to patients with loss of function mutation in IFITM5). These mutations 
produce OI type VI. The RANKL-antibody is a potential therapeutic agent for this form of OI[1,4,28].

CRTAP, P3H1 and PPIB
Cartilage-associated protein (CRTAP) forms a complex with prolyl-3-hydroxylase 1 (P3H1) and 
peptidyl-prolyl-cis-transisomerase B (PPIB). This complex is involved in 3-hydroxylation of specific 
proline residues. Chang et al[29] showed that CRTAP and P3H1 are mutually stabilized in the collagen 
prolyl 3-hydroxylation complex. Biallelic pathogenic variants in CRTAP or P3H1 genes lead to a marked 
decrease in proline hydroxylation and subsequently to a delay in collagen folding and are associated 
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Figure 1 Clinical osteogenesis imperfecta classification (severity). OI type I – mild form with blue sclerae, hearing loss; OI type IV – mild to moderate 
form with normal sclerae; OI type III - progressively deforming; OI type II – extremely severe form, lethal perinatal outcome with radiographically broad, crumpled 
femora and beaded ribs (Created with BioRender.com). OI: Osteogenesis imperfecta.

with a severe/lethal form of OI. Patients have neonatal fractures, rhizomelia, and undertubulation of 
the long bones[4,13,30-31]. Biallelic pathogenic variants in PPIB gene are associated with a low 
percentage of 3-hydroxylated proline at position 986, but higher than in CRTAP or P3H1 genes 
mutations. The phenotype overlaps with that caused by CRTAP or P3H1 genes mutation, with the 
exception of rhizomelia[32,33]. CRTAP genes mutations determine OI type VII, P3H1 genes mutations 
determine OI type VIII, while PPIB genes mutations determine OI type IX.

SERPINH1
Serpin H1 is a collagen-specific chaperone, that localizes in the ER and is encoded by SERPINH1 gene. 
Serpin H1 binds to arginine-rich sequences of triple helical collagen and stabilizes it by preventing 
unfolding and aggregate formation. Also, serpin H1 participates in the shuttling of correctly folded 
collagen into the Golgi apparatus. Homozygous or compound heterozygous pathogenic variants in 
SERPINH1 gene lead to misfolding, intracellular aggregation, and delayed collagen secretion and are 
associated with a moderate to severe form of OI – OI type X[34-36].

FKBP10
Serpin H1 interacts with peptidyl-prolyl cis-trans isomerase FKBP10, another collagen chaperone, which 
provides mutual stability and allows for a synergistic effect during collagen folding. FKBP10 is also 
required for the activity of lysyl hydroxylase 2 (LH2, encoded by PLOD2 gene). Hydroxylation of the 
collagen telopeptide lysyl residues is essential in cross-linking. Recessive pathogenic variants in FKBP10 
gene are associated with a wide clinical spectrum which includes a progressive deforming form of OI 
(OI type XI), Bruck syndrome, and Kuskokwim syndrome. Bruck syndrome is characterized by 
congenital contractures with pterygia, early onset of fractures, short stature, limb deformity, and 
progressive scoliosis. Bruck syndrome 2 presents a similar phenotype, but it is generated by a biallelic 
pathogenic variant in PLOD2 gene. Kuskokwim syndrome is a congenital contracture disorder with 
mild skeletal anomalies, occurring in Yup’ik Eskimos in Alaska. Bisphosphonate therapy reduces the 
fracture rate and pain but has no effect on joint abnormalities[4,37-39].

SP7
SP7 gene encodes transcription factor SP7, a key regulator of osteoblast differentiation and subsequently 
of osteocyte formation. Recessive pathogenic variants in SP7 are associated with increased bone 
porosity, recurrent fractures, skeletal deformities, delayed teeth eruption and hearing loss. This 
particular phenotype is characteristic to OI type XII. Recently, heterozygous (dominant) missense 
variants affecting a highly conserved zinc finger domain have been reported in cases with bone fragility, 
high bone turnover, and patchy sclerosis[40-43].

