World Journal of Clinical Cases

World J Clin Cases 2024 March 6; 12(7): 1196-1381

Contents

Thrice Monthly Volume 12 Number 7 March 6, 2024

EDITORIAL

1196 Relevance of sleep for wellness: New trends in using artificial intelligence and machine learning

Nag DS, Swain A, Sahu S, Chatterjee A, Swain BP

MINIREVIEWS

1200 Expect the unexpected: Brown tumor of the mandible as the first manifestation of primary hyperparathyroidism

Majic Tengg A, Cigrovski Berkovic M, Zajc I, Salaric I, Müller D, Markota I

1205 Research progress in spasmodic torticollis rehabilitation treatment

Zhang S, Zeng N, Wu S, Wu HH, Kong MW

ORIGINAL ARTICLE

Clinical and Translational Research

1215 Investigating the causal associations between five anthropometric indicators and nonalcoholic fatty liver disease: Mendelian randomization study

Xiao XP, Dai YJ, Zhang Y, Yang M, Xie J, Chen G, Yang ZJ

1227 Causal role of immune cells in obstructive sleep apnea hypopnea syndrome: Mendelian randomization study

Zhao HH. Ma Z. Guan DS

Case Control Study

1235 Significant risk factors for intensive care unit-acquired weakness: A processing strategy based on repeated machine learning

Wang L, Long DY

Retrospective Cohort Study

1243 Perioperative and long-term results of ultrasonography-guided single- and multiple-tract percutaneous nephrolithotomy for staghorn calculi

Cheng RX, Dai N, Wang YM, Qi P, Chen F

Retrospective Study

Clinical characteristics of testicular torsion and factors influencing testicular salvage in children: A 12-year 1251 study in tertiary center

Gang XH, Duan YY, Zhang B, Jiang ZG, Zhang R, Chen J, Teng XY, Zhang DB

Contents

Thrice Monthly Volume 12 Number 7 March 6, 2024

META-ANALYSIS

1260 Effectiveness of sensory integration therapy in children, focusing on Korean children: A systematic review and meta-analysis

Oh S, Jang JS, Jeon AR, Kim G, Kwon M, Cho B, Lee N

1272 Safety and efficacy comparison of remimazolam and propofol for intravenous anesthesia during gastroenteroscopic surgery of older patients: A meta-analysis

Li FZ, Zhao C, Tang YX, Liu JT

CASE REPORT

1284 Sporadic gastrinoma with refractory benign esophageal stricture: A case report Chen QN, Bai BQ, Xu Y, Mei Q, Liu XC

1290 Efficacy of borneol-gypsum in skin regeneration and pain control in toxic epidermal necrolysis: A case report

Yang LW, Zhang LJ, Zhou BB, Lin XY, Chen YT, Qin XY, Tian HY, Ma LL, Sun Y, Jiang LD

1296 Extended survival with metastatic pancreatic cancer under fruquintinib treatment after failed chemotherapy: Two case reports

Wu D, Wang Q, Yan S, Sun X, Qin Y, Yuan M, Wang NY, Huang XT

1305 Reconstruction of cervical necrotizing fasciitis defect with the modified keystone flap technique: Two case reports

Cho W, Jang EA, Kim KN

- Reversal of complete atrioventricular block in dialysis patients following parathyroidectomy: A case report *Xu SS, Hao LH, Guan YM*
- 1320 Treatment of bilateral developmental dysplasia of the hip joint with an improved technique: A case report *Yu XX, Chen JY, Zhan HS, Liu MD, Li YF, Jia YY*
- 1326 Misdiagnosis of synovial sarcoma cellular myofibroma with *SRF-RELA* gene fusion: A case report *Zhou Y, Sun YW, Liu XY, Shen DH*
- 1333 Heterochronous multiple primary prostate cancer and lymphoma: A case report Liang JL, Bu YQ, Peng LL, Zhang HZ
- 1339 Cardiac remodeling in patients with atrial fibrillation reversing bradycardia-induced cardiomyopathy: A case report

