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Abstract
The review focuses on the most important areas of cell therapy for spinal cord 
injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these 
cells is safe for patients. The use of olfactory mucosa cells is effective in restoring 
motor function due to the remyelination and regeneration of axons after spinal 
cord injuries. These cells express neurotrophic factors that play an important role 
in the functional recovery of nerve tissue after spinal cord injuries. In addition, it 
is possible to increase the content of neurotrophic factors, at the site of injury, 
exogenously by the direct injection of neurotrophic factors or their delivery using 
gene therapy. The advantages of olfactory mucosa cells, in combination with 
neurotrophic factors, open up wide possibilities for their application in three-
dimensional and four-dimensional bioprinting technology treating spinal cord 
injuries.
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Core Tip: The development of an optimal strategy for the treatment of spinal cord injuries is a relevant and 
topical issue in modern medicine. Olfactory mucosa cells and neurotrophic factors showed their effect-
iveness in transplantation into the area of the injured spinal cord. In this review, the authors discuss the 
possibility of their application in four-dimensional bioprinting to create transplants that would have a 
complex impact on the transplant-mediated repair of the damaged area of the spinal cord.

Citation: Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, 
Reshetov IV, Chekhonin VP. Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of 
spinal cord injuries. World J Clin Cases 2023; 11(2): 322-331
URL: https://www.wjgnet.com/2307-8960/full/v11/i2/322.htm
DOI: https://dx.doi.org/10.12998/wjcc.v11.i2.322

INTRODUCTION
Therapy for spinal cord injury is a relevant issue in modern neurobiology and medicine because the 
mechanical injury of the spinal cord can lead to irreversible changes in the neural tissue. Spinal cord 
injuries often lead to disabilities and sometimes can have a lethal outcome[1].

One of the current strategies for the treatment of spinal cord injury is cell therapy. The most optimal 
source of cells for transplantation may be olfactory mucosa cells. Obtaining olfactory cells is an 
atraumatic procedure for a patient, which makes the application of this tissue in therapy a promising 
field of study in personalised medicine. For cell transplantation of the olfactory mucosa cells, neural 
stem/progenitor cells (NSPCs), olfactory ensheathing cells (OECs), and mesenchymal stem cells (MSCs) 
are obtained. It was shown that the transplantation of these cells contributed to the reparation of the 
injured tissue of the spinal cord[2]. Besides, spinal cord therapy involves the application of various 
neurotrophic factors. Neurotrophins exert an antiapoptotic effect and contribute to the survival of 
mature neural cells, which is especially important at the site of injury[3]. The application of neurotro-
phins in combination with olfactory mucosa cells can enhance the therapeutic effect of these cells. This 
combination promotes cell survival, axonal regeneration, structural repair and function recovery after 
injury Table 1.

In the last few years, experimental medicine research included the application of various variants of 
stable polymers that can deliver cells and neurotrophic factors as a three-dimensional (3D) scaffold[4]. 
This method has shown its safety in various clinical studies[5,6]. The 3D scaffold provides support for 
the transplanted cells in more native conditions, which contributes to their survival in the area of injury
[7,8]. However, such 3D scaffolds have low adaptivity to the changes in the area of injury and limited 
changes in shape. The solution to this problem is the development of conceptually novel “smart” 
materials. The application of such materials will allow specialists to create four-dimensional (4D) 
scaffolds that will not only combine the advantages of 3D scaffolds, but can also adapt to changes in the 
area of injury, and respond to external signals[9].

Thus, the creation of structures that have all the advantages of 4D bioprinting and can deliver 
olfactory mucosa cells and neurotrophic factors will be a breakthrough in the treatment of spinal cord 
injuries.

OLFACTORY MUCOSA CELLS IN THE TREATMENT OF SPINAL CORD INJURIES
The olfactory mucosa of the nose contains several cell types that can be successfully used in cell therapy 
for spinal cord injuries: NSPCs, ECs, and MSCs.

Despite the fact that cell-therapy based on olfactory mucosa cells is one of the most promising 
treatments for spinal cord injuries there are some limitations to this approach. Transplantation of OECs 
from olfactory mucosa significantly improves motor function recovery and reduces the size of cysts[10,
11]. However, there is a problem with OEC culture heterogeneity because it is currently difficult to 
purify these cells to a 100% pure culture, so there might be some side effects[12-14]. Mesenchymal 
stromal cells can also be obtained from olfactory mucosa. As it was mentioned in the manuscript, 
studies show that mesenchymal stromal cells transplantation has side effects such as neuropathic pain

https://www.wjgnet.com/2307-8960/full/v11/i2/322.htm
https://dx.doi.org/10.12998/wjcc.v11.i2.322
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Table 1 Effects of using olfactory mucosa cells with neurotrophins in spinal cord injuries

BDNF NT-3 NGF

NSPCs Improved hindlimb function[75] Promoted differentiation into neurons
[76]; promoted axon regeneration and 
functional recovery[77]

Reduced oligodendrocyte loss, improved functional recovery, 
preservation of motor neurons, attenuation of astrocytosis[78]

OECs Improved cell survival[79]; 
promotes cell migration[80]

Improved cell survival[79]; improved 
limb mobility and; improvement of 
growth promoting properties[81]

Improved cell; survival[79]

MSCs Enhanced recovery of motor 
function, reduced damage of spinal 
neurons[82] Improved hindlimb 
function[83]

Improvement of motor function[84], 
structural and functional recovery of 
SCI[85,86] and axonal regeneration[86]

Improvement of proliferation, differentiation, immunomodu-
latory[87]; promoted the growth of blood vessels[88]; increase of 
expression of genes related to neural differentiated cells[89]

NSPCs: Neural stem/progenitor cells; OECs: Olfactory ensheathing cells; MSCs: Mesenchymal stem cells; BDNF: Brain-derived neurotrophic factor; NT-3: 
Neurotrophin-3; NGF: Nerve growth factor; SCI: Spinal cord injury.

[15]. The use of neurospheres containing NSPCs from olfactory mucosa is associated with difficulties in 
calculating the number of cells and the percentage of NSPCs in suspension.

Safety of cell-based treatments is a fundamental concern for regenerative medicine. Efficacy is usually 
the main focus, however, the safety of each treatment is also tested during the trials[16]. Clinical 
observations show that OEC transplantation is safe for patients and there were no serious adverse 
reactions in all cases[17]. Clinical trials of NSPCs and MSCs from the olfactory mucosa have not been 
performed to date.

NSPCs
NSPCs were discovered in the spinal cord and brain (in the subventricular area and the hippocampus), 
as well as the olfactory mucosa layer. These cells can differentiate into glial cells and mature neurons 
and encode neurotrophic factors for successful neuroregeneration[18-20].

The treatment of modelled spinal cord injuries includes suspension cell cultures in the form of 
neurospheres containing NSPCs. Studies have shown the effectiveness of neurospheres, from the 
olfactory mucosa, in the treatment of spinal cord injuries. Their transplantation in the acute phase of rat 
spinal cord injury contributes to the restoration of motor activity of the hind limbs and regeneration of 
axons of the rubrospinal tract[21,22].

Chronic injury of the spinal cord can be associated with pathological processes that lead to the 
formation of a posttraumatic cyst. The cyst can enlarge and compress the spinal cord, which complicates 
the processes of regeneration and mediation of nervous impulses to the limbs[23]. However, the 
application of these neurospheres in the chronic phase of spinal cord injury remains understudied. In 
the authors’ laboratory, the first transplantation of neurospheres from the olfactory mucosa was 
performed in rats with modelled posttraumatic cysts. It was shown that transplantation contributed to 
the improvement of motor activity of the hind limbs and the reduction of the cyst size[24]. The proven 
effectiveness of neurospheres, obtained from olfactory mucosa in the experimental studies, can provide 
grounds for preclinical studies and further application in the treatment of spinal cord injuries in 
patients.

Ensheathing cells
OECs obtained from the olfactory mucosa are a unique type of glial cell found in the peripheral nervous 
system. In an adult organism, these cells manage the growth of new axons in the olfactory epithelium 
and protect a growing axon from growth-inhibiting factors, which allows an axon to grow to the size of 
an olfactory bulb and form a synapsis[25]. Besides, in vitro and in vivo studies have shown that OECs of 
an adult organism secreted molecules associated with myelinization: Protein zero (P0) and myelin basic 
protein[26]. It is suggested that this type of cells can maintain the growth and integrity of axons 
throughout an organism’s life and contribute to the formation of the myelin sheath around 
demyelinated axons[27,28]. OECs can also express neurotrophic factors that promote neuroregeneration
[29].

It has been shown that transplantation of OECs in the acute phase of spinal cord injury contributed to 
the regeneration of the nervous tissue and remyelination of axons, which leads to the restoration of limb 
motor activity. Furthermore, introducing these cells in the acute phase contributes to a reduction of 
posttraumatic astrogliosis[30]. Transplantation of OECs in the chronic phase promotes the recovery and 
growth of the damaged axons and improves limb motor activity[31]. In the authors’ laboratory, for the 
first time, the therapeutic effect of OECs was shown in the treatment of posttraumatic spinal cord cysts. 
The transplantation of OECs contributed to a decrease in the volume of cysts and restoration of limb 
motor activity[32,33].
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Preclinical studies have demonstrated the safety and efficacy of the use of olfactory mucosa cells in 
the treatment of acute and subacute stages of spinal cord injury[34-36]. The conducted clinical studies 
also demonstrated the safe use of autologous OECs in the treatment of patients with spinal cord injuries
[37-39]. Thus, OECs from the olfactory mucosa can be considered the optimal cell material for person-
alised cell therapy in such patients.

MSCs
Experimental studies have shown that the transplantation of MSCs, derived from olfactory mucosa, 
contributed to the growth of axons in the injured rat nerves. A positive effect of these cells on the 
myelinization of axons was also evident in vitro[40]. However, MSCs derived from olfactory mucosa 
remain understudied in in vivo conditions.

MSCs obtained from bone marrow were also used in the treatment of spinal cord injuries. Even 
though the transplantation of these cells showed positive results in experimental models, clinical studies 
did not prove their effectiveness[41]. Besides, some studies describe the side effects of MSC 
transplantation, including neuropathic pain[15]. The application of MSCs obtained from olfactory 
mucosa can have the same consequences, which makes the other two types of olfactory mucosa cells 
(OECs and NSPCs) the most promising for cell therapy.

EXOGENOUS NEUROTROPHIN THERAPY
Another promising method for the treatment of spinal cord injuries is exogenous neurotrophin therapy 
since the endogenous neurotrophic factor count is insufficient for the regeneration of the injured tissue
[42]. Neurotrophic factors, including nerve growth factor (NGF), neurotrophin-3 (NT-3), NT-4, and 
brain-derived neurotrophic factor (BDNF), play an important role in the processes of neuroregeneration 
and axon growth after injury[43].

One of the methods for delivering exogenous neurotrophins to the area of injury is injection. Studies 
conducted at the end of the last century have shown that the delivery of NGF for two weeks after 
resection of the spinal cord fragment in rats promoted the regeneration of the nervous tissue of the 
spinal cord[44]. Later, it was shown that the delivery of BDNF in the acute and chronic phases of rat 
spinal cord injury also contributed to nervous tissue regeneration[45,46]. Further in vitro studies showed 
that BDNF expressed by the OECs contributed to the transplant-mediated axon growth[47]. For the first 
time, the authors of this paper have demonstrated that the combined introduction of OECs and 
exogenous NT-3 to the modelled cysts in the rat spinal cord improved the motor activity of the hind 
limbs and reduced the cyst size[32]. The use of NT-3 improves the effects obtained from cell therapy and 
the data are presented in Figure 1[48].

However, after neurotrophins are directly administered to the area of injury, they degrade quickly. 
Currently, the most promising method of neurotrophin delivery to the area of injury is the use of 
adenoviral vectors[49]. There are direct and indirect deliveries of adenoviral vectors. Direct delivery 
involves the injection of the vector to the area of injury or nearby, resulting in the transduction of 
neurons, astrocytes, oligodendrocytes, macrophages, lymphocytes, and microglia. With indirect 
delivery, an adenoviral vector is injected intramuscular or into the peripheral nervous system.

Gene therapy ex vivo is a variant of indirect gene delivery. This therapy includes obtaining cells, 
genetic modification of these cells in vitro, and transplantation of a gene-cell construct into the patient
[50]. Experimental studies investigated gene-cell constructs based on Schwann cells[51], MSCs[52,53], 
NSPCs[54,55], and OECs obtained from olfactory bulb[56]. In the authors’ laboratory, an OEC-based 
gene-cell construct from the olfactory mucosa was studied. It was shown that transplantation of OECs 
obtained from olfactory mucosa, transduced by an adenoviral vector encoding a mature form of BDNF, 
into a post-traumatic cyst could have a therapeutic effect. This is observed not only due to increased 
secretion of neurotrophin but also due to the regenerative potential of the cells themselves[32]. Other 
authors showed the effectiveness of OECs obtained from olfactory mucosa transduced with adenoviral 
vector transcoding NT-3. This construct intensely encoded NT-3, which contributed to the growth of 
injured axons[57].

Thus, gene-cell constructs are being actively studied, however, it is necessary to continue the invest-
igation of various combinations of cells and adenoviral vectors to create an optimal drug for gene-cell 
therapy. Special attention should be paid to the safety of this technology. Adenoviral vectors are the 
most studied in this respect. They are successfully used in the creation of vaccines and treatment of 
oncological diseases. At present, they are being actively studied for use in regenerative medicine. 
Although great success has been achieved in this field, it is necessary to improve the immune system 
response, the life span of the virus, and the packing ability of the vectors. However, the evolution of the 
adenoviral vector as a tool for the transfer of genetic material has revolutionized how doctors and 
scientists can approach the treatment of even the most debilitating diseases[58].
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Figure 1 Dynamics of recovery of hind limb motor activity in rats after transplantation of human olfactory ensheathing cell alone and in 
combination with neurotrophin-3 into SC cysts. aP < 0.05, bP < 0.01, cP < 0.001 in comparison with the control; eP < 0.01 in comparison with transplantation 
of olfactory ensheathing cell alone. Control = DMEM:F12 (1:1) without cells. Each group includes 10 animals. Neurotrophin-3 significantly improves the efficiency of 
olfactory ensheathing cells. OEC: Olfactory ensheathing cells; NT-3: Neurotrophin-3.

THREE-DIMENSIONAL BIOPRINTING IN THE TREATMENT OF SPINAL CORD INJURIES
Another promising method for delivering cells and neurotrophins to the area of injury is 3D bioprinting. 
The development of tissue-specific scaffolds that imitate the natural architecture of the studied tissue is 
the most important task of modern medicine. To create such structures, the field of 3D bioprinting is 
being actively explored. Scaffolds are printed layer-by-layer, using 3D printers, and each of the layers 
can be filled with cells and neurotrophic factors[9]. This technology has been actively studied for some 
years and has already been applied in the treatment of a wide range of pathologies, including spinal 
cord injuries[59].

The effect of 3D polymers on the restoration of nervous tissue is currently being studied in experi-
mental models. For example, the transplantation of a printed 3D scaffold from biodegradable 
polyurethane, which contains mature neural stem cells (NSCs) of a mouse, positively affected the 
regeneration of the central nervous system of Danio-rerio embryos. Transplantation of this construct to 
adults with brain injury increased their survival rate and had a positive effect on the restoration of 
motor activity [60]. In addition, there are studies available on the application of printed agarose tubes in 
combination with mouse bone marrow stem cells after sciatic nerve injury in rats. It was shown that the 
application of this transplant was more effective in the restoration of motor and sensory activity than an 
injection of collagen or transplantation of nervous tissue into the area of injury. These studies showed 
that a solid scaffold increased cell survival rates and positively affected the regeneration of the damaged 
areas of nervous tissue[61]. The study of the application of a 3D printed polyethylene glycol gelatin 
methacrylate scaffold with rat neural progenitor cells (NPCs) also showed that transplantation of a 
scaffold with cells led to a better recovery of hind limbs motor activity in injured rats compared to 
groups that received cells without a scaffold or a scaffold without cells[62]. To improve the performance 
of 3D matrices, a combination of germanium phosphide and hyaluronic acid was developed. This 
construct significantly improved the recovery of motor activity of the hind limbs in rats with modelled 
spinal cord injury and also increased the migration of rat NPCs in the spinal cord to the area of injection
[63].

A promising direction is the study of 3D printing based on OECs obtained from olfactory mucosa, 
since, as noted earlier, the production and application of these cells do not pose any danger to the 
patient. 3D microbeads were obtained from OECs and Matrigel. OECs survived the printing process 
and retained their phenotype. It is assumed that such a 3D construct can have a therapeutic effect when 
transplanted into the spinal cord of animals and promote the growth of axons along the scaffold[64].

Furthermore, there was a study made on the printed multichannel poly (propylene- fumarate)-
collagen scaffold containing neurotrophin NT-3. Implantation of this construct into the spinal cord of an 
injured rat had a significant neurotrophic effect and contributed to the growth and regeneration of the 
damaged axons. The porous structure of the scaffold facilitated the migration of endogenous NSCs in 
rats and promoted neuronal regeneration[65].

However, materials used for 3D printing can rarely respond to the changes in the injured area or 
adapt to the changing shape, which is a limitation of such therapies. To remove these limitations, 4D 
bioprinting is being explored.
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FOUR-DIMENSIONAL BIOPRINTING IN THE TREATMENT OF SPINAL CORD INJURIES
The development of more complex and “smart” materials will allow researchers to create novel 
polymers that have distinctive features: they change shape, can self-assemble, are capable of 
autonomous activation, and can capture a wide range of signals[66]. This type of polymer is used in 4D 
printing. Currently, these technologies are widely used in bone and skin grafting[67-70]. However, 
further research into the possibilities of 4D bioprinting will allow the use of four-dimensional polymers 
in the treatment of spinal cord injuries as well.

At the moment, a matrix has been developed that combines the developments of 3D printing with the 
advantages of novel technologies. Hybrid gelatin methacrylate-microcapsule hydrogel, in combination 
with polylactide-clicolide capsules with NT-3, can secrete growth factors at a certain level for 20 d. This, 
in turn, contributed to the recovery of the spinal cord after injury, differentiation of NSCs located in the 
spinal cord, and improvement in motor activity of the hind limbs in rats with spinal cord injury[71].

In parallel, a polymer based on epoxydated acrylate of soybean oil in combination with graphene and 
human MSCs was developed based on laser stereolithography technology[72]. In the present study, 
cells in the 4D polymer were placed in the medium for neural differentiation. Two weeks later, MSCs on 
the polymer showed a significantly higher level of neurogenic genes in comparison with the same cells 
cultivated on a regular 3D polymer. In addition, such material could reversibly change the structure and 
shape of memory[72]. These results allowed the authors to study MSCs on NSCs in vitro. A later study, 
by the same authors, focused on the design of polymer microwells with a memory function[73]. This 
was achieved by combining laser stereolithography, a polydimethylsiloxane mould, and organic glass 
for the formation of wells 400-800 µm in diameter. This approach allowed the authors to create a micro 
surrounding of a cell that could change its shape and achieve more favourable conditions for cell 
cultivation. NSCs in polymer showed a significant increase in the expression of markers of neural and 
glial differentiation compared to cultures cultivated on plastic and glass surfaces[73]. Another research 
group used technology based on polymer melt modelling and obtained an effect that was similar to that 
described above, from the cultivation of NSCs in combination with a polymer from polyurethane, 
nanoparticles, and gelatin. The resulting polymer also had a memory effect, was capable of maintaining 
its shape, and was suitable for cryo conservation[74].

PROSPECTS FOR THE APPLICATION OF OLFACTORY MUCOSA CELLS AND  
NEUROTROPHINS IN 4D BIOPRINTING
As already discussed in this review, olfactory mucosa cells have great potential in the treatment of 
spinal cord injuries and are optimal for personalised cell therapy. Four-dimensional bioprinting is a 
novel, actively developing direction in regenerative medicine. The application of olfactory mucosa cells 
and neurotrophins in the creation of 4D constructs will allow researchers to design unique transplants 
that will have a complex effect on damaged tissue. It is necessary to study 4D constructs based on both 
cells with the addition of a neutrophilic factor and transduced cells, which will intensively secrete 
various neurotrophic factors in the area of injury. Particular attention should be paid to constructs 
capable of adapting to changes in shape and size, which is especially important in the treatment of post-
traumatic cysts.

CONCLUSION
The most promising vector for the development of spinal cord injury therapy is the development of 
smart 4D constructs. Such constructs can contain both neurotrophins and cells. The most optimal source 
of cells for 4D printing is olfactory mucosa due to its atraumatic production and proven therapeutic 
efficacy of the cells obtained from it. The study of 4D bioprinting based on olfactory mucosa cells and 
neurotrophic factors is necessary for developing an optimal strategy for the treatment of spinal cord 
injury.
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