BMP1
The major function of bone morphogenetic protein 1 (BMP1) involves procollagen I C-terminal 
propeptide processing, crucial for fibril formation. Other roles are activation of lysyl oxidases (involved 
in cross-linking), processing of small leucine-rich proteoglycans (e.g. decorin - important for collagen 
fibrillogenesis) and dentin matrix protein 1 involved in bone mineralization, and activation of TGFβ1, a 
key signaling molecule for bone remodeling. Patients with homozygous or compound heterozygous 
pathogenic variants in BMP1 gene present a variable phenotype ranging from mild to severe 
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progressive deforming OI (OI type XIII). Individuals with BMP1 pathogenic variants with residual 
activity of the protein have a milder phenotype than cases with null pathogenic variants. In the majority 
of cases, increased bone mineral density (BMD) has been noticed. In this context, the indication, dose, 
and duration of antiresorptive therapy are questionable due to concerns about increasing bone stiffness 
leading to fracture[2,44-47].

TMEM38B
TMEM38B gene encodes TRimeric Intracellular Cation channel type B (TRIC-B), specific for potassium, 
also known as transmembrane protein 38 (TMEM 38B). TMEM 38B is involved in the opening of cation 
channels, after calcium release, and thus the ER membrane potential is maintained. Disruption of 
intracellular calcium kinetics affects the activity of many proteins required for type I collagen synthesis 
and folding[48,49]. Webb et al[50] revealed characteristics of bone modifications in patients with biallelic 
TMEM38B pathogenic variants: Decreased hydroxylation of collagen helical lysine residues and 
intracellular retention and degradation of misfolded collagen. The phenotypic spectrum varies consid-
erably ranging from mild scoliosis to severe cases with prenatal bowed femur, early-onset multiple 
fractures, and growth retardation (OI type XIV). The variability in phenotype severity indicates that 
other factors may be involved, including genetic modifiers, different genetic backgrounds, and other 
genes involved in intracellular calcium dynamics. Patients responded well to BPs, but, in some cases, 
cardiovascular abnormalities and hypotonia were reported (possibly related to abnormal ER calcium 
kinetics)[51-54].

WNT1
Proto-oncogene Wnt-1 (the wingless-type mouse mammary tumor virus integration site family, member 
1) is a glycoprotein with a key role in bone development. WNT1 interacts with the cell surface 
lipoprotein receptor-related protein 5 (LRP5) and Frizzled receptor leading to the translocation and 
accumulation of beta-catenin into the cell nucleus and subsequent transcriptional regulation of target 
genes. WNT/β-catenin signaling is involved in osteoblast progenitor proliferation, osteoblast differen-
tiation, and regulation of osteoclastogenesis in mature osteoblasts and osteocytes through the secretion 
of osteoprotegerin[55-57]. The WNT/β-catenin pathway is an activator of BMP2 gene transcription, a 
member of the TGF-β gene superfamily essential for osteoblast differentiation and osteogenesis[57]. 
Biallelic pathogenic variants in WNT1 gene lead to moderate-severe OI, whereas heterozygous WNT1 
gene mutations are reported in patients with ‘early-onset osteoporosis’ indicating a gene dose effect. 
Neurologic features such as hypotonia, ptosis, developmental delays, and brain anomalies have been 
reported in some patients with OI type XV[57-60].

CREB3L1
Cyclic AMP-responsive element-binding protein 3-like protein 1 (CREB3L1), also known as old 
astrocyte specifically induced substance (OASIS), a leucine zipper transcription factor is encoded by 
CREB3L1 gene. In osteoblasts, CREB3L1 is activated by regulated intramembrane proteolysis (RIP) and 
induces the transcription of COL1A1 gene by binding to the UPR element-like sequence in its promoter. 
Also, CREB3L1 plays an important role in the expression of coat protein complex II component SEC24D, 
involved in procollagen export from ER[45,61,62]. Phenotype severity varies considerably ranging from 
forms with prenatal fractures, severe demineralization, and early lethal outcome to cases with severe 
bone deformities and survival to adulthood (OI type XVI). Severe phenotypes are caused by 
homozygous whole gene deletions or in frame deletions in a highly conserved DNA binding domain 
(loss of function). Siblings with heterozygous pathogenic variants are mildly affected: fractures with 
minimal trauma, blue sclerae, and osteopenia[61,63]. Truncating homozygous pathogenic variants 
(outside the highly conserved DNA binding domain) led to a non-lethal phenotype, while heterozygotes 
are unaffected[64,65].