Gao DK, Ye XL, Duan Z, Zhang HY, Xiong T, Li ZH, Pei HF

- 1346 Microsurgical management of radicular cyst using guided tissue regeneration technique: A case report

 Gómez Mireles JC, Martínez Carrillo EK, Alcalá Barbosa K, Gutiérrez Cortés E, González Ramos J, González Gómez LA,
 Bayardo González RA, Lomelí Martínez SM
- 1356 Delayed neurological dysfunction following posterior laminectomy with lateral mass screw fixation: A case report and review of literature

Yan RZ, Chen C, Lin CR, Wei YH, Guo ZJ, Li YK, Zhang Q, Shen HY, Sun HL

World Journal of Clinical Cases

Contents

Thrice Monthly Volume 12 Number 7 March 6, 2024

1365 Translocation of a fish spike from the pharynx to the thyroid gland: A case report

Li D, Zeng WT, Jiang JG, Chen JC

1371 Double plasma molecular adsorption system for Stevens-Johnson syndrome/toxic epidermal necrolysis: A

Tan YW, Liu LP, Zhang K

LETTER TO THE EDITOR

1378 Enhancing competency of clinical research nurses: A comprehensive training and evaluation framework Liu YX, Xu Y

 ${\rm III}$

Contents

Thrice Monthly Volume 12 Number 7 March 6, 2024

ABOUT COVER

Peer Reviewer of World Journal of Clinical Cases, Narendra Pamidi, PhD, Assistant Professor, Department of Anatomy, Melaka Manipal Medical College, Karnataka 576104, India. narendra.pamidi@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJCC as 1.1; IF without journal self cites: 1.1; 5-year IF: 1.3; Journal Citation Indicator: 0.26; Ranking: 133 among 167 journals in medicine, general and internal; and Quartile category: Q4.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Si Zhao; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

TSSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREOUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Bao-Gan Peng, Salim Surani, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati

EDITORIAL BOARD MEMBERS

https://www.wignet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

March 6, 2024

COPYRIGHT

© 2024 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: office@baishideng.com https://www.wignet.com

ΙX

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2024 March 6; 12(7): 1235-1242

DOI: 10.12998/wjcc.v12.i7.1235

ISSN 2307-8960 (online)

ORIGINAL ARTICLE

Case Control Study

Significant risk factors for intensive care unit-acquired weakness: A processing strategy based on repeated machine learning

Ling Wang, Deng-Yan Long

Specialty type: Critical care medicine

Provenance and peer review:

Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Ewers A, Austria

Received: November 6, 2023 Peer-review started: November 6,

First decision: January 9, 2024 Revised: January 20, 2024 Accepted: February 18, 2024 Article in press: February 18, 2024 Published online: March 6, 2024

Ling Wang, Deng-Yan Long, Intensive Care Unit, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili 556000, Guizhou Province, China

Corresponding author: Ling Wang, FRCS (Hon), Additional Professor, Chief Physician, Intensive Care Unit, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, No. 31 Shaoshan South Road, Kaili 556000, Guizhou Province, China. 463082910@qq.com

Abstract

BACKGROUND

Intensive care unit-acquired weakness (ICU-AW) is a common complication that significantly impacts the patient's recovery process, even leading to adverse outcomes. Currently, there is a lack of effective preventive measures.

AIM

To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.

METHODS

Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission. Relevant data from the initial 14 d of ICU stay, such as age, comorbidities, sedative dosage, vasopressor dosage, duration of mechanical ventilation, length of ICU stay, and rehabilitation therapy, were gathered. The relationships between these variables and ICU-AW were examined. Utilizing iterative machine learning techniques, a multilayer perceptron neural network model was developed, and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.

