World Journal of *Clinical Cases*

World J Clin Cases 2023 January 16; 11(2): 255-486

Published by Baishideng Publishing Group Inc

W T C C World Journal of Clinical Cases

Contents

Thrice Monthly Volume 11 Number 2 January 16, 2023

REVIEW

255	Application of the cortical bone trajectory technique in posterior lumbar fixation
	Peng SB, Yuan XC, Lu WZ, Yu KX
268	Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities
	Chen YF, Li J, Xu LL, Găman MA, Zou ZY
292	Idiopathic hirsutism: Is it really idiopathic or is it misnomer? Unluhizarci K, Hacioglu A, Taheri S, Karaca Z, Kelestimur F

MINIREVIEWS

- 299 Liver function in transgender persons: Challenges in the COVID-19 era Milionis C. Ilias I. Koukkou E
- 308 Telenutrition for the management of inflammatory bowel disease: Benefits, limits, and future perspectives Güney Coşkun M, Kolay E, Basaranoglu M
- 316 Liver transplantation amidst the COVID-19 era: Our center's experience Khazaaleh S, Suarez ZK, Alomari M, Rashid MU, Handa A, Gonzalez AJ, Zervos XB, Kapila N
- 322 Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of spinal cord injuries Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, Reshetov IV, Chekhonin VP
- 332 Use of metaphors when treating unexplained medical symptoms

Seeman MV

ORIGINAL ARTICLE

Case Control Study

342 Microvesicles with mitochondrial content are increased in patients with sepsis and associated with inflammatory responses

Zhang HJ, Li JY, Wang C, Zhong GQ

Retrospective Study

357 Is fascial closure required for a 12-mm trocar? A comparative study on trocar site hernia with long-term follow up

Krittiyanitsakun S, Nampoolsuksan C, Tawantanakorn T, Suwatthanarak T, Srisuworanan N, Taweerutchana V, Parakonthun T, Phalanusitthepha C, Swangsri J, Akaraviputh T, Methasate A, Chinswangwatanakul V, Trakarnsanga A

World Journal of Clinical Cas Contents Thrice Monthly Volume 11 Number 2 January 16, 202		
	Moldovan C, Rusu E, Cochior D, Toba ME, Mocanu H, Adam R, Rimbu M, Ghenea A, Savulescu F, Godoroja D, Botea F	
	Observational Study	
385	Tear inflammation related indexes after cataract surgery in elderly patients with type 2 diabetes mellitus	
	Lv J, Cao CJ, Li W, Li SL, Zheng J, Yang XL	
	CASE REPORT	
394	Management of a rare giant cell tumor of the distal fibula: A case report	
	Fan QH, Long S, Wu XK, Fang Q	
401	Repair of a giant inguinoscrotal hernia with herniation of the ileum and sigmoid colon: A case report	
	Liu SH, Yen CH, Tseng HP, Hu JM, Chang CH, Pu TW	
408	Anti-leucine-rich glioma inactivated protein 1 encephalitis with sleep disturbance as the first symptom: A case report and review of literature	
	Kong DL	
417	Fat-poor renal angiomyolipoma with prominent cystic degeneration: A case report and review of th literature	
	Lu SQ, Lv W, Liu YJ, Deng H	
426	Perivascular epithelioid cell tumors of the liver misdiagnosed as hepatocellular carcinoma: Three cas reports	
	Kou YQ, Yang YP, Ye WX, Yuan WN, Du SS, Nie B	
434	H7N9 avian influenza with first manifestation of occipital neuralgia: A case report	
	Zhang J	
441	Gefitinib improves severe bronchorrhea and prolongs the survival of a patient with lung invasiv mucinous adenocarcinoma: A case report	
	Ou GC, Luo W, Zhang WS, Wang SH, Zhao J, Zhao HM, Qiu R	
449	Habitual khat chewing and oral melanoacanthoma: A case report	
	Albagieh H, Aloyouny A, Alshagroud R, Alwakeel A, Alkait S, Almufarji F, Almutairi G, Alkhalaf R	
456	Systemic lupus erythematosus with multicentric reticulohistiocytosis: A case report	
	Liu PP, Shuai ZW, Lian L, Wang K	
464	X-linked Charcot-Marie-Tooth disease after SARS-CoV-2 vaccination mimicked stroke-like episodes: . case report	
	Zhang Q, Wang Y, Bai RT, Lian BR, Zhang Y, Cao LM	
472	Acute liver injury in a COVID-19 infected woman with mild symptoms: A case report	
	Lai PH, Ding DC	

Contents

Thrice Monthly Volume 11 Number 2 January 16, 2023

LETTER TO THE EDITOR

- 479 Incidence and clinical treatment of hypertriglyceridemic acute pancreatitis: A few issues Yang QY, Zhao Q, Hu JW
- 482 Management of infected acute necrotizing pancreatitis Pavlidis ET, Pavlidis TE

Contents

Thrice Monthly Volume 11 Number 2 January 16, 2023

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Manish Ramesh Balwani, DNB, FASN, MBBS, MD, Professor, Department of Nephrology, Saraswati Kidney Care Center, Nagpur 442301, Maharashtra, India. balwani.manish@yahoo.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC's CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Hua-Ge Yu; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Clinical Cases	https://www.wignet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2307-8960 (online)	https://www.wignet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
April 16, 2013	https://www.wignet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Thrice Monthly	https://www.wignet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku	PUBLICATION MISCONDUCT https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2307-8960/editorialboard.htm	https://www.wignet.com/bpg/gerinfo/242
PUBLICATION DATE January 16, 2023	STEPS FOR SUBMITTING MANUSCRIPTS https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2023 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

W J C C World Journal of Clinical Cases

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2023 January 16; 11(2): 299-307

DOI: 10.12998/wjcc.v11.i2.299

ISSN 2307-8960 (online)

MINIREVIEWS

Liver function in transgender persons: Challenges in the COVID-19 era

Charalampos Milionis, Ioannis Ilias, Eftychia Koukkou

Specialty type: Medicine, research and experimental

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): A Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: El Sayed S, Egypt; Hunasanahalli Giriyappa V, India

Received: September 12, 2022 Peer-review started: September 12, 2022

First decision: November 15, 2022 Revised: November 23, 2022 Accepted: December 27, 2022 Article in press: December 27, 2022 Published online: January 16, 2023

Charalampos Milionis, Ioannis Ilias, Eftychia Koukkou, Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece

Corresponding author: Ioannis Ilias, MD, PhD, Consultant Physician-Scientist, Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, No. 2 El Venizelou Sq, Athens GR-11521, Greece. iiliasmd@yahoo.com

Abstract

Transgender persons constitute a non-negligible percentage of the general population. Physical gender-transitioning in trans persons is mainly achieved with hormonal cross-sex therapy and sex reassignment surgeries that aim to align bodily appearance with gender identity. Hormonal treatment acts via suppressing the secretion of the endogenous sex hormones and replacing them with the hormones of the desired sex. The administration of testosterone is the typical masculinizing treatment in trans men, whilst trans women are routinely treated with estradiol agents in combination with anti-androgens or gonadotrophinreleasing hormone agonists if testes are present. Exogenous androgenic steroids, estradiol agents, and anti-androgens have been implicated in a series of hepatotoxic effects. Thus, liver integrity is a major concern with the long-term administration of cross-sex therapy. Hepatic tissue is susceptible to coronavirus disease 19 (COVID-19) through various pathophysiological mechanisms. Special consideration should be paid to minimize the risk of hepatic damage from the potential cumulative effect of COVID-19 and gender-affirming treatment in transgender patients. Appropriate care is significant, with continuous laboratory monitoring, clinical observation and, if needed, specific treatment, especially in severe cases of infection and in persons with additional liver pathologies. The pandemic can be an opportunity to provide equal access to care for all and increase the resilience of the transgender population.

Key Words: Transgender persons; Drug induced liver injury; COVID-19

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Transgender persons may account for approximately up to 0.3% of the population. Their access to health care and medications may be hampered in the coronavirus disease 19 (COVID-19) era. The effects of COVID-19 per se on the liver may not be negligible. In this concise review we ponder on these effects, honed on transgender persons.

Citation: Milionis C, Ilias I, Koukkou E. Liver function in transgender persons: Challenges in the COVID-19 era. World J Clin Cases 2023; 11(2): 299-307 URL: https://www.wjgnet.com/2307-8960/full/v11/i2/299.htm

DOI: https://dx.doi.org/10.12998/wjcc.v11.i2.299

INTRODUCTION

In humans, as in most mammals, biological sex is determined by sex chromosomes X and Y. The development to a male or female sex depends on the presence of a single sex-regulatory genetic locus, the sex-determining region Y (SRY) gene, on the male-limited Y chromosome. Expression of SRY early in the embryonic life leads the bipotential embryonic gonad to differentiate into testis through the activation of male-specific developmental pathways. In contrast, ovaries develop when SRY is absent. The first signs of sexual differentiation of gonads occur by the sixth gestational week in humans. Sex hormones induce further sexual differentiation in gonads and non-gonadal tissues and organs and in this way, they form the sex phenotype[1].

Gender identity is a person's self-perception of belonging to a particular gender type (masculine, feminine, a combination, or none of both) and does not always align with biological sex. Gender dysphoria is the sense of distress which derives from the discordance between an individual's gender identity and sex features[2]. The term 'transgender' refers to persons whose gender identity (and possibly gender expression) differs from what is normative for their biological sex (most usually assigned at birth). In particular, transgender males (trans men) are persons who self-identify as male, although they were labeled as female at birth and transgender females (trans women) are persons who have the gender identity of a female, despite having been assigned male sex at birth. Furthermore, the transgender term also includes persons whose gender identity does not conform to the classical dipole of male/female[3]. It is estimated that about 0.355% of the population identify themselves as transgender. However, the prevalence of trans people who receive medical care for gender-transitioning is only around 0.009%[4].

After the diagnosis of gender dysphoria is established and if physical transitioning is desired, a framework for ongoing care needs to be applied. An appropriate management may include psychotherapy, hormonal treatment, and surgical sex reassignment. These approaches are considered to be safe and effective both in short- and in the long-term[5]. Gender-affirming hormonal treatment improves uneasiness from perceived inconsistencies between one's biological sex and gender identity. It acts via suppressing the secretion of the endogenous sex hormones and replacing them with the hormones of the desired sex. As with any medical therapy, the awareness of potential side effects is important. Thus, regular clinical evaluation for physical changes and laboratory monitoring of potential adverse effects in response to cross-sex hormonal therapy is necessary. Typical follow-up is performed every three months during the first year of treatment and then once or twice yearly[6]. Tables 1 and 2 depict a model timeline for monitoring clinical course and laboratory parameters when treating trans men and women, respectively.

HEALTH CARE FOR TRANSGENDER PEOPLE

Transgender people have a series of special medical needs which create an inevitable regular engagement with health care services. In terms of psychiatric care, a firm diagnosis of gender dysphoria and subsequently psychotherapy on finding ways to integrate each person's diverse gender identity into the personal background and social circumstances are fundamental. Trans people often encounter stigmatization and discrimination which can have a profound adverse effect on their emotional wellbeing. Therefore, they need to access responsive and competent mental health services to cope with depression, suicidality, anxiety, and substance use which are disproportionally frequent among transgender populations[7,8].

Gender-transitioning is performed with medical interventions, including hormonal therapy and sex reassignment surgeries that aim to align physical appearance with gender identity. Typical transfeminine (male-to-female) hormonal treatment includes estrogens and testosterone-lowering agents, such as anti-androgens or gonadotrophin-releasing hormone (GnRH) agonists, whilst the administration of testosterone is the mainstream approach in transmasculine (female-to-male) hormonal

Table 1 Timeline for monitoring trans men

Laboratory evaluation				
Baseline blood tests	Testosterone, estradiol; CBC (including Hct or Hgb); Liver enzymes, lipid profile, creatinine; Fasting glucose (and HbA1c or oral glucose tolerance test if diabetes is suspected)			
4-6 wk after starting treatment	Testosterone, estradiol; CBC (including Hct or Hgb)			
3, 6, 9, and 12 mo after starting treatment	Testosterone, estradiol; CBC (including Hct or Hgb); Liver enzymes, lipid profile, creatinine (every 6 mo); Fasting glucose (every 6 mo)			
Semiannually or annually thereafter	Testosterone, estradiol; CBC (including Hct or Hgb); Liver enzymes, lipid profile, creatin- ineFasting glucose (every 6 mo)			
In 50 yr of age (only if treatment is stopped or when risk factors for osteoporosis exist) and accordingly thereafter	Bone mineral density measurement			
Individualized approach	Screening tests for breast and endometrial cancer (with no prior hysterectomy)			
Clinical assessment				
Regular clinical examination (including body weight and blood pressure measurements), evaluation of masculinization, recording and monitoring of potential side effects				

CBC: Complete blood count; Hct: Hematocrit; Hgb: Hemoglobin; HbA1c: Glycated hemoglobin.

Table 2 Timeline for monitoring trans women				
Laboratory evaluation				
Baseline blood tests	Testosterone, estradiol; Prolactin; CBC; Liver enzymes, lipid profile, creatinine; Fasting glucose (and HbA1c or oral glucose tolerance test if diabetes is suspected); Electrolytes; Coagulation tests (in case of high risk for thrombosis)			
1 mo after starting treatment	CBC; Liver enzymes, lipid profile, creatinine; Electrolytes (if taking spironolactone)			
3, 6, 9, and 12 mo after starting treatment	Testosterone, estradiol; CBC; Liver enzymes, lipid profile, creatinine (every 6 mo); Fasting glucose (every 6 mo); Electrolytes (if taking spironolactone)			
Semiannually or annually thereafter	Testosterone, estradiol; Prolactin (every 2 yr); CBC; Liver enzymes, lipid profile, creatinine; Fasting glucose (every 6 mo); Electrolytes (if taking spironolactone)			
In 60 yr of age (or earlier if treatment is stopped after orchiectomy or when risk factors for osteoporosis exist) and accordingly thereafter	Bone mineral density measurement			
Individualized approach	Screening tests for prostate and breast cancer			
Clinical assessment				
Regular clinical examination (including body weight and blood pressure measurements), evaluation of feminization, recording and monitoring of potential side effects				

CBC: Complete blood count; Hct: Hematocrit; Hgb: Hemoglobin; HbA1c: Glycated hemoglobin.

therapy. The goal is to achieve and maintain sex hormone levels in the normal physiologic range of the desired gender. For non-binary persons, regimens and dosages should be modified according to the clinical targets[9]. Surgical reconstruction techniques focus on transforming genitals and secondary sex characteristics[10]. Hence, the process of gender-transitioning is inextricably related to the utilization of specialized medical services.

Trans people have special sexual and reproductive medical needs. Comprehensive cancer screening based on the retained organs[11] and prevention and management of sexually transmitted diseases[12] are important aspects of transgender care. Further possible needs for health services are linked to gamete storage and assisted reproduction[13]. Nonetheless, caring for transgender individuals also includes general coverage for possible co-existing morbidities which are not directly related to gender-transitioning.

Raishideng® WJCC | https://www.wjgnet.com

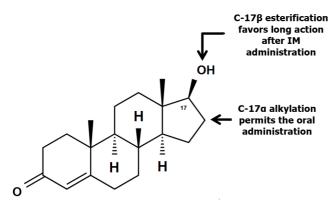
IMPACT OF THE COVID-19 PANDEMIC ON TRANSGENDER HEALTH CARE

As a medically and socially vulnerable population, transgender people face numerous disparities in accessing health care. Most common difficulties are due to structural (related to systemic disadvantages) and interpersonal (reflecting negative personal attitudes) barriers within the health care context[14]. Firstly, there is a lack of health professionals who are specialized in providing gender-affirming care, whilst others may not be willing to treat transgender persons^[15]. Secondly, trans individuals are often denied health insurance either for procedures that are routinely covered for their cisgender peers or for hormonal treatment and surgical sex reassignment. Low personal income further aggravates the lack of access to health services [16]. Thirdly, discriminative attitudes on the part of health personnel may lead transgender persons to postpone or even avoid seeking care[17].

The pandemic created unprecedented difficulties for trans persons both in attaining physical and social well-being and in accessing health care. The socio-economic circumstances of the coronavirus disease 19 (COVID-19) outbreak disproportionately affected transgender people in comparison with the general population. Increased unemployment rate and lower available income impeded access to both basic and expert clinical care[18]. Restricted access to mental health care and social support resulted in a loss of emotional resilience against the effects of gender-minority stress^[19]. Although the latest variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are less pathogenic, the pandemic is still present and continues to fuel deficiencies in caring for trans people.

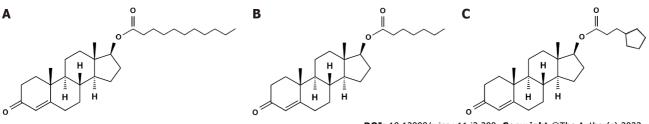
Gender-affirming care requires ongoing medical support for assessment, modification, and monitoring of the transition process. However, restrictive policies during the pandemic led most hospitals to cancel or postpone elective procedures (such as routine consultations and scheduled surgeries) in order to give priority to the management of COVID-19 cases. Thus, the accessibility to hormonal therapy and surgical sex reassignment became more difficult^[20]. Shortages of medications also occurred[21]. These conditions arrested or hindered gender-transition for many trans persons and caused psychological distress due to the regression to undesired sex features[22]. Despite the withdrawal of most restrictive measures, much effort is still needed to normalize the situation.

LIVER FUNCTION IN TRANSGENDER MALES


The administration of testosterone is the typical masculinizing treatment in trans men^[23]. There are certain modifications of the testosterone molecule which maintain or even enhance its virilizing effects but change its pharmacodynamic properties (Figure 1). The C-17α alkylation permits the oral administration of the substance by inhibiting its metabolic deactivation in the liver. The C-17 β esterification (such as in testosterone enanthate, cypionate, and undecanoate) increases the potency and duration of action, but it requires a parenteral administration. However, the C-17α alkylated androgenic steroids have been implicated in causing liver damage, including prolonged cholestasis, hepatic peliosis, nodular regenerative hyperplasia, hepatic adenomas, and hepatocellular carcinoma. In contrast, the C- 17β esterified molecules rarely cause cholestasis, but their prolonged use may increase the risk of hepatic tumors and nodular transformation, seemingly at a lower rate in comparison with the C-17 α alkylated products [24]. Figure 2 presents the molecular structure of the most commonly used injectable preparations of testosterone in gender-affirming treatment.

C-17 α alkylated derivatives of testosterone are not recommended for hormonal treatment of transgender males and thus, serious hepatic toxicity from oral pharmaceutical forms is usually avoided. Nonetheless, hepatotoxicity due to the long-term administration of exogenous testosterone esters is always a concern during therapy of transgender males. For this reason, trans men under androgen therapy should be monitored every three months during the first year of treatment and then semiannually or annually^[25]. Aspartate and alanine aminotransferases (AST and ALT, respectively) are the most commonly used biomarkers of liver injury. These enzymes catalyze the conversion of α ketoglutarate and an amino acid to glutamate and another product[26]. The initiation of masculinizing gender-affirming treatment is expected to induce a slight increase in the blood levels of both AST and ALT. However, the clinical significance of these changes is usually minimal^[27].

Testosterone acts through binding to the intracellular androgen receptors. This ligand binding results in conformational changes which in turn cause the translocation of the testosterone/receptor complex to the nucleus. There, it dimerizes and binds to androgen response elements on DNA, modulating thereby the transcription of specific genes that are important in cell development[28]. The mechanisms of the hepatotoxic effects of exogenous testosterone remain unclear. An impairment of cellular growth processes and an increase in oxidative stress within hepatocytes - both mediated by androgen receptors - are possible causes of liver damage related to the use of pharmaceutical forms of testosterone[29]. The etiology of cholestasis caused by testosterone derivatives is even more vague. It may be due to a disruption of the microfilaments within the hepatocytes that reduces their ability to transport bile[30].


Transmasculine gender-affirming therapy usually has no adverse effects on hepatic function[31]. Exogenous testosterone may cause minor serum enzyme elevations, but profound cholestasis, hepatic peliosis, and benign and malignant liver tumors are only theoretical risks. However, caution is

DOI: 10.12998/wjcc.v11.i2.299 Copyright ©The Author(s) 2023.

Figure 1 The testosterone molecule - substitution at C-17 favors oral administration or long duration of action.

DOI: 10.12998/wjcc.v11.i2.299 Copyright ©The Author(s) 2023.

Figure 2 Injectable testosterone semi-synthetic analogues. A: Undecanoate; B: Enanthate; C: Cypionate.

necessary when administering masculinizing treatment to patients with pre-existing liver disease due to the risk of deterioration of hepatic function. The principal step in managing potential liver damage is the pause of the administration of the androgenic steroid. Although some trans men may be disappointed with this decision, it is important to proceed to this action. Merely decreasing the dose of testosterone or switching to another formulation is not appropriate. Hepatotoxicity is usually reversible with the cessation of therapy, but full recovery often needs an extended period of time.

LIVER FUNCTION IN TRANSGENDER FEMALES

Transgender women are routinely treated with estradiol agents combined with anti-androgens or GnRH agonists if testes are present. The administration of estrogens has been rarely associated with liver disease at the dosages that are nowadays used either for contraception in cisgender females or for hormonal replacement treatment of postmenopausal women. Intrahepatic complications are more common with high doses of estrogens which is not a routine practice in gender-transition of trans females. Nevertheless, treatment with estrogens has been linked to susceptibility to venous thrombosis because of alterations in the hepatic synthesis of coagulation factors and antithrombin III. The risk is markedly greater with oral treatment because the intestinal absorption is rapid and yields high concentrations of hormone in the portal circulation[32]. Moreover, estrogens can cause a decrease in bile flow leading to intrahepatic cholestasis with pruritus and jaundice[33]. They may also be involved in the occurrence of nodular hyperplasia and hepatic benign and malignant tumors after long-term use, although the relevant evidence is not strong[34].

Exogenous estrogens, administered either orally or transdermally, induce physiologic processes that favor the formation of gallstones. Most clinical evidence derives from studies investigating the use of oral contraception or hormonal replacement therapy in cis women and the administration of estrogens for the treatment of prostate cancer in cis men. Accordingly, estrogen regimens are expected to increase the propensity of adverse biliary tract outcomes also in trans women receiving gender-affirming treatment. Indeed, therapy with exogenous estrogens can decrease nucleation time, enhance cholesterol saturation, and raise the biliary levels of arachidonate and prostaglandin E2. These effects are important risk factors which may result in cholelithiasis[35].

Cyproterone acetate is a steroidal anti-androgen that is routinely used in gender-transition of trans women. It inhibits the action of endogenous testosterone through blocking the androgen receptors. However, treatment with cyproterone acetate has been linked to liver-related adverse reactions. Most

cases appertain to modest and transient serum enzyme elevations. Nevertheless, instances of overt hepatotoxicity have been reported. The clinical features of hepatic injury may range from mildly symptomatic hepatitis with jaundice to acute liver failure. The relevant data have emerged mainly from studies of cis men receiving cyproterone acetate for advanced prostate cancer[36]. The relevant mechanism that leads to the liver damage is not clear. It is presumably an idiosyncratic reaction to the drug or its metabolites or an immunologically mediated response[37]. Occasional reports of hepatic cirrhosis and hepatocellular carcinoma induced by cyproterone acetate have also emerged[38]. In contrast, GnRH agonists (also used for suppression of gonadal testosterone) have not been implicated in causing clinically significant hepatotoxicity.

THE EFFECTS OF COVID-19 ON THE LIVER

SARS-CoV-2 is the etiological agent that causes COVID-19. The respiratory tract is the main target site of SARS-CoV-2 infection, but dissemination and replication of the pathogen in several other tissues can also contribute to the clinical impact of COVID-19. Hepatic tissue is a frequent site of extrapulmonary involvement of SARS-CoV-2. The incidence of liver injury in patients with COVID-19 ranges between 15% and 53%, although these figures may be different with the new variants of the pathogen[39,40]. Most common clinical features of liver dysfunction in COVID-19 are non-specific and may include fever, fatigue, anorexia, nausea, vomiting, diarrhea, and abdominal pain. Jaundice may also occur in rare cases. The laboratory findings of liver injury in COVID-19 include various degrees of ALT and AST elevations often combined with hypoalbuminemia and hyperbilirubinemia. In patients with COVID-19, abnormal liver function tests are associated with a greater risk of transfer to the intensive care unit, mechanical ventilator support, and mortality. As with other chronic diseases, prognosis from infection with the novel coronavirus is worse in patients with pre-existing hepatic disease (viral hepatitis, fatty liver, cirrhosis, hepatoma)[41].

SARS-CoV-2 enters the host cells through the membrane bound angiotensin-converting enzyme 2 (ACE2) receptor. The spike glycoprotein of the virion is composed of S1 and S2 subunits and protrudes from the viral surface. Upon binding to ACE2, the S1 subunit is dissociated with the ACE2 receptor with the presence of transmembrane serine protease 2 (TMPRSS2). This process results in conformational changes that increase the stability of S2 subunit and permit the viral envelope-cellular membrane fusion [42]. The respiratory tract is not the unique tropism for SARS-CoV-2. In humans, ACE2 and TMPRSS2 are present in multiple extrapulmonary tissues. In particular, ACE2 is highly expressed in cholangiocytes and to a lesser degree in hepatocytes, whilst TMPRSS2 is also expressed in both the hepatocytes and cholangiocytes [43]. The hepatic presence of these proteins renders the liver an accessible organ to SARS-CoV-2.

Pathogenesis in liver injury from COVID-19 is probably due to various mechanisms[39,40]. Firstly, direct viral cytopathogenic insult of hepatocytes and cholangiocytes may cause hepatobiliary damage. Secondly, the hyperinflammatory response induced by the viral infection and the accompanying hypercytokinemia may cause tissue damage and organ failure, especially in the liver. Thirdly, hepatotoxicity could derive from the variety of antiviral drugs, corticosteroids, antibiotics, and antipyretics that are used for treatment of COVID-19 patients. Fourthly, hypercoagulable state associated with COVID-19 and the resultant thrombosis may cause hepatic degeneration[44]. Lastly, cardiac and respiratory failure may lead to circulatory compromise, causing thereby a hypoxic injury to the liver[45,46]. Nevertheless, several other underlying mechanisms may contribute to liver injury in COVID-19 patients. Moreover, the pathophysiological synergy of pre-existing liver disease and COVID-19 is possible and needs to be thoroughly evaluated.

MONITORING TRANSGENDER LIVER FUNCTION IN THE ERA OF THE PANDEMIC

Currently, transgender people constitute a non-negligible percentage of the general population. Hormonal therapy is an essential component of gender-affirming treatment because it can lead to improvements in psychological functioning and quality of life among the recipients [47]. However, hepatotoxicity is a major concern with the long-term administration of either testosterone derivatives or oral estradiol and anti-androgens. The incidence of drug induced liver injury due to usual transmasculine and transfeminine hormonal regimens is seemingly low [48,49]. Nevertheless, monitoring of liver function on a regular basis is important[50] because of the severity of the potential hepatic impairment from gender-affirming pharmacotherapies and possible liver comorbidities among trans people. This strategy can assist in the prevention of therapeutic failures and in the avoidance of adverse side effects [51].

Protecting liver integrity of transgender people becomes even more crucial in case of a SARS-CoV-2 infection. In general, the interplay of immune mediators and drugs with hepatotoxic properties could synergistically increase the toxic effect on liver[52,53], although relevant evidence does not exist for trans patients with COVID-19. Furthermore, almost all the drugs prescribed for both the COVID-19

management and the cross-sex hormonal treatment are metabolized in the liver, hence an elevation of hepatic enzymes and possible drug induced liver damage due to a cumulative effect is expectable[54].

For the aforementioned reasons, special consideration should be paid to minimize the risk of hepatic damage from COVID-19 in these patients. For this purpose, assessment of trans persons with SARS-CoV-2 infection should include a thorough evaluation of hepatic function in addition to the investigation of primary respiratory manifestations. Furthermore, appropriate care with continuous laboratory monitoring, clinical observation and, if needed, specific treatment is significant, especially in cases of hospitalization. Liver function tests should be regularly observed, and viral hepatitis markers should be determined. Imaging studies of the liver, gallbladder, and biliary tract should be performed in case of abnormal laboratory findings. Cautious utilization of pharmacotherapies is also necessary. Gender-affirming hormonal treatment is not a contraindication of vaccination against COVID-19. Thus, transgender people should be advised to get vaccinated with initial and booster doses according to the general recommendations.

CONCLUSION

Although gender-transition per se does not imply a worse prognosis in COVID-19, prior vulnerabilities with regards to health problems and the impaired access to health care of trans people were exacerbated by the pandemic. Adverse hepatotoxic effects of cross-sex hormonal therapy, although uncommon in daily practice, become particularly important in case of SARS-CoV-2 infection. The possible synergistic impact of COVID-19 on liver both in the short- and in the long-term must not be neglected and requires proper investigation and management. A multicentric study may contribute to a deeper knowledge about this issue. The pandemic can be an opportunity to provide equal access to care for all and increase the resilience of the transgender population.

FOOTNOTES

Author contributions: Milionis C, Ilias I, Koukkou E conceived the subject, searched the relevant medical literature and wrote this submission.

Conflict-of-interest statement: The Authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Greece

ORCID number: Charalampos Milionis 0000-0003-2442-3772; Ioannis Ilias 0000-0001-5718-7441; Eftychia Koukkou 0000-0002-1433-3151.

S-Editor: Liu GL L-Editor: A P-Editor: Liu GL

REFERENCES

- Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin 1 N, Ross L, Valenzuela N, Vamosi JC; Tree of Sex Consortium. Sex determination: why so many ways of doing it? PLoS Biol 2014; 12: e1001899 [PMID: 24983465 DOI: 10.1371/journal.pbio.1001899]
- 2 Cooper K, Russell A, Mandy W, Butler C. The phenomenology of gender dysphoria in adults: A systematic review and meta-synthesis. Clin Psychol Rev 2020; 80: 101875 [PMID: 32629301 DOI: 10.1016/j.cpr.2020.101875]
- T'Sjoen G, Arcelus J, Gooren L, Klink DT, Tangpricha V. Endocrinology of Transgender Medicine. Endocr Rev 2019; 40: 97-117 [PMID: 30307546 DOI: 10.1210/er.2018-00011]
- 4 Collin L, Reisner SL, Tangpricha V, Goodman M. Prevalence of Transgender Depends on the "Case" Definition: A Systematic Review. J Sex Med 2016; 13: 613-626 [PMID: 27045261 DOI: 10.1016/j.jsxm.2016.02.001]
- Atkinson SR, Russell D. Gender dysphoria. Aust Fam Physician 2015; 44: 792-796 [PMID: 26590617]
- Hembree WC, Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, Rosenthal SM, Safer JD, Tangpricha V, T'Sjoen GG. Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2017; 102: 3869-3903 [PMID: 28945902 DOI: 10.1210/jc.2017-01658]

- 7 McCann E, Sharek D. Mental Health Needs of People Who Identify as Transgender: A Review of the Literature. Arch Psychiatr Nurs 2016; 30: 280-285 [PMID: 26992883 DOI: 10.1016/j.apnu.2015.07.003]
- 8 Reisner SL, Poteat T, Keatley J, Cabral M, Mothopeng T, Dunham E, Holland CE, Max R, Baral SD. Global health burden and needs of transgender populations: a review. Lancet 2016; 388: 412-436 [PMID: 27323919 DOI: 10.1016/S0140-6736(16)00684-X]
- 9 Safer JD, Tangpricha V. Care of the Transgender Patient. Ann Intern Med 2019; 171: ITC1-ITC16 [PMID: 31261405 DOI: 10.7326/AITC201907020]
- Zurada A, Salandy S, Roberts W, Gielecki J, Schober J, Loukas M. The evolution of transgender surgery. Clin Anat 2018; 10 31: 878-886 [PMID: 29732618 DOI: 10.1002/ca.23206]
- 11 Sterling J, Garcia MM. Cancer screening in the transgender population: a review of current guidelines, best practices, and a proposed care model. Transl Androl Urol 2020; 9: 2771-2785 [PMID: 33457249 DOI: 10.21037/tau-20-954]
- 12 Van Gerwen OT, Jani A, Long DM, Austin EL, Musgrove K, Muzny CA. Prevalence of Sexually Transmitted Infections and Human Immunodeficiency Virus in Transgender Persons: A Systematic Review. Transgend Health 2020; 5: 90-103 [PMID: 32656353 DOI: 10.1089/trgh.2019.0053]
- Knudson G, De Sutter P. Fertility options in transgender and gender diverse adolescents. Acta Obstet Gynecol Scand 2017; 13 96: 1269-1272 [PMID: 28759117 DOI: 10.1111/aogs.13188]
- 14 Johnson AH, Hill I, Beach-Ferrara J, Rogers BA, Bradford A. Common barriers to healthcare for transgender people in the U.S. Southeast. Int J Transgend Health 2020; 21: 70-78 [PMID: 33015660 DOI: 10.1080/15532739.2019.1700203]
- Mikulak M, Ryan S, Ma R, Martin S, Stewart J, Davidson S, Stepney M. Health professionals' identified barriers to trans 15 health care: a qualitative interview study. Br J Gen Pract 2021; 71: e941-e947 [PMID: 34133317 DOI: 10.3399/BJGP.2021.0179]
- 16 Bakko M, Kattari SK. Transgender-Related Insurance Denials as Barriers to Transgender Healthcare: Differences in Experience by Insurance Type. J Gen Intern Med 2020; 35: 1693-1700 [PMID: 32128693 DOI: 10.1007/s11606-020-05724-2]
- Rodriguez A, Agardh A, Asamoah BO. Self-Reported Discrimination in Health-Care Settings Based on Recognizability as 17 Transgender: A Cross-Sectional Study Among Transgender U.S. Citizens. Arch Sex Behav 2018; 47: 973-985 [PMID: 28785919 DOI: 10.1007/s10508-017-1028-z]
- Burgess CM, Batchelder AW, Sloan CA, Ieong M, Streed CG Jr. Impact of the COVID-19 pandemic on transgender and 18 gender diverse health care. Lancet Diabetes Endocrinol 2021; 9: 729-731 [PMID: 34570996 DOI: 10.1016/S2213-8587(21)00266-7]
- Jarrett BA, Peitzmeier SM, Restar A, Adamson T, Howell S, Baral S, Beckham SW. Gender-affirming care, mental health, 19 and economic stability in the time of COVID-19: A multi-national, cross-sectional study of transgender and nonbinary people. PLoS One 2021; 16: e0254215 [PMID: 34242317 DOI: 10.1371/journal.pone.0254215]
- Wang Y, Pan B, Liu Y, Wilson A, Ou J, Chen R. Health care and mental health challenges for transgender individuals during the COVID-19 pandemic. Lancet Diabetes Endocrinol 2020; 8: 564-565 [PMID: 32445629 DOI: 10.1016/S2213-8587(20)30182-0]
- Milionis C, Koukkou E, Ilias I. Conundrums in the Medical Treatment of Transgender Persons. Endocr Metab Immune 21 Disord Drug Targets 2022; 22: 795-797 [PMID: 35209825 DOI: 10.2174/1871530322666220223161227]
- Koehler A, Motmans J, Mulió Alvarez L, Azul D, Badalyan K, Basar K, Dhejne C, Duišin D, Grabski B, Dufrasne A, Jokic-Begic N, Prunas A, Richards C, Sabir K, Veale J, Nieder TO. How the COVID-19 pandemic affects transgender health care - A cross-sectional online survey in 63 upper-middle-income and high-income countries. International Journal of Transgender Health22: 1-14 [DOI: 10.1080/26895269.2021.1986191]
- 23 T'Sjoen G, Arcelus J, De Vries ALC, Fisher AD, Nieder TO, Özer M, Motmans J. European Society for Sexual Medicine Position Statement "Assessment and Hormonal Management in Adolescent and Adult Trans People, With Attention for Sexual Function and Satisfaction". J Sex Med 2020; 17: 570-584 [PMID: 32111534 DOI: 10.1016/j.jsxm.2020.01.012]
- 24 Solimini R, Rotolo MC, Mastrobattista L, Mortali C, Minutillo A, Pichini S, Pacifici R, Palmi I. Hepatotoxicity associated with illicit use of anabolic androgenic steroids in doping. Eur Rev Med Pharmacol Sci 2017; 21: 7-16 [PMID: 28379599]
- Costa LBF, Rosa-E-Silva ACJS, Medeiros SF, Nacul AP, Carvalho BR, Benetti-Pinto CL, Yela DA, Maciel GAR, Soares 25 Júnior JM, Maranhão TMO. Recommendations for the Use of Testosterone in Male Transgender. Rev Bras Ginecol Obstet 2018; 40: 275-280 [PMID: 29913543 DOI: 10.1055/s-0038-1657788]
- 26 McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J 2016; 15: 817-828 [PMID: 28337112 DOI: 10.17179/excli2016-800]
- Velho I, Fighera TM, Ziegelmann PK, Spritzer PM. Effects of testosterone therapy on BMI, blood pressure, and laboratory 27 profile of transgender men: a systematic review. Andrology 2017; 5: 881-888 [PMID: 28709177 DOI: 10.1111/andr.12382]
- 28 Davey RA, Grossmann M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 2016; 37: 3-15 [PMID: 27057074]
- Ma WL, Lai HC, Yeh S, Cai X, Chang C. Androgen receptor roles in hepatocellular carcinoma, fatty liver, cirrhosis and 29 hepatitis. Endocr Relat Cancer 2014; 21: R165-R182 [PMID: 24424503 DOI: 10.1530/ERC-13-0283]
- Neri M, Bello S, Bonsignore A, Cantatore S, Riezzo I, Turillazzi E, Fineschi V. Anabolic androgenic steroids abuse and liver toxicity. Mini Rev Med Chem 2011; 11: 430-437 [PMID: 21443508 DOI: 10.2174/138955711795445916]
- 31 Weinand JD, Safer JD. Hormone therapy in transgender adults is safe with provider supervision; A review of hormone therapy sequelae for transgender individuals. J Clin Transl Endocrinol 2015; 2: 55-60 [PMID: 28090436 DOI: 10.1016/j.jcte.2015.02.003]
- von Schoultz B. Oestrogen therapy: oral versus non-oral administration. Gynecol Endocrinol 2009; 25: 551-553 [PMID: 32 19479596 DOI: 10.1080/09513590902836551]
- Zu Y, Yang J, Zhang C, Liu D. The Pathological Mechanisms of Estrogen-Induced Cholestasis: Current Perspectives. Front Pharmacol 2021; 12: 761255 [PMID: 34819862 DOI: 10.3389/fphar.2021.761255]
- 34 Shi L, Feng Y, Lin H, Ma R, Cai X. Role of estrogen in hepatocellular carcinoma: is inflammation the key? J Transl Med 2014; 12: 93 [PMID: 24708807 DOI: 10.1186/1479-5876-12-93]

- 35 Cirillo DJ, Wallace RB, Rodabough RJ, Greenland P, LaCroix AZ, Limacher MC, Larson JC. Effect of estrogen therapy on gallbladder disease. JAMA 2005; 293: 330-339 [PMID: 15657326 DOI: 10.1001/jama.293.3.330]
- 36 Bessone F, Lucena MI, Roma MG, Stephens C, Medina-Cáliz I, Frider B, Tsariktsian G, Hernández N, Bruguera M, Gualano G, Fassio E, Montero J, Reggiardo MV, Ferretti S, Colombato L, Tanno F, Ferrer J, Zeno L, Tanno H, Andrade RJ. Cyproterone acetate induces a wide spectrum of acute liver damage including corticosteroid-responsive hepatitis: report of 22 cases. Liver Int 2016; 36: 302-310 [PMID: 26104271 DOI: 10.1111/liv.12899]
- Kim JH, Yoo BW, Yang WJ. Hepatic failure induced by cyproterone acetate: A case report and literature review. Can Urol 37 Assoc J 2014; 8: E458-E461 [PMID: 25024808 DOI: 10.5489/cuaj.1753]
- Thole Z, Manso G, Salgueiro E, Revuelta P, Hidalgo A. Hepatotoxicity induced by antiandrogens: a review of the 38 literature. Urol Int 2004; 73: 289-295 [PMID: 15604569 DOI: 10.1159/000081585]
- Huang YK, Li YJ, Li B, Wang P, Wang QH. Dysregulated liver function in SARS-CoV-2 infection: Current understanding 39 and perspectives. World J Gastroenterol 2021; 27: 4358-4370 [PMID: 34366609 DOI: 10.3748/wjg.v27.i27.4358]
- 40 Ristic-Medic D, Petrovic S, Arsic A, Vucic V. Liver disease and COVID-19: The link with oxidative stress, antioxidants and nutrition. World J Gastroenterol 2021; 27: 5682-5699 [PMID: 34629794 DOI: 10.3748/wjg.v27.i34.5682]
- Su YJ, Chang CW, Chen MJ, Lai YC. Impact of COVID-19 on liver. World J Clin Cases 2021; 9: 7998-8007 [PMID: 41 34621856 DOI: 10.12998/wjcc.v9.i27.7998]
- Clarke SA, Abbara A, Dhillo WS. Impact of COVID-19 on the Endocrine System: A Mini-review. Endocrinology 2022; 42 163 [PMID: 34543404 DOI: 10.1210/endocr/bqab203]
- Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, Xin Y, Zhuang L. ACE2, TMPRSS2 distribution and extrapulmonary organ 43 injury in patients with COVID-19. Biomed Pharmacother 2020; 131: 110678 [PMID: 32861070 DOI: 10.1016/j.biopha.2020.110678]
- D'Ardes D, Boccatonda A, Cocco G, Fabiani S, Rossi I, Bucci M, Guagnano MT, Schiavone C, Cipollone F. Impaired 44 coagulation, liver dysfunction and COVID-19: Discovering an intriguing relationship. World J Gastroenterol 2022; 28: 1102-1112 [PMID: 35431501 DOI: 10.3748/wjg.v28.i11.1102]
- Dawood DRM, Salum GM, El-Meguid MA. The Impact of COVID-19 on Liver Injury. Am J Med Sci 2022; 363: 94-103 [PMID: 34752738 DOI: 10.1016/j.amjms.2021.11.001]
- 46 Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne) 2021; 8: 651658 [PMID: 34646834 DOI: 10.3389/fmed.2021.651658]
- 47 White Hughto JM, Reisner SL. A Systematic Review of the Effects of Hormone Therapy on Psychological Functioning and Quality of Life in Transgender Individuals. Transgend Health 2016; 1: 21-31 [PMID: 27595141 DOI: 10.1089/trgh.2015.0008]
- Hashemi L, Zhang Q, Getahun D, Jasuja GK, McCracken C, Pisegna J, Roblin D, Silverberg MJ, Tangpricha V, Vupputuri 48 S, Goodman M. Longitudinal Changes in Liver Enzyme Levels Among Transgender People Receiving Gender Affirming Hormone Therapy. J Sex Med 2021; 18: 1662-1675 [PMID: 34366264 DOI: 10.1016/j.jsxm.2021.06.011]
- 49 A Stangl T, M Wiepjes C, Defreyne J, Conemans E, D Fisher A, Schreiner T, T'Sjoen G, den Heijer M. Is there a need for liver enzyme monitoring in people using gender-affirming hormone therapy? Eur J Endocrinol 2021; 184: 513-520 [PMID: 33524005 DOI: 10.1530/EJE-20-1064]
- Cundill P. Hormone therapy for trans and gender diverse patients in the general practice setting. Aust J Gen Pract 2020; 50 49: 385-390 [PMID: 32599993 DOI: 10.31128/AJGP-01-20-5197]
- Iuliano S, Izzo G, Zagari MC, Vergine M, Brunetti FS, Brunetti A, Di Luigi L, Aversa A. Endocrine Management of 51 Transgender Adults: A Clinical Approach. Sexes2: 104-118 [DOI: 10.3390/sexes2010009]
- Martinez MA, Franco S. Impact of COVID-19 in Liver Disease Progression. Hepatol Commun 2021; 5: 1138-1150 52 [PMID: 34533001 DOI: 10.1002/hep4.1745]
- Maiuri AR, Wassink B, Turkus JD, Breier AB, Lansdell T, Kaur G, Hession SL, Ganey PE, Roth RA. Synergistic 53 Cytotoxicity from Drugs and Cytokines In Vitro as an Approach to Classify Drugs According to Their Potential to Cause Idiosyncratic Hepatotoxicity: A Proof-of-Concept Study. J Pharmacol Exp Ther 2017; 362: 459-473 [PMID: 28687704 DOI: 10.1124/ipet.117.2423541
- Sodeifian F, Seyedalhosseini ZS, Kian N, Eftekhari M, Najari S, Mirsaeidi M, Farsi Y, Nasiri MJ. Drug-Induced Liver Injury in COVID-19 Patients: A Systematic Review. Front Med (Lausanne) 2021; 8: 731436 [PMID: 34616757 DOI: 10.3389/fmed.2021.731436

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