SPARC 
Secreted protein acidic and rich in cysteine (SPARC), also known as osteonectin or basement membrane 
protein 40, has a collagen-binding domain and a hydroxyapatite (necessary for mineralization of the 
collagenous matrix) binding site. During bone development, SPARC is secreted by osteoblasts and has 
important roles in procollagen processing and assembly in the bone matrix, cross linking, and mineral-
ization[66,67]. Pathogenic variants (substitution, nonsense or splice site) that affect the collagen-binding 
domain have been reported in patients with OI. Common features of this type of OI (OI type XVII) are 
multiple postnatal fractures, scoliosis, delayed motor development, neuromuscular weakness 
(especially of the lower extremities), and brain MRI abnormalities[68-70].

TENT5A
Terminal nucleotidyltransferase 5A (TENT5A) belongs to the nucleotidyltransferase fold superfamily 
proteins and acts as a noncanonical poly(A) polymerase. TENT5A forms a complex with SMAD proteins 
and induces transcription of BMP target genes. TENT5A is involved in embryonic development, adult 
bone formation, and hemin-induced hemoglobinization[2,71,72]. Doyard et al[73] reported biallelic 
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pathogenic variants (nonsense or missense) in TENT5A genes in patients with a severe form of OI (OI 
type XVIII) with multiple fractures, severe bowing of lower limbs, joint hyperlaxity, vertebral collapses, 
and blue sclerae. Lin et al[71] considered TENT5A a molecular modulator and a future therapeutic 
target.

MBTPS2
An X-linked form of OI (OI type XIX) is caused by a mutation in MBTPS2, a gene that encodes the 
membrane-bound transcription factor protease, site-2 (MBTPS2), also known as site-2 protease, a 
component of the RIP pathway. ER stress - due to retention of unfolded proteins - leads to translocation 
of CREB3L1, sterol regulatory element-binding protein, and activating transcription factor 6, from the 
ER membrane to the Golgi membrane, where they are cleaved by endoproteases MBTPS1 and MBTPS2. 
The resulting fragments regulate the production of collagen and matrix components in the nucleus[1,2,
74]. Substitutions that affect a highly conserved MBTPS2 motif, essential for zinc ion coordinating site, 
are associated with reduced hydroxylation of lysine 87 in both α collagen chains and altered collagen 
cross-linking. Patients have a form of moderate-to-severe OI with prenatal fractures, generalized 
osteopenia, long bone bowing, short stature, pectus deformity, and scoliosis, but no dermatological 
features[75]. Missense pathogenic variants elsewhere in MBTPS2 have been associated with dermato-
logical conditions - IFAP (ichthyosis follicularis, atrichia, and photophobia) syndrome with or without 
BRESHECK (Brain anomalies, severe mental Retardation, Ectodermal dysplasia, Skeletal deformities, 
Ear/eye and Kidney dysplasia/hypoplasia) syndrome, Olmsted syndrome (mutilating palmoplantar 
keratoderma with periorificial keratotic plaques), and keratosis follicularis spinulosa decalvans[76-78].

MESD
MESD gene (mesoderm development) encodes an ER chaperone for the WNT signaling receptors LRP5 
and LRP6. Moosa et al[79] reported patients with biallelic pathogenic variants (frameshift predicted to 
result in a premature termination codon or substitution that removes a highly conserved domain) in 
exon 3 of MESD gene, with partial loss of function, and a progressively deforming type of OI with 
oligodontia and developmental delay. BPs were not effective in these patients, but antisclerostin 
antibodies that affect Wnt signaling could be a valid therapeutic option. Two infant deaths due to 
respiratory insufficiency were reported. Stürznickel et al[80] reported three stillbirths with multiple 
intrauterine fractures and compound heterozygous frameshift pathogenic variants in exon 2 and exon 3 
of MESD gene. They blamed the lethal phenotype on a complete loss of function mutation, located 
within the chaperone domain of MESD (exon 2)[80].

KDELR2
KDELR2 gene encodes ER lumen protein-retaining receptor 2, involved in protein with a KDEL-like 
peptide traffic from the Golgi to the ER. The protein binds heat shock protein 47 (HSP47), with an 
essential role in the intracellular processing of procollagen. Biallelic pathogenic variants in KDELR2 
gene are associated with abnormal collagen fibril formation due to the failure of HSP47 to dissociate 
from collagen type 1. Patients present a progressively deforming type of OI. Efthymiou et al[81] reported 
neurodevelopmental disorders (motor and speech delay) in three cases[82].

CCDC134 
CCDC134 gene encodes a secreted coiled-coil domain-containing protein, involved in the regulation of 
MAPK pathway, especially phosphorylation of the extracellular signal-related kinase (Erk) or c-JUN N-
terminal kinase (JUNK). Erk1/2 and JUNK have an important role in bone morphogenesis, by 
regulating osteoblast extracellular matrix protein deposition in response to stress. Loss of function 
pathogenic variants in CCDC134 gene were associated with reduced COL1A1 and SPP1 (ostepontin) 
mRNA expression and mineralization in osteoblasts. Dubail et al[83] reported patients with 
homozygous pathogenic variants in CCDC134 gene and a severe form of OI with intrauterine growth 
retardation, multiple pre and postnatal fractures, short stature, low mineral density, and no response to 
BPs[84,85].

GENETIC COUNSELING AND PROPHYLAXIS
The identification of the inheritance pattern is essential for genetic counseling and management. Up to 
90% of OI patients have an AD pathogenic variant in COL1A1, COL1A2, or IFITM5 genes, with a 50% 
risk to transmit this variant to their offspring[86]. Nearly half of the OI cases are caused by de novo 
pathogenic variants[87]. Although advanced paternal age is associated with a high risk of de novo 
pathogenic variants in monogenic disorders, Mei et al[88] reported a significantly younger paternal and 
maternal age at conception in OI patients with a de novo mutation. Pyott et al[89] reported a 16% rate of 
parental mosaicism in couples with a child affected by lethal AD OI. In couples with two or more 
children with lethal AD OI, the recurrence rate of this mosaicism was 27%[89]. The rate of parental 
mosaicism is estimated at approximately 5–8% in all OI cases[86]. Persons with mosaicism for AD 
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pathogenic variants are often asymptomatic or have subtle clinical findings depending on the 
percentage of cells that carry the pathogenic variant[88].

About 10% of OI patients have pathogenic variants with autosomal recessive (AR) inheritance. The 
distribution of these AR variants is different across populations due to consanguinity or founder effect. 
In a genetically isolated Dutch group, the carrier frequency of a CRTAP frameshift variant was 4.1% 
while in the general Dutch population is < 0.2%[90]. Founder pathogenic variants in other genes 
associated with recessive OI have been reported: P3H1 in West African, United States African American 
populations and ethnic Kinhs, TMEM38B in Palestinians, and Israeli Arab Bedouins, FKBP10 in 
indigenous southern Africans, Palestinians, Bavarians, and Samoan islanders, SEC24D in southwestern 
Germans, WNT1 in the Finnish Hmong group, and PPIB in Chinese people[33,91-95]. A few cases with 
X-linked pathogenic variants in MBTPS2 or PLS3 have also been reported[75,96].