RESULTS

Within the ICU-AW group, age, duration of mechanical ventilation, lorazepam dosage, adrenaline dosage, and length of ICU stay were significantly higher than in the non-ICU-AW group. Additionally, sepsis, multiple organ dysfunction syndrome, hypoalbuminemia, acute heart failure, respiratory failure, acute kidney injury, anemia, stress-related gastrointestinal bleeding, shock, hypertension, coronary artery disease, malignant tumors, and rehabilitation therapy ratios were significantly higher in the ICU-AW group, demonstrating statistical significance. The most influential factors contributing to ICU-AW were identified as the length of ICU stay (100.0%) and the duration of mechanical ventilation (54.9%). The

1235

neural network model predicted ICU-AW with an area under the curve of 0.941, sensitivity of 92.2%, and specificity of 82.7%.

CONCLUSION

The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation. A primary preventive strategy, when feasible, involves minimizing both ICU stay and mechanical ventilation

Key Words: Intensive care unit-acquired weakness; Risk factors; Machine learning; Prevention; Strategies

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The study, utilizing machine learning, identified key risk factors for intensive care unit-acquired weakness (ICU-AW). Findings emphasized the significant impact of length of ICU stay and the duration of mechanical ventilation. Other factors, including age, medication dosage, and specific disease states, were also implicated. The study employed a multilayer perceptron neural network model with an impressive area under receiver operating characteristic curve of 0.941, sensitivity of 92.2%, and specificity of 82.7%. The results underscore the importance of decreasing length of ICU stay and the duration of mechanical ventilation as a primary strategy in preventing ICU-AW, when feasible.

Citation: Wang L, Long DY. Significant risk factors for intensive care unit-acquired weakness: A processing strategy based on repeated machine learning. World J Clin Cases 2024; 12(7): 1235-1242

URL: https://www.wjgnet.com/2307-8960/full/v12/i7/1235.htm

DOI: https://dx.doi.org/10.12998/wjcc.v12.i7.1235

INTRODUCTION

Intensive care unit-acquired weakness (ICU-AW) is a prevalent complication in critically ill patients, marked by secondary neurologic and/or muscular impairments [1,2]. It manifests as symmetrical muscle weakness, profoundly affecting patient survival and quality of life[3,4]. Timely prediction and risk assessment in ICU patients are crucial to implementing interventions, reducing incidence, and enhancing patient outcomes.

The factors influencing the emergence of ICU-AW in critically ill patients are highly intricate. Recent advancements in artificial intelligence and machine learning, particularly neural network models, have shown exceptional capabilities in predicting and diagnosing medical conditions [5,6]. This study aimed to utilize iterative machine learning techniques to pinpoint significant risk factors for ICU-AW, build a predictive model using a multilayer perceptron neural network, and assess its performance, offering guidance for ICU-AW prevention and treatment.

MATERIALS AND METHODS

Study subjects

The current study focused on adult patients (age ≥ 18 years) admitted to the People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture ICU between January 1, 2022, and August 1, 2023. To ensure the accuracy of ICU-AW $diagnosis, individuals \ with \ pre-existing \ conditions \ impacting \ it \ (\textit{e.g.}, severe \ central \ nervous \ system \ diseases, \ spinal \ and$ limb fractures, multiple myositis, and myasthenia gravis) were excluded. Furthermore, patients choosing treatment discontinuation were also excluded from the study.

Treatment modalities

Upon ICU admission, the hospital employs aggressive therapeutic measures to address underlying conditions and administers essential organ support therapies for vital sign stability. In this study, mechanical ventilation and sedation therapy were administered when deemed necessary. In cases of hypotension, vasopressor agents were used to maintain a mean arterial pressure of at least 65 mmHg after adequate fluid resuscitation. Infected patients received effective intravenous antibiotic therapy. Furthermore, with patient or family consent, the hospital provided appropriate rehabilitation therapy, such as limb exercises or joint relaxation. In the early stages, the hospital also emphasized nutritional therapy, particularly for patients with serum albumin levels below 30 mg/L, with supplementation of human serum albumin.

Diagnostic criteria for ICU-AW

The medical research council scale was used to grade muscle strength in upper and lower limb muscle groups for diagnosis. This scale has a score range of 0-5, with a maximum total score of 60. If a patient's comprehensive score falls

below 48 points, he (she) was diagnosed with ICU-AW[1].

Research methods

Data collection and grouping: Limb muscle strength assessments were conducted daily post-ICU admission. Patients were categorized into the ICU-AW or non-ICU-AW group based on the development of ICU-AW within the initial 14 d of ICU admission. On the 14th day, patient data included gender, age, duration of mechanical ventilation, total sedative dosage (Midazolam), total vasopressor dosage (Norepinephrine), and ICU stay length were collected. Additionally, comorbidities such as hypertension, diabetes, coronary atherosclerotic heart disease, and malignant tumors were noted. On the 14th day, data were collected regarding the occurrence of sepsis, multiple organ dysfunction syndrome, hypoalbuminemia, acute heart failure, respiratory failure, acute kidney injury, anemia, disseminated intravascular coagulation, stress-related gastrointestinal bleeding, shock, and whether the patients underwent rehabilitative treatment during their ICU stay.

Establishment of the multilayer perceptron neural network model: The study utilized a neural network model featuring a single hidden layer, with the number of nodes in the hidden layer determined automatically and the hyperbolic tangent chosen as the activation function. All dependent variables underwent standardization. The dataset was split into a 70% training set and a 30% test set. The input layer incorporated indicators demonstrating statistical significance in correlation analysis, while the output layer determined ICU-AW occurrence (encoded: ICU-AW = 1, non-ICU-AW = 0). The model employed batch processing for training, with the conjugate gradient method and line search chosen as the optimization algorithm. Factors were ordered by importance, and the predictive probability model for ICU-AW was saved. The specificity and sensitivity of the multilayer perceptron neural network model were calculated using the receiver operating characteristic (ROC) curve for analysis convenience.

Statistical analysis

This study employed SPSS 26.0 statistical software for data processing and analysis. The normality test for continuous variables was conducted using the Kolmogorov-Smirnov method. Normally distributed data were presented as mean ± SD, and inter-group comparisons were made using the independent samples t-test. Non-normally distributed data were expressed as median (interquartile range) $[M(Q_L, Q_U)]$, and the Mann-Whitney *U*-test was used for inter-group comparisons. Categorical data were analyzed using the Chi-squared (χ^2) test. The multilayer perceptron neural network model's predictive capability for ICU-AW was assessed through ROC curve analysis. Statistical significance was set at *P* < 0.05.

RESULTS

Case overview

The study compiled data from 1063 cases, spanning ages 18 to 94 years, with an average age of 60.91 ± 19.00 years. Among these, 645 were male, and 418 were female. A total of 370 cases were diagnosed with ICU-AW, while 693 cases did not develop ICU-AW, resulting in an ICU-AW incidence rate of 34.81%.

Analysis of factors associated with the occurrence of ICU-AW

No significant differences were observed between the two groups in terms of gender, rates of disseminated intravascular coagulation, diabetes, and malignant tumors (U = 1.913, 0.077, 1.564, 0.179, P > 0.05). However, the ICU-AW group exhibited significantly longer ICU stays, prolonged duration of mechanical ventilation, higher total dosages of Midazolam, and increased total dosages of Norepinephrine compared to the non-ICU-AW group (Z = 278.696, 29.905, 127.872, 81.127, P < 0.05). Additionally, the ICU-AW group had higher rates of specific comorbidities compared to the non-ICU-AW group as shown in Table 1.

Development of a multilayer perceptron neural network model

Using the presence of ICU-AW as the dependent variable (assigned values: Yes = 1, No = 0) and factors associated with ICU-AW as independent variables, all variables in the input layer were normalized (assigned values: Yes = 1, No = 0). Constructing the ICU-AW neural network model involved creating a multilayer perceptron neural network with one hidden layer and three neurons. The model achieved a prediction accuracy of 86.2% on the training set and 85.5% on the test set as shown in Table 2.

Importance of influencing factors

The most significant factors affecting the occurrence of ICU-AW were the length of ICU stay (100.0%) and the duration of mechanical ventilation (54.9%), followed by the dosage of sedatives (33.4%) and the dosage of vasopressor medications (19.5%). For a comprehensive list of influential factors and their respective proportions, please refer to Table 3 and Figure 1.

Prediction ability of neural network model

The neural network model predicted ICU-AW with an AUC value of 0.941 (95%CI: 0.928-0.954). Setting the cut-off value at 0.241 yielded a sensitivity of 92.2% and a specificity of 82.7%. Refer to Figure 2 for a visual representation.

Table 1 Analysis of factors associated with intensive care unit-acquired weakness

Parameters	ICU-AW group (n = 370)	Non-ICU-AW group (n = 693)	χ²ltlZ	P value
Sex			1.913	0.167
Male, n (%)	235 (63.51)	410 (59.16)		
Female, n (%)	135 (36.49)	283 (40.84)		
Age in yr, mean ± SD	65.29 ± 18.72	58.58 ± 18.75	31.013	0.000
Sepsis, n (%)	31 (8.38)	31 (4.47)	6.727	0.010
Multiple organ dysfunction syndrome, n (%)	96 (25.95)	68 (9.81)	50.307	0.000
Hypoalbuminemia, n (%)	275 (74.32)	379 (54.69)	67.286	0.000
Acute cardiogenic failure, n (%)	157 (42.43)	205 (29.58)	18.005	0.000
Respiratory failure, n (%)	231 (62.43)	277 (39.97)	83.798	0.000
Acute kidney injury, n (%)	63 (17.03)	47 (6.78)	27.956	0.000
Anemia, n (%)	191 (51.62)	229 (33.04)	35.942	0.000
Diffuse intravascular coagulation, n (%)	5 (1.35)	8 (1.15)	0.077	0.781
Stress-related gastrointestinal bleeding, n (%)	99 (26.76)	74 (10.68)	47.733	0.000
Shock, n (%)	224 (60.54)	276 (39.83)	43.152	0.000
Hypertension, <i>n</i> (%)	193 (52.16)	263 (37.95)	20.661	0.000
Diabetes, n (%)	83 (22.43)	133 (19.19)	1.564	0.211
Coronary atherosclerotic heart disease, n (%)	123 (33.24)	132 (19.05)	27.292	0.000
Malignant tumor, n (%)	81 (21.89)	144 (20.78)	0.179	0.673
Rehabilitation therapy, n (%)	20 (5.40)	172 (24.82)	93.687	0.000
Mechanical ventilation duration in h, $M\left(Q_{\mathrm{L}},Q_{\mathrm{U}}\right)$	114 (9.75, 250)	0 (0, 21)	29.905	0.000
Midazolam in mg, $M(Q_1, Q_0)$	50 (0, 370)	0 (0,20)	127.872	0.000
Norepinephrine in mg, $M(Q_L, Q_U)$	20 (0, 120)	0 (0, 16)	81.127	0.000
Length of intensive care unit stay in d, $M(Q_L, Q_U)$	10 (6, 19)	3 (1, 4)	278.696	0.000

ICU-AW: Intensive care unit-acquired weakness.

Table 2 Prediction results of back propagation neural network model training set and test set samples

Samples	Measured results	Number of cases	Predicted results	Predicted results		
		Number of cases	Non-ICU-AW	ICU-AW	Correct percentage (%)	
Training set	Non-ICU-AW	503	443	60	88.1	
	ICU-AW	257	45	212	82.5	
	Total	760	448	272	86.2	
Test set	Non-ICU-AW	190	169	21	88.9	
	ICU-AW	113	23	90	79.6	
	Total	303	192	111	85.5	

Dependent variable: Intensive care unit-acquired weakness. ICU-AW: Intensive care unit-acquired weakness.

DISCUSSION

The recognition of the increasing impact of ICU-AW on critically ill patients underscores the importance of identifying and addressing its numerous contributing factors. Current treatment and prevention strategies primarily focus on identifying high-risk factors and implementing corresponding measures[7]. Neural networks, through their ability to

Table 3 Importance of independent variables					
Parameters	Importance	The importance of standardization (%)			
Age	0.035	11.9			
Sepsis	0.052	17.6			
Multiple organ dysfunction syndrome	0.036	12.2			
Hypoalbuminemia	0.012	4.0			
Acute cardiogenic failure	0.023	7.8			
Respiratory failure	0.023	7.9			
Acute kidney injury	0.039	13.4			
Anemia	0.030	10.2			
Stress-related gastrointestinal bleeding	0.029	10.0			
Shock	0.034	11.4			
Hypertension	0.018	6.0			
Coronary atherosclerotic heart disease	0.019	6.5			
Rehabilitation therapy	0.042	14.2			
Mechanical ventilation duration	0.161	54.9			
Sedative dose (Midazolam)	0.098	33.4			
Vasopressor medication dose (Epinephrine)	0.057	19.5			
Length of intensive care unit stay	0.293	100.0			

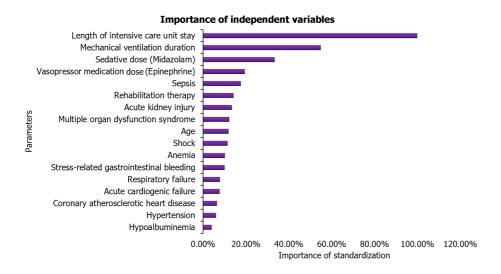


Figure 1 Bar chart of the importance of independent variables.

comprehend intricate data relationships and discern the significance of independent variables[8], play a crucial role in addressing these high-risk factors. This study utilized a multilayer perceptron neural network to assess the risk of ICU-AW among patients, revealing a model with an AUC of 0.941, a sensitivity of 92.2%, and a specificity of 82.7%, showcasing commendable recognition performance.

The findings of the current study affirmed that the length of ICU stay and the duration of mechanical ventilation as the most pivotal factors for ICU-AW, with sensitivities of 100% and 54.9%, respectively. Previous studies have consistently noted the significant correlation between prolonged ICU stay and the occurrence of ICU-AW[9,10]. Similarly, an extended duration of mechanical ventilation has been linked to a higher incidence of ICU-AW[11,12], with even a few hours of mechanical ventilation potentially triggering ICU-AW[13]. It is inferred that, where clinically viable, reducing both the length of ICU stay and the duration of mechanical ventilation stands as a primary strategy for preventing ICU-AW.

The findings of the current study also indicated that the total dosage of sedatives, total dosage of vasopressor drugs, and sepsis were associated with ICU-AW, aligning with findings in other studies[14-16]. Further exploration of influencing factors in ICU-AW revealed that sedation and analgesia treatments could impact the neuro-musculoskeletal system functions, significantly elevating the risk of ICU-AW[17-19]. Additionally, the duration and dosage of

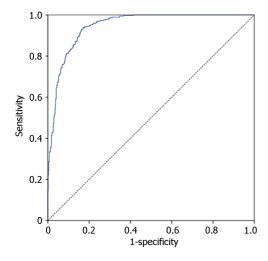


Figure 2 Receiver operating characteristic curve for the neural network model predicting intensive care unit-acquired weakness.

norepinephrine use were notably linked to ICU-AW, with the utilization of vasopressor drugs increasing the risk of occurrence by more than threefold (OR = 3.2, 95%CI: 1.29-7.95)[20]. Patients with sepsis might trigger ICU-AW due to the imbalance in protein synthesis and breakdown caused by cytokines during systemic inflammatory response and inflammatory injury [16]. Studies have also emphasized that malnutrition can impair neuromuscular function, recommending early nutritional intervