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Abstract
Alzheimer’s disease (AD) is a progressive and neurodegenerative illness which 
results in alterations in cognitive development. It is characterized by loss/dys-
function of cholinergic neurons, and formation of amyloid plaques, and formation 
of neurofibrillary tangles, among other changes, due to hyperphosphorylation of 
tau-protein. Exposure to pesticides in humans occurs frequently due to contact 
with contaminated food, water, or particles. Organochlorines, organophosphates, 
carbamates, pyrethroids and neonicotinoids are associated with the most 
diagnosed incidents of severe cognitive impairment. The aim of this study was to 
determine the effects of these pesticides on the phosphorylation of tau protein, 
and its cognitive implications in the development of AD. It was found that 
exposure to pesticides increased the phosphorylation of tau protein at sites Ser198, 
Ser199, Ser202, Thr205, Ser396 and Ser404. Contact with these chemicals altered 
the enzymatic activities of cyclin-dependent kinase 5 and glycogen synthase 
kinase 3 beta, and protein phosphatase-2A. Moreover, it altered the expression of 
the microtubule associated protein tau gene, and changed levels of intracellular 
calcium. These changes affected tau protein phosphorylation and neuroinflam-
mation, and also increased oxidative stress. In addition, the exposed subjects had 
poor level of performance in tests that involved evaluation of novelty, as test on 
verbal, non-verbal, spatial memory, attention, and problem-solving skills.

Key Words: Organochlorines; Organophosphates; Carbamates; Pyrethroids; Neonicoti-
noids; Tau protein
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Core Tip: Exposure to pesticides occurs frequently through contact with contaminated particles, food, or water. In 2022, the 
Alzheimer’s Association emphasized that contact with these pollutants is a risk factor for Alzheimer diseases. This study 
showed that contact with organochlorines, organophosphates, carbamates, pyrethroids and neonicotinoids modified 
mechanisms related to tau hyperphosphorylation and neuroinflammation. In cognitive findings, these chemicals altered 
memory, attention, and problem-solving processes. Few published studies have evaluated the effect of these pesticides on tau 
protein. Therefore, this review is novel in the sense that it presents an analysis for each pesticide class.

Citation: Torres-Sánchez ED, Ortiz GG, Reyes-Uribe E, Torres-Jasso JH, Salazar-Flores J. Effect of pesticides on phosphorylation of 
tau protein, and its influence on Alzheimer’s disease. World J Clin Cases 2023; 11(24): 5628-5642
URL: https://www.wjgnet.com/2307-8960/full/v11/i24/5628.htm
DOI: https://dx.doi.org/10.12998/wjcc.v11.i24.5628

INTRODUCTION
Alzheimer’s disease (AD) represents 60%-70% of the cases of major cognitive disorders (MCD) worldwide. In 2022, data 
from the World Health Organization[1] showed that approximately 55 million people were diagnosed with MCD. 
Additional data from Alzheimer’s Disease International indicate that by 2030, this figure may increase to 78 million, with 
most cases expected to come from developing countries[2]. Amongst the risk factors associated with the development and 
progression of AD, exposure to pollutants has been linked to poor cognitive impairment[3]. These pollutants comprise 
organochlorine (OCs) pesticides, organophosphates (OPs), carbamates (Cs), pyrethroids (Ps) and neonicotinoid insect-
icides (Ns). Majority of them have neurotoxic potential. Environmental pollution by pesticides occurs through airborne 
dust particles, resulting in frequent contamination of air, water and food. Approximately, 30% of these chemicals are 
dispersed in powder form, while the remaining 70% are volatilized into the environment from surfaces where they are 
applied[4-7]. Another indirect form of contact with these chemicals is through consumption of contaminated water and 
food. Previous studies from India, Brazil, Lithuania, Egypt, Turkey, Mexico, and Venezuela revealed presence of contam-
ination in vegetables, fruits, cereals, and water via exposure to OCs, OPs, Cs, Ps and Ns[5,8-10].

Pesticides are organic and hydrophobic molecules which are easily absorbed through different routes of exposure in 
humans. Pesticides are distributed mainly in lipid tissues of the body where they bioaccumulate as residues[5,11]. It is 
important to note that the brain and central nervous system (CNS) are rich in lipids, mainly sphingolipids, cholesterol, 
glycerophospholipids and omega-3 and omega-6 polyunsaturated fatty acids[12]. Thus, the brain and CNS are anatomical 
sites vulnerable to pesticides due to physicochemical affinity[5,11]. Previous studies indicate that in CNS, exposure to 
pesticides alters neurogenesis and leads to cognitive impairment[13,14]. However, there is still doubt about the 
involvement pesticides in the development of AD, and the underlying pathophysiological mechanisms. Most of the 
published studies on patients with AD or in experimental models were focused mainly on evaluation of the effects of 
exposure to two classes of pesticides: OC and OP. There are limited reports on effect of exposure to Cs, Ps and Ns, and 
the impact of the pesticides on tau protein phosphorylation. Tau protein, which is expressed in the distal extremity of the 
axon, controls the stability of microtubules. Hyperphosphorylation of tau protein stimulates the dissociation of micro-
tubules, interrupts axonal extension, and enhances the aggregation of insoluble tau, leading to alterations in the synapse, 
and hence tauopathy[15,16]. Therefore, the present this study was aimed at investigating the effects of OC, OP, C, P and 
N pesticides on the phosphorylation of tau protein, and the associated cognitive implications in the development of AD.

PESTICIDES AND CNS EFFECTS
In a general way, the major reported effects of pesticide exposure on CNS are changes in enzymatic activity of acetyl-
cholinesterase (AchE), blockage of receptors, blockage of transport channels, changes in steroidal hormonal responses, 
mitochondrial damage, and increased oxidative stress, all of which affect motor, sensory, autonomous, and cognitive 
functions[14,17,18]. Specifically, OC pesticides block calcium-dependent sodium-potassium pump and chloride channels, 
a phenomenon that generates antagonistic effect on the neurotransmitter gamma aminobutyric acid (GABA), leading to 
increases in CNS excitotoxicity[4,17,19]. On the other hand, OP and C pesticides inhibit AchE: OPs bind irreversibly to the 
active site of AchE, while Cs binds reversibly to AchE[4,17,18]. The inhibition of AchE increases the concentration of 
acetylcholine, thereby overstimulating postsynaptic muscarinic receptors[4,19,20]. Therefore, exposures to OP and C 
pesticides have been linked to the development of MCD through changes in acetylcholine levels[4]. The class P pesticides 
act via 3 different mechanisms. Firstly, they bind to voltage-dependent sodium channels, thereby modifying their 
conformations. This affects the transition from ion to non-conductive state which results in a higher sodium input. 
Secondly, they block the binding of calcium to calmodulin, resulting in increases in calcium ion concentration which alter 
the neurotransmission and depolarization of the N-methyl-D-aspartate receptor. Thirdly, they bind to chloride-
dependent GABA receptors. These 3 mechanisms alter muscarinic, adrenergic, and serotonergic neurotransmissions, 
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resulting in symptoms such as tremor, prostration, sensitivity to stimuli, choreoathetosis, salivation and clonic seizures[4,
17,21]. The N pesticides are nicotinic receptor agonists in CNS postsynaptic neurons. The nicotinic receptors are part of 
important ion channels in the neurotransmission functions of acetylcholine, GABA, glycine, and glutamate. Therefore, 
exposure to N pesticides triggers nicotinic syndrome which involves the respiratory and cardiovascular functions, as well 
as CNS[4,17,22].

Other disturbances induced by pesticide exposure are linked to estrogen steroid receptors and steroid nuclear 
receptors. Interactions of pesticides with these receptors alter various metabolic and genetic pathways, which may lead to 
multiple pathologies, including AD[18,23]. It has been reported that several pesticides act as endococcal disruptors due to 
their ability to inhibit cytochrome P450 enzyme complex in the brain, with adverse impact on the synthesis of steroid 
hormones, vitamins, retinoic acid, and thyroid hormones[18]. It has been reported that exposure to hydroxychlor, an OC 
pesticide, resulted in antagonism of estrogen receptors alpha and beta, a situation which may lead to neurological 
alterations[24]. Besides, due to their hydrophobic characteristics, the OC and OP pesticides are easily incorporated into 
the mitochondria along with mitochondrial respiratory chain translocating proteins, leading to enhanced oxidative 
damage, increased mitochondrial permeability, induction of apoptosis, and decreased synthesis of ATP[25].

Additionally, pesticide-induced overactivation of cholinergic/glutamatergic responses and increased concentration of 
intracellular calcium ion, are associated with increased free radicals, mainly reactive nitrogen species and reactive oxygen 
species, thereby tilting the oxidant-antioxidant balance towards pro-oxidants[25,26]. A break in the mitochondrial 
oxidant-antioxidant homoeostasis results in loss of neuronal synapses, as well as neuropathological, neurochemical, and 
neurobehavioral alterations[4].

PESTICIDES AND THEIR IMPACTS ON TAU PROTEIN
Tau protein and tauopathies
AD is characterized by loss of cholinergic neurons or dysfunctional cholinergic neurons, formation of amyloid plaques, 
and formation of neurofibrillary tangles, due to hyperphosphorylation of tau-protein[15,27]. Based on the objective of this 
work, the characteristics of tau protein and its response to exposure to pesticides are highlighted in this review.

Physiologically, the tau protein is involved in myelination processes[16,28], regulation of glucose metabolism[29], 
rearrangement of microtubules[16], axonal transport[16], iron homeostasis[16], as well as neurogenesis and processes 
related to learning and memory[16,28]. However, exposure to pesticides may affect the phosphorylation of tau protein 
and the formation of neurofibrils, resulting in morphological changes in CNS[30,31].

Tau protein is expressed in six different isoforms: 2N4R, 1N4R, 0N4R, 2N3R, 1N3R and 0N3R, depending on their 
amino and carboxyl groups. These isoforms come from the alternative cutting and splicing of the microtubule associated 
protein tau (MAPT) gene located on position q21 of chromosome 17[16,28]. Tau is a 441-amino acid hydrophilic protein 
sub-classified into 4 domains. The sites susceptible to phosphorylation correspond to the amino acids Ser198, Ser199 and 
Ser202[32]. The amino acids Thr181, Thr205 and Thr217 are associated with the early stages in the development of AD[16,
28], while amino acid residues Ser262, Ser396 and Ser404 are associated with formation of aggregates[31].

Tauopathies are pathologies that arise as a result of alterations in the phosphorylation of tau. Often, these alterations 
are the result of imbalance involving two kinases: Cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 beta 
(GSK-3β), and protein phosphatase-2A (PP2A). The enzymes Cdk5 and GSK-3β are responsible for phosphorylating tau 
protein, whereas PP2A dephosphorylates the protein. A close relationship has been reported between GSK-3β and PP2A, 
both of which regulate each other. For example, when GSK-3β is activated, PP2A is inactivated by auto-phosphorylation 
at its amino acid residue Tyr-307[28,32-34]. Moreover, the regulation of GSK-3β also depends on routes modulated by 
calcium/calmodulin, and on the ratio guanosine-5'-triphosphate/guanosine diphosphate. Another important alteration 
in tauopathy is the phosphorylation of proteins associated with microtubules-2 (MAP-2) which are regulated by cyclic 
adenosine monophosphate. The MAP-2 is important in stabilizing microtubule assembly, and it is intimately bound to 
tau protein. Thus, it has been reported that multiple axopathies are associated with abnormalities in these pathways[35,
36].

In AD, increased hyperphosphorylation of tau forms aggregates in neuronal cytoplasm, resulting in generation of the 
so-called neurofibrillary tangles and neurotrophic neurites, which are responsible for neurodegeneration[28,31,37,38]. 
This phenomenon induces morphological changes in dendrites and causes axonal shortening which alters neuronal 
plasticity and response to neurotransmitters, leading to problems associated with spatial memory, motor skills and 
learning, all of which are characteristics of AD[33,34,39]. In addition, the release of tau aggregates in the cytoplasm 
increases immunoreactivity and oxidative stress which influence neuroinflammation[34,40]. Increased oxidative stress 
over-activates GSK-3β, thereby making tau protein more vulnerable to formation of aggregates and new neurofibrils[41]. 
Results from multiple studies indicate that exposure to pesticides modifies the mechanisms involved in tau phospho-
rylation[32-34,42,43] (Figure 1).

Effect of OCs on the tau protein
Table 1 shows 7 studies in which the effect of OCs on tau protein phosphorylation was determined[42,44-49]. Two clinical 
studies reported that exposure to these pesticides may be associated with polymorphisms in MAPT and microtubule 
associated protein 1B gene which are related to the formation of tau aggregates[44,45]. Studies have demonstrated that 
dichlorodiphenyltrichloroethan exposure to an OC altered mitochondrial function, resulting in the formation of tau 
aggregates, with up-regulations in the expressions of proteins such as synaptosome-associated protein 25 kDa, 
cytochrome C, enolase A, hemoglobin alpha chain and histone cluster 1, which are characteristic of AD[42,46,47]. Finally, 
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Table 1 Effect of organochlorine pesticides on tau protein

Type of study Sample Type of 
pesticide Exposure data

Tau 
phosphory-
lation

GSK-3β PP2A Other mechanisms Ref.

Clinical/epidemiological 
studies. Cohort

13 postmortem 
brains of humans 
without 
exposure, and 4 
postmortem 
brains of humans 
with exposure

OCs Concentration: 
NA. Exposure 
time: From 0 to 
10 yr

Increased NA NA Exposure altered 
mitochondrial genes 
encoding MAPT and MAP1B. 
These are associated with 
MAPT phosphorylation and 
neurite formation that 
contributed to the 
development of tauopathies

[44]

Clinical/epidemiological 
studies. Cross-sectional

90 subjects with 
PD, and 90 
healthy subjects

δ-HCH Concentration: 
NA. Exposure 
time: NA

NA NA NA Exposure was associated 
with MAPT rs16940758 
polymorphism which was 
related to tau aggregation

[45] 

Experimental studies Strains of 
Caenorhabditis 
elegans (N2 
BR5270)

DDT Concentration: 3 
μM. Exposure 
time of 2 h

Increased NA NA DDT exacerbated tau protein 
toxicity, reduced 
mitochondrial respiration, 
and induced apoptosis

[42]

Experimental studies Strains of 
Caenorhabditis 
elegans (N2 
BR5271)

DDT Concentration: 3 
μM. Exposure 
time of 2 h

Increased NA NA Exposure to DDT increased 
tau protein aggregation and 
modified mitochondrial 
respiration

[46]

Experimental studies Female 
largemouth bass

Dieldrin Concentration: 
3.0 mg/kg. 
Exposure time 
of 57 d

NA NA Decreased Increased expression of 
proteins in hypothalamus 
such as Snap25, Cytc, Eno1, 
Hba1, and H2bb. These 
proteins were elevated in the 
pathophysiology of mice 
with AD and were associated 
with tau protein. 
Additionally, downregu-
lation of MAPT was 
observed, which affected 
phosphatase activity

[47]

Experimental studies Wistar rats Chlordane Range of 
concentration: 1 
to 100 nM. 
Chronic 
exposure

Not modified NA NA No significant changes in tau 
protein levels from exposure 
to chlordane

[49]

Review studies Multiple studies TCDD Range of 
concentration: 
5-23 ppt. Single 
dose

Increased Increased NA Increased intracellular 
calcium levels and tau 
phosphorylation in neurons 
through overexpression of 
GSK-3β and hence its 
enzymatic activity

[48]

OCs: Organochlorine; NA: Not available; MAPT: Microtubule associated protein tau; δ-HCH: δ-hexachlorocyclohexane; DDT: Dichlorodiphe-
nyltrichloroethan; AD: Alzheimer’s disease; TCDD: 2,3,7,8 tetrachlorodibenzo-p-dioxin; GSK-3β: Glycogen synthase kinase 3 beta; PD: Parkinson disease; 
ppt: Parts per thousand; PP2A: Protein phosphatase-2A.

Mir et al[48] has shown that exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin induced overexpression of GSK-3β, and 
hence tau phosphorylation. In all, 4 of the 7 studies described in Table 1 reported increases in tau phosphorylation[42,44,
46,48]. Therefore, OCs have been associated with development of tauopathy which leads to axonal instability, mitochon-
drial dysfunction and neuroinflammation[44].

Effect of OPs on the tau protein
Exposure to OPs (chlorpyrifos, paraquat and malathion) increases the level of hyperphosphorylated tau protein, over-
stimulates glial cells, and increases the levels tumor necrosis factor-α, interleukin (IL)-6, IL-β, chemokines, NADPH 
oxidase 2, NADPH oxidase and COX-2, thereby inducing neuroinflammation. Intensified inflammation accelerates 
pathologies associated with neurodegenerative processes[33,40,50]. Similarly, when OP pesticides are transported 
through the blood-brain barrier, a process regulated by Na+ dependent transporters, microglia are activated, resulting in 
redox imbalance which affects the mitochondrial respiratory chain at mitochondrial complex I, leading to deterioration of 
CNS function[51,52]. Table 2 provides a breakdown of 18 studies on the effect of OPs on tau protein[31,33,36,37,39,41,49,
50,51,53-61]. The only report on cases and controls with OP exposure for more than 2 years showed higher levels of tau 
phosphorylation in exposed subjects[53]. On the other hand, eight out of eleven studies indicate that exposure to these 
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Table 2 Effect of organophosphates pesticides on tau protein

Type of study Sample Type of 
pesticide Exposure data

Tau 
phosphory-
lation

GSK-3β PP2A Other mechanisms Ref.

Clinical/epidemiological 
studies. Cases and 
controls, unpaired

33 humans 
exposed to 
OPs and 33 
humans 
without 
exposure

OPs Concentration: 
NA. Exposure 
time 2 yr

Increased NA NA Subjects exposed to OPs for 
more than 10 yr showed 97% 
higher serum concentration of 
phosphorylated tau, when 
compared to the control group

[53]

Experimental studies C57BL/6 
and 129/Sv 
mice

Paraquat Concentration: 
10 mg/kg. 
Exposure time 
for 6 wk

Increased Increased NA Exposed mice showed a 67% 
increase in hyperphos-
phorylation of tau in Ser262, 
Ser396 and Ser404 in striata 
region, suggesting that 
paraquat may inhibit the 
proteosome 20S as tau overex-
pression occurs. Thus, it was 
inferred that the proteosomal 
activity was reduced by 
exposure to paraquat

[31] 

Experimental studies Wistar rats Malathion Concentration: 
100 mg/kg. 
Exposure time of 
14 d

Increased Increased Decreased The level of hyperphos-
phorylated tau protein in rats 
with exposure was increased 
in Thr205 and Ser404. This 
result may be related to 
phosphatase inactivation and 
increased GSK-3β activity. In 
addition, a decrease in the 
expression of mRNA of PP2A 
was reported due to the 
exposure to malathion

[33]

Experimental studies MAP-rich 
tubulin 
from Sus 
Scrofa from 
porcine 
brain

Chlorpyrifo- 
oxon, 
paraoxon and 
diazoxon

Concentration: 
100 μM. 
Exposure time of 
48 h

Increased NA NA Cross-link was formed 
between MAP-tubulin (alpha), 
at residues Lys163, Lys336 
and Asp98 of MAP with 
residues Glu158 and Lys115 of 
tubulin beta. Lys336 and 163 
cross-links covalently joined 
with tau protein, forming Lys-
adduct, which resulted in 
unstable microtubules

[36]

Experimental studies FVB and 
C57BL/6 
mice

DFP Concentration: 5 
mg/kg. 
Exposure time of 
15 d

Increased NA NA Exposure increased Cdk5 
activity by converting p35 to 
p25. Exposure to DFP 
increased 15.5 ± 2 times the 
phosphorylation of Cdk5 in 
Thr205 and therefore of tau 
protein, thereby inducing 
neurological effects in the 
striatum and hippocampus

[37]

Experimental studies Wistar rats Chlorpyrifos- 
oxon

Range of concen-
tration: 1 to 100 
nM. Chronic 
exposure

Not 
modified

NA NA No significant changes in tau 
protein levels from 
chlorpyrifos exposure

[49]

Experimental studies Transgenic 
AD model 
rats

Chlorpyrifos Concentration: 3 
and 10 mg/kg. 
Exposure time of 
21 d

Not 
modified

NA NA No changes in hyperphos-
phorylation of rat tau protein 
with exposure to control rats

[50]

Experimental studies Wistar rats Paraquat Concentration: 
0.1 mg/kg. 
Exposure time of 
4 mo

Increased NA NA In exposed rats, neurofib-
rillary tangle was formed in 
the compact pars of the 
substantia nigra region and in 
extracellular neuritic plaques 
as a result of a neuroinflam-
matory cascade by the 
activation of microglia and 
astrocytes, which increased 
tau phosphorylation

[51]

Concentration: 
0.1, 1.0, 5.0 

No significant differences 
were observed in tau levels 

Experimental studies NMRI 
mouse

Chlorpyrifos Not 
modified

NA NA [54]
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mg/kg. Single 
dose

due to exposure to this 
pesticide

Experimental studies Cell culture 
in septal 
SN56 basal 
forebrain 
cholinergic 
neurons

Chlorpyrifos Concentration: 
30 μM. 24 h and 
14 d exposure 
time

Increased Increased NA Exposure to OPs upregulated 
the expression of GSK-3β and 
its activity, thereby increasing 
the phosphorylation of tau

[55]

Experimental studies Cell culture 
hiPSC and 
Wistar rats

DFP Cell culture 
concentration: 
200 nM. 
Exposure time 
for 2 d. Murine 
concentration: 
1.5 mg/kg. 
Exposure time 
for 7 d

Increased NA NA Exposure was associated with 
increased tau phosphorylation 
and decreased microtubule 
acetylation which decreased 
its stability. In the CA3 region 
of the hippocampus, an 
increase in tau 
phosphorylation was 
observed, indicating that it is a 
vulnerable site for the action 
of OPs

[56]

Experimental studies Wistar rats Dichlorvos Concentration: 
200 mg/kg. 
Single dose

Increased NA NA Increased phosphorylation of 
MAP-2 and tubulin. Exposure 
increased phosphorylation 
and stimulated increased 
activity of calcium-dependent 
kinases/calmodulin and 
cAMP. Microtubules were 
destabilized, resulting in 
changes in morphology and 
increased neurotoxicity in 
exposed rats

[57]

Review studies Multiple 
studies

Malathion Range of concen-
tration: 97 to 775 
μM in model 
MCF-7. Concen-
tration: 100 
mg/kg in Wistar 
rats. Single dose

Increased Increased Decreased MAP-2 hyperphosphorylation 
was observed, especially of 
KGS amino acids. This may be 
related to ubiquitination and 
protein degradation with 
these amino acids. Tau 
hyperphosphorylation is 
associated with GSK-3β kinase 
activation and phosphatase 
inhibition

[39]

Review studies Multiple 
studies

Paraquat NA Increased NA NA Paraquat raised levels of 
oxidative stress, thereby 
inducing phosphorylation of 
tau, based on several studies 
conducted in cell cultures

[41]

Review studies Multiple 
studies

OPs NA Increased NA NA Exposure to OPs increased 
Cdk5 hyperactivity and tau 
hyperphosphorylation. This 
disrupted the structure and 
function of microtubules in 
patients with AD, thereby 
affecting axonal transport. 
Even low levels of exposure 
caused changes in 
microtubules

[58]

Review studies Multiple 
studies

OPs NA Increased Increased NA Increased the level of 
reactivity autoantibodies 
against microtubule-
associated proteins and tau-
regulatory proteins (MAPT 
and MAP-2)

[59]

Review studies Multiple 
studies

OPs ester Different 
conditions

Increased NA NA The activities of kinase 
enzymes were altered 
phosphorylation of Ser or Thr. 
This enhanced the aggregation 
of proteins and the formation 
of neurofibrils, thereby 
inducing neurodegeneration. 
The target enzymes are 
calcium/calmodulin 
dependent kinases that 
increase phosphorylation of 
MAP-2 and tau protein

[60]
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Review studies Multiple 
studies

Methamido-
phos, 
trichlorfon, 
dichlorvos, 
chlorpyrifos

Different 
conditions

Increased NA NA Increased activity of calcium-
dependent 
kinases/calmodulin, forming 
aberrations in the 
phosphorylation of 
cytoskeleton proteins, a 
common feature in neurode-
generative diseases

[61]

OPs: Organophosphates; NA: Not available; DFP: Diisopropyl fluorophosphate; Thr: Threonine; K: Lysine; G: Glycine; S: Serine; Ser: Serine; mRNA: 
Messenger ribonucleic acid; hiPSC: Human-induced pluripotent stem cells; Lys: Lysine; Asp: Aspartate; Glu: Glutamate; MAPT: Microtubule associated 
protein tau; AD: Alzheimer’s disease; TCDD: 2,3,7,8 tetrachlorodibenzo-p-dioxin; GSK-3β: Glycogen synthase kinase 3 beta; MAP-2: Microtubules-2; Cdk5: 
Cyclin-dependent kinase 5; cAMP: Cyclic adenosine monophosphate; PP2A: Protein phosphatase-2A.

pesticides increased tau phosphorylation through different mechanisms involving GSK-3β overexpression, increased 
Cdk5 activity, and decreased expression of PP2A, among other factors (Table 2). Six review studies described in Table 2 
reported increases in tau phosphorylation related to greater Cdk5 activity, with changes in regulatory proteins MAPT 
and MAP-2, and increased oxidative stress, among other changes.

Effect of Cs on the tau protein
There are only a few studies on the effect of C pesticides on tau phosphorylation. It is important to highlight that there are 
no clinical or epidemiological studies on this topic, to date. Most of the studies analyzed in this review indicate that 
exposure to Cs led to hyperphosphorylation of tau[32,54,62,63]. Only two studies, reported otherwise[31,64]. Increased 
hyperphosphorylation may be mediated by increased GSK-3β activity and PP2A inhibition (Table 3). In a murine model, 
exposure to carbofuran, a C pesticides resulted in neuronal death at the cortex and hippocampus, as well as alterations in 
spatial memory and learning processes[65]. It is interesting to note that C pesticides are currently being used for their 
therapeutic potential as AchE inhibitors in different pathologies[64,66,67]. More details associated with the effect of 
exposure to C pesticides on tau protein are presented in Table 3.

Effect of Ps on the tau protein
Exposure to P pesticides also increases tau protein phosphorylation by modifying the activity of kinase enzymes through 
over-activating. Contact with P pesticides is associated with increased immunoreactivity that affects cognitive processes, 
spatial memory, and learning, which are alterations consistent with the development of AD[32,65,68]. Three out the few 
studies that have been so far published on the effect of Ps on tau protein, and one review, are shown in Table 4. Amongst 
the most relevant results reported are increased activity of GSK-3β[34,69], increased neuroinflammation[34,69] and 
decreased activity of PP2A[34].

Effect of Ns on the tau protein
Studies on the effect of N pesticides on tau protein in humans or experimental models are very few in number. The few 
reports available highlight the work of Kimura-Kuroda et al[70] who found that exposure to 1-100 μM acetamiprid or 
imidacloprid (both N pesticides) increased intracellular Ca2+ influx in cerebellar neurons by activating calcium/
calmodulin-dependent kinases, thereby over-stimulating tau protein phosphorylation. In a clinical case report on 
accidental ingestion of imidacloprid and thiamethoxam, the resultant increase in Ca2+ influx altered the kinase response
[22]. Another mechanism involved activation of the Wnt pathway, leading to apoptosis[71]. More details are shown in 
Table 5.

PESTICIDES AND THEIR COGNITIVE IMPLICATIONS
Epidemiological studies have associated pesticide exposure with increased risks of cognitive impairment and AD[72,73]. 
For example, exposure to OC pesticides has been associated with low scores in the mini-mental test, and with severe 
cognitive decline[74-77]. Singh et al[78] reported that exposure to δ-hexachlorocyclohexane), dieldrin and pp’-dichlorodi-
phenyldichloroethylene were associated with AD (odds ratio = 2.064, 2.086 and 4.8, respectively; 95% confidence 
interval). These results are consistent with the cognitive findings[32-34,44,46-48,50,53,54,56,58,60,63,69,79] reported in 
Table 6, where contact with OCs was associated with increased cognitive impairment, decreased scores in tests evaluating 
spatial memory, decreased scores in results of tests on evaluation of novelty, and poor performance in tests evaluating 
attention and problem solving, except for two studies that did not report differences in scores in the tests applied[46,49].

Lin et al[80] reported that workers exposed to OPs had cognitive impairment (hazard ratio = 2.21; 95% confidence 
interval). Hayden et al[81] reported that exposure to OPs increased the risks of MCD and AD (hazard ratios = 1.38 and 
1.42, respectively; 95% confidence interval), and Paul et al[82] reported that exposure to OPs has been associated with 
rapid progression to MCD (hazard ratio = 1.94, 95% confidence interval). In the studies analyzed in Table 6, it was found 
that contact with OPs was associated with decreased MMSE testing and deficiencies in tests involving evaluation of 
verbal, non-verbal and spatial memory (Table 6). These cognitive findings are related to the results presented by Lin et al
[80], Hayden et al[81] and Paul et al[82] referred to above.
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Table 3 Effects of carbamate pesticides on tau protein

Type of 
study Sample Type of 

pesticide Exposure data Tau 
phosphorylation GSK-3β PP2A Other mechanisms Ref.

Experimental 
studies

C57BL/6 
and 
129/Sv 
mice

Maneb Concentration: 30 
mg/kg. Exposure 
time for 6 wk

Decreased Decreased NA No changes in tau phosphorylation. 
However, if combined with 
paraquat, tau phosphorylation was 
enhanced in Ser202 (38% more), 
Ser262 (28% more) and Ser396/404 
(141% more)

[31] 

Experimental 
studies

Sprague-
Dawly 
rats

Carbofuran Concentration: 1 
mg/kg. Exposure 
time of 28 d

Increased Increased Decreased Increased phosphorylation of tau 
was observed in Ser198/199/202, 
Thr205 and Ser404. In addition, 
there was an increase in GSK-3β 
and a decrease in PP2A

[32] 

Experimental 
studies

NMRI 
mouse

Carbaryl Concentrations: 
0.5, 5.0, 20.0 
mg/kg. Single 
dose

Increased NA NA In the hippocampus, levels of 
phosphorylated tau increased by 
135% in rats exposed to low, 
medium and high doses. In 
cerebral cortex, there was 
oscillating increase of 155% to 210% 
in tau phosphorylation

[54] 

Experimental 
studies

Sprague-
Dawly 
rats

Deltametrin 
(P)/carbofuran 
(Cs)

Concentration: 
NA. Exposure 
time for 28 d

Increased Increased Decreased Exposure induced tau hyperphos-
phorylation and GSK-3β activation, 
as well as PP2A phosphatase 
inhibition

[63] 

Review 
studies

Multiple 
studies

Cs NA Increased Increased NA Exposure induced increased 
activity of kinase, thereby 
increasing phosphorylation of tau 
protein

[62] 

Review 
studies

Multiple 
studies

Pyridine 
carbamate

Concentrations: 
15.7 μM. Single 
dose

Decreased NA NA An inhibitory effect on 
phosphorylation was observed. 
This prevented the aggregation of 
tau protein

[64] 

Ser: Serine; Thr: Treonine; GSK-3β: Glycogen synthase kinase 3 beta; PP2A: Protein phosphatase-2A; NA: Not available; Cs: Carbamate; Ps: Pyrethroids.

Exposure to Cs is also associated with increased risk of developing MCD (odds ratio = 1.98; 95% confidence interval)
[80]. Kamboj et al[83] showed that exposure of rats to Cs for 28 d performed poorly in Active Avoidance Task, indicating 
deterioration of cognitive function. Additionally, findings from studies on effect of Cs exposure on cognition have been 
linked to deterioration in spatial memory and decreased scores in results of tests involving evaluation of novelty 
(Table 6).

Very few studies have been done on the risk of cognitive impairment and AD due to exposure to P and N pesticides. In 
Taiwan workers exposed to Ns, approximately 2.9% mortality was reported, which is similar to the value of 3.1% 
reported for pyrethrins and Ps[22,79]. The results reported in Table 6 indicate that exposure to Ps is related to a deteri-
oration in spatial memory, alteration in problem solving capacity, and increase in cognitive impairment similar to that 
reported by Estrada Atehortúa et al[22]. Besides, according to Phua et al[79], exposure to N pesticides resulted in aggra-
vated disorientation, altered mental status, and confusion (Table 6).

Previously, the difficulty in studying the association between exposure to pesticides and prevalence of MCD and AD in 
humans was attributed to the complexity of obtaining separate data for each pesticide classification, because human 
exposure usually results from poisoning from multiple pesticides in conjunction with different chemical vehicles[65].

CONCLUSION
Pesticide exposure is associated with increased hyperphosphorylation of the tau protein amino acid residues Ser198, 
Ser199 and Ser202, Thr205, Ser396 and Ser404. This occurs through the following mechanisms: Increased enzyme activity 
of Cdk5 or GSK-3β, decreased PPA2, mutations associated with the MAPT gene, increased neuroinflammatory response, 
enhanced influx of intracellular Ca2+, and impairment of oxidative phosphorylation. These mechanisms may be related to 
the pathogenesis of AD. In addition, exposure to pesticides may be involved in lower performance in mini-mental tests, 
alteration in verbal, non-verbal and spatial memory, decreased response to novelty tests, and reductions in attention and 
problem-solving potential. One limitation in this study is the small number of publications on Cs, Ps and Ns pesticides 
and their effects on tau protein. Therefore, there is need to carry out a broader study on these variables in subsequent 
inves-tigations.
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Table 4 Effects of pyrethroid pesticides on tau protein

Type of 
study Sample Type of 

pesticide Exposure data Tau 
phosphorylation GSK-3β PP2A Other mechanisms Ref.

Experimental 
studies

Sprague-
Dawly 
rats

Deltamethrin Concentration: 12.5 
mg/kg. Exposure time 
for 28 d

Increased Increased Decreased Increased phosphorylation of 
tau was observed in 
Ser198/199/202, Thr205 and 
Ser404

[32] 

Experimental 
studies

Wistar 
rats

Cyfluthrin, 
imiprothrin, 
prallethrin

Concentrations:25%, 
50% and 75%. 
Exposure time of 45 d

Increased Increased Decreased Higher immunoreactivity of tau 
occurred in the hippocampus 
with high exposures to Ps. For 
medium and low doses, low 
immunoreactivity occurred. On 
the other hand, the activity of 
GSK- 3β was increased, while 
that of PP2A 2 was decreased

[34]

Experimental 
studies

Wistar 
rats

Cypermethrin Concentration: 10 
mg/kg and 25 mg/kg. 
Exposure time for 2, 3 
and 6 wk

Increased Increased NA In weaned exposed rats, tau 
phosphorylation increased in 
frontal cortex and hippocampus. 
This was induced by an increase 
in GSK-3β activity. Furthermore, 
increased neuroinflammation 
was observed with increased 
production of IL-1β

[69]

Review 
studies

Multiple 
studies

Ps NA Increased Increased NA Exposure to Ps induced 
increased kinase activity, 
thereby increasing the 
phosphorylation of tau protein

[62]

Ps: Pyrethroid; IL: Interleukin; GSK-3β: Glycogen synthase kinase 3 beta; PP2A: Protein phosphatase-2A; NA: Not available.

Table 5 Effects of neonicotinoid pesticides on tau protein

Type of study Sample Type of 
pesticide

Exposure 
data

Tau 
phosphorylation GSK-3β PP2A Other mechanisms Ref.

Clinical/epidemiological 
studies. Clinical case

Accidental 
intake with 
Ns

Imidacloprid 
and 
thiamethoxam

Concentration: 
NA. Single dose

NA NA NA The metabolite desnitro-
imidacloprid activated the 
flow of intracellular 
calcium, thereby altering 
the response of kinase 
enzymes, and causing an 
excitatory neurological 
phase

[22] 

Experimental studies Primary 
cultures of 
cerebellar 
neurons 
from 
neonatal 
Sprague-
Dawly rats

Acetamiprid 
imidacloprid

Concentrations: 
1-100 μM. 
Exposure time 
of 600 s

NA NA NA Exposure to Ns increased 
the influx of Ca2+ in 
cerebellar neurons. These 
pesticides excited 
cerebellar neurons to a 
degree similar to that from 
nicotine exposure. The 
influx of calcium ions 
activated the VDCC

[70]

Experimental studies Human 
neural cells

Desnitro-
imidacloprid

Concentration: 
50 μM. 
Exposure time 
of 48 h

Increased Increased Decreased Activation of Wnt signal 
pathway. Exposure 
induced tau hyperphos-
phorylation by a GSK-3β 
response, this enzyme is 
associated with Beta 
catenin activity. Exposure 
to this Ns induced 
watered-down expression 
that regulated tau 
hyperphosphorylation and 
apoptotic responses that 
impacted synaptotoxicity

[71]

Ns: Neonicotinoid; GSK-3β: Glycogen synthase kinase 3 beta; PP2A: Protein phosphatase-2A; NA: Not available; VDCC: Voltage-dependent calcium 
channels.
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Table 6 Effect of pesticides on cognitive processes

Type of study Sample Type of 
pesticide Exposure data Cognitive implications Ref.

Clinical/epidemiological 
studies. Cross-sectional

90 subjects with PD 
and 90 healthy subjects

OCs: δ-HCH Concentration: NA. 
Exposure time NA

MMSE1 values in subjects with PD and 
without exposure to OCs: 27.66 ± 4.63. 
MMSE1 values in healthy subjects with 
exposure to OCs: 24.33 ± 4.31

[45] 

Clinical/epidemiological 
studies. Cohort

13 postmortem brains 
of subjects without 
exposure and 4 
postmortem brains of 
subjects with exposure

OCs Concentration: NA. 
Exposure time: from 0 to 
10 yr

Last CASI1 score of subjects without 
exposure: 67.9 ± 24.4. Last CASI1 score of 
subjects with exposure: 41.6 ± 22.8

[44] 

Experimental studies Strains of Caenorhabditis 
elegans (N2 BR5271)

OCs: DDT Concentration: 3 μM. 
Exposure time of 2 h

No significant differences reported in 
Associative Learning Paradigm tests

[46]

Experimental studies Wistar rats OCs: Chlordane Range of concentration: 1 
to 100 nM. Chronic 
exposure

Exposure did not affect results of tests 
that measured spatial memory

[49] 

Review studies Multiple studies OCs: TCDD Range of concentration: 5 
to 23 ppt. Single dose

Decreased performance in verbal and 
nonverbal memory tests

[48]

Clinical/epidemiological 
studies. Cases and controls, 
unpaired

33 subjects exposed to 
OPs and 33 subjects 
without exposure

OPs Concentration: NA. 
Exposure time 2 yr

87% of exposed subjects had cognitive 
impairment. Exposure to OPs for 10 yr 
increased the risk of cognitive decline 17 
times

[53] 

Experimental studies Wistar rats OPs: 
Chlorpyrifos- 
oxon

Range of concentration: 1 
to 100 nM. Chronic 
exposure

Rats exposed to OPs showed deteri-
oration of spatial memory

[49] 

Experimental studies NMRI mouse OPs: 
Chlorpyrifos

Concentration: 0.1, 1.0, 5.0 
mg/kg. Single dose

Decreased locomotion response and 
novelty were observed in rats exposed to 
this OPs

[54]

Experimental studies Transgenic AD model 
rats

OPs: 
Chlorpyrifos

Concentrations: 3 and 10 
mg/kg. Exposure time of 
21 d

Exposure was associated with 
accelerated cognitive impairment in male 
rats, as indicated in memory and 
recognition tests

[50]

Experimental studies Wistar rats OPs: Malathion Concentration: 100 mg/kg. 
Exposure time of 14 d

Decrease in spatial memory (evaluated 
using Morris water maze). This decrease 
was related to tau hyperphosphorylation

[33]

Experimental studies Cell culture hiPSC and 
Wistar rats

OPs: DFP Cell culture concentration: 
200 nM. Exposure time for 
2 d. Murine concentration: 
1.5 mg/kg. Exposure time 
for 7 d

Slight decreases in learning and memory 
tests in the Morris water maze tests, and 
in 0 new object recognition

[56] 

Review studies Multiple studies OPs Different conditions Lower perfomance in MMSE was 
associated with the exposure, with a 
modestly increased risk of MCD

[58] 

Review studies Multiple studies OPs NA Exposure produced psychotic episodes, 
and alterations in attention, memory, 
problem solving, abstraction and 
cognitive flexibility

[59] 

Review studies Multiple studies OPs ester Different conditions Decreased attention, visual memory, 
persistent and longer cognitive 
dysfunction and short-term memory

[60] 

Experimental studies Sprague-Dawly rats Cs: Carbofuran Concentration: 1 mg/kg. 
Exposure time of 28 d

Rats exposed to this pesticide took longer 
time to solve the Morris water maze, 
relative to the control group

[32] 

Experimental studies NMRI mouse Cs: Carbaryl Concentrations: 0.5, 5.0, 
20.0 mg/kg. Single dose

Decreased locomotion response and 
response to novelty test in rats exposed 
to this pesticide

[54] 

Experimental studies Sprague-Dawly rats Cs: Carbofuran Concentration: NA. 
Exposure time for 28 d

Exposed rats had longer escape latency 
time in the Morris water maze test. 
Exposure was related to spatial memory 
deficit

[63] 

Concentration: 12.5 
mg/kg. Exposure time for 

Rats exposed to this pesticide took longer 
time to solve the Morris water maze, 

Experimental studies Sprague-Dawly rats Ps: Deltamethrin [32] 
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28 d relative to the control group

Experimental studies Wistar rats Ps: 
Cypermethrin

Concentration: 10 mg/kg 
and 25 mg/kg. Exposure 
time for 2, 3 and 6 wk

Cognitive impairment was induced; 
deficiencies in learning and memory of 
exposed rats occurred. These changes 
may be related to changes in calcium-
dependent kinases and calmodulin

[69]

Experimental studies Wistar rats Ps: Cyfluthrin. 
Imiprothrin and 
Prallethrin

Concentrations: 25%, 50% 
and 75%. Exposure time of 
45 d

Rats with the highest P exposure had 
higher cognitive impairment, when 
compared to control rats and other 
concentrations, possibly via increased 
activation of astrocytes in hippocampus

[34] 

Clinical/epidemiological 
studies. Retrospective study 
of suicidal patients

Accidental intake of 
different Ns

Ns: Imidacloprid Different concentrations. 
Single dose

Disorientation, altered mental status, 
lack of coordination and confusion

[79]

1mean ± SD.
OCs: Organochlorines; OPs: Organophosphates; NA: Not available; DFP: Diisopropyl fluorophosphate; MMSE: Mini Mental State Examination; CASI: 
Cognitive Abilities Screening Instrument; Ps: Pyrethroids; Ns: Neonicotinoids; Cs: Carbamates; MCD: Major cognitive disorders; hiPSC: Human-induced 
pluripotent stem cells; δ-HCH: δ-hexachlorocyclohexane; DDT: Dichlorodiphenyltrichloroethan; AD: Alzheimer’s disease; TCDD: 2,3,7,8 
tetrachlorodibenzo-p-dioxin; PD: Parkinson disease.

Figure 1 Pesticide effect on phosphorylation in tau. Exposure to pesticides organochlorine, organophosphate, carbamate, pyrethroid and neonicotinoid 
alters the balance of enzymatic activity of glycogen synthase kinase 3 beta (GSK-3β) and protein phosphatase-2A (PP2A). Especially the increase of GSK-3β and the 
decrease of PP2A favors tau hyperphosphorylation and the formation of neurofibrillary tangle which induce the activation of microglia and neuroinflammations. 
Created with Biorender.com. OCs: Organochlorine; OPs: Organophosphate; Cs: Carbamate; Ps: Pyrethroid; Ns: Neonicotinoid; GSK-3β: Glycogen synthase kinase 3 
beta; PP2A: Protein phosphatase-2A; TNF: Tumor necrosis factor; IL: Interleukin.
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