Genetic testing is essential for the identification of pathogenic variants, inheritance pattern, and 
differential diagnosis. Based on the clinical and radiographic features, and family history either the 
sequencing of COL1A1 and COL1A2 or a comprehensive next-generation sequencing panel (all OI genes 
and genes associated with skeletal dysplasia) is initially recommended. The interpretation of genetic 
testing results can sometimes be challenging: Identifying unknown significance variants, or sequence 
variants in a new gene (not previously reported in OI cases). Genotype-phenotype correlations are 
sometimes difficult to establish, due to the wide OI phenotypical variability, in association with genetic 
or epigenetic modifiers[97]. Some OI lethality/ severity prediction algorithms were established with 
variable accuracy[98].

Preconception carrier screening is recommended in healthy couples in different circumstances: 
positive OI family history, consanguineous marriage, or members of founder populations. Carrier 
screening cannot detect parental germline mosaicism or predict the possibility of de novo pathogenic 
variants. A couple with a significant recurrence risk - affected parent(s), carriers of AR pathogenic 
variants - has many reproductive options: In vitro fertilization (IVF) with gamete or embryo donation, 
IVF with own cells, and preimplantation genetic diagnosis (PGD), adoption, or natural pregnancy with 
prenatal diagnosis. Gamete donation is usually recommended in couples with infertility or affected 
women, because repeated superovulation procedures are associated with an increased risk of 
osteoporosis and cardiovascular problems[99]. PGD has the advantage of also detecting aneuploidies, 
but the accuracy rate is 95 to 99.5%, so there is a small risk of false negative results. Moreover, the 
success rate for artificial reproductive techniques is below 30%. Prenatal testing should be recom-
mended after implantation to confirm the PGD result. In this context, a debatable issue is the transfer of 
AR variants heterozygous embryos. A parental argument not to transfer an AR carrier embryo would be 
the prevention of difficult reproductive options for the future child[86,100,101].

Prenatal testing
Prenatal genetic testing includes non-invasive prenatal testing (NIPT), and invasive techniques. NIPT 
has the advantages of early testing (first trimester), less invasive procedure (circulating cell-free fetal 
DNA extracted from maternal blood), and no associated miscarriage risk. The disadvantages of NIPT 
are the risk of false-positive, false-negative, or inconclusive results due to confined placental mosaicism 
(the trophoblastic origin of cell-free fetal DNA is associated with a much higher mutation rate than other 
fetus cells), or vanishing twin syndrome. NIPT is technically challenging for X-linked and for AR forms 
when both parents are carriers of the same pathogenic variant due to the presence of the relevant 
variant from maternal cells in the circulating cell-free DNA. Moreover, NIPT does not cover all the 
genes involved in OI pathogeny. NIPT results should be confirmed by invasive prenatal testing[102-
106].

Invasive prenatal testing uses fetal cells extracted by chorionic villus sampling (CVS), amniocentesis, 
or cordocentesis, and is associated with an increased risk of pregnancy complications, including fetal 
loss. CVS has an associated risk of false results due to confined placental mosaicism but allows 
biochemical type I collagen analysis in extracted cells. Amniocentesis avoids misdiagnosis due to 
placental mosaicism or twin pregnancy but is performed in the second trimester, after 15 wk of 
pregnancy, and thus means a long distressful waiting period for the couple. Prenatal diagnosis allows 
pregnancy management decisions, including the alternative to terminate pregnancy or options for mode 
of delivery, early OI treatment, before (mesenchymal stem cell transplantation), or after birth[86,107,
108].

Ultrasound screening
Severe and lethal forms of OI could be detected by ultrasound screening in the second trimester. 
Abnormal ultrasound findings suggestive of severe OI include long bone shortening (especially femur 
length), bowing, and multiple fractures. Moreover, lethal forms have severe demineralization with a 
thin, easily compressible calvarium, and no posterior acoustic shadowing from long bones[107,109]. 
Femur length-to-abdominal circumference ratio < 0.16, fetal lung volume below the fifth percentile for 
gestational age (measured by ultrasound or MRI), and polyhydramnios were associated with lethal 
outcome. Ultrasound findings do not allow an accurate differential diagnosis with other skeletal 
dysplasias[107,110,111]. Three-dimensional helical computed tomography provides more accurate data 
about skeletal anomalies but there are concerns regarding the safety of radiation exposure (even to low 
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doses)[112].

Mode of delivery
In the past, cesarean delivery was considered safer and more useful for the prevention of fractures at 
birth than vaginal delivery. Recent studies on babies with types I, III and IV of OI showed that the 
delivery mode does not influence the rate of fractures at birth. Also, the breech presentation seems to be 
more frequent in OI type III. Bellur et al suggested that cesarean delivery should be performed only for 
usual maternal or fetal indications, not for fracture prevention in OI. Pregnant women affected by OI 
require close monitoring to detect possible complications such as cardiorespiratory problems, bone loss, 
cephalopelvic disproportion, uterine and placenta rupture, and excessive bleeding at delivery[107,113-
115].

Therapy
The OI treatment includes physical therapy, medication, and surgical procedures. The major goals are 
the prevention of fractures, and deformities, maximizing the patient's functional ability, and reducing 
pain. Fracture healing might be delayed in cases with pathogenic WNT1 gene variants, or might be 
altered by hyperplastic callus formation in patients with pathogenic IFITM5 gene variants. Surgical 
procedures are used for complex fractures or when correction of deformities is necessary. 
Intramedullary telescopic rods are used during growth because these have the ability to lengthen. OI 
patients have anesthetic risks due to abnormal shape or airway, impaired lung function, or the 
possibility of cervical spine fracture during intubation[4,116]. The rate of fractures decreases in 
adulthood but the risk of joint osteoarthritis increases[13]. Physiotherapy is essential to improve 
mobility, due to hypotonia and ligament laxity. Obstructive pulmonary disease (type I collagen is 
present in lung parenchyma) and scoliosis lead to respiratory complications, a major cause of mortality 
in OI[117]. Cardiovascular complications include aortic root dilatation left valvular regurgitation, and 
aortic root dilatation with dissection risk[118]. A multi-disciplinary approach is recommended to 
address problems related to bone fragility, and also extra-skeletal manifestations.

Antiresorptive bone therapy
BPs are currently the most commonly used pharmacological agents in the treatment of pediatric OI. BPs 
bind to the hydroxyapatite crystals, promote osteoclasts apoptosis, and decrease bone resorption and 
remodeling. BPs also interact with osteocytes and interfere with osteoblast recruitment on eroded 
surfaces[119]. Intravenous infusion is superior to oral administration in improving BMD and decreasing 
fracture rate. Studies reported that maximum benefits are obtained after 3 years of treatment, but there 
is no difference in adult fracture rates[120-123]. Long-term treatment is associated with microcrack 
accumulation and increased potential of progression into fractures, loss of microstructural integrity, and 
reduced mechanical strength[124]. Another disadvantage of BPs is their long half-life; BPs persist in the 
bone for years after drug discontinuation. Green et al[125] reported decreased birth weight and transient 
neonatal electrolyte abnormalities (hypocalcemia, hypercalcemia, hyperphosphatemia) associated with 
maternal use of BPs before or during pregnancy. Whether BPs should be used for a long time at similar 
or lower doses is debatable. Also, BPs do not have the same efficiency in all types of OI[13,126].

Denosumab is a monoclonal antibody that targets RANKL and inhibits osteoclast activity without 
binding to the bone. The mechanism of action is similar to BPs, antiresorptive. Denosumab has a shorter 
half-life (months) and showed promising results in increasing BMD in a few studies. Further studies are 
necessary to assess the efficiency of fracture prevention[126,127].

Osteo-anabolic agents
Osteo-anabolic therapies stimulate osteoblast activity and bone formation, instead of inhibiting 
osteoclast function as antiresorptive. Growth hormone (GH) has been used to stimulate long bone 
growth in GH deficiency, but GH therapy showed only limited benefits in increasing bone mass density 
compared to BPs (mostly in OI type IV). GH has been less efficient in the more severe forms of OI (type 
III)[128,129]. Teriparatide, a recombinant parathyroid hormone, leads to a significant increase in BMD in 
adults with type I OI but seems less effective in patients with types III and IV. Teriparatide has not been 
used for more than 24 mo and its use in children is contraindicated due to the concern of increased risk 
of osteosarcoma reported by animal studies[116,129-131]. Lately, the US FDA removed the warning 
because the risk was only confined to animal studies.

Sclerostin-inhibitory antibodies, romosozumab, and setrusumab, neutralize sclerostin, a negative 
regulator of Wnt signaling in osteoblasts. Studies revealed good responses of BMD and bone turnover 
markers to sclerostin-inhibitory antibody treatment in adults with OI[132,133]. Lv et al[134] revealed 
that romosozumab might increase the risk of cardiovascular adverse events in the elderly.

Animal studies have shown that TGF-β signaling is an essential element of pathogenesis, and 
blocking TGF-β improves bone mass and biomechanical properties, so anti-TGF-antibodies could 
represent a valuable therapeutic option. Song et al[135] reported an increase of BMD in children with 
type IV OI treated with fresolimumab (an anti-TGF-antibody), but no effect in type III and VIII OI. 
Losartan, an angiotensin II receptor blocker may also have anti-TGF properties[135]. Losartan increased 
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bone mass and accelerated chondrocyte hypertrophy in the growth plate in an animal study[136].

Cell therapy and gene editing
Stem cell therapy is a promising pre and postnatal option based on the cells’ ability to differentiate into 
osteoblasts that produce normal collagen. Transplantation of bone marrow from HLA-matched siblings 
and prenatal and postnatal transplantation of mesenchymal stem cells have been associated with 
improved growth and reduction of fractures rate. In the first group (bone marrow from HLA-matched 
siblings), the effect was transient, the growth rate slowed over time and a second transplantation with 
bone marrow/mesenchymal stem cells has been used. There is limited experience in this area, so further 
trials are necessary[137,138]. The application of cellular reprogramming to create induced pluripotent 
stem cells (iPSCs) opens a new therapeutic approach.

Advances in gene editing technology bring the possibility of correcting the pathogenic variant. A 
recent approach involves the silencing of a dominant (gain of function) pathogenic variant, leading to 
allele suppression and converting the severe forms into a milder phenotype. Different strategies have 
been used: Antisense oligonucleotides, short interfering RNA, and hammerhead ribozymes. Another 
approach, gene addition therapy, involves the correction of the expression of deficient or absent alleles 
in affected cells. In cases where an abnormal collagen chain is produced and affects triple helix 
assembly, this method will not influence the phenotype. The efficiency of gene editing is still debatable, 
there are no data about the duration of the positive effects, and concerns regarding off-target effects, 
risks of an immune response, and genotoxicity are raised. Clinical trials are needed[126,139].

The combination of the CRISPR–Cas9 gene editing tool with induced pluripotent stem cells may 
improve therapeutic options. Jung et al[140] demonstrated the restoration of type I collagen expression 
in iPSCs in an OI patient corrected by the CRISPR–Cas9 system.

A new promising therapy is the chemical chaperone 4-phenylbutyrate (4-PBA), involved in protein 
folding and aggregation in ER. 4-PBA also has histone deacetylase inhibitor activity. Experimental 
studies reported the reduction of fracture rate and improvement of growth deficiency in animal OI 
models after 4-BPA treatment[141,142].

CONCLUSION
In recent decades, great progress has been made in identifying genes and molecular mechanisms 
underlying OI. These advances demonstrate that OI is an extremely heterogeneous collagen-related 
disease. The classical clinical Sillence classification is now partially revolute, and the involvement of 
different causative genes and the presence of different inheritance patterns generate challenges for 
genetic counseling. However, genetic classification allows an accurate identification of the inheritance 
for family planning, and offers the possibility of the development of genotype-based therapeutic 
approaches.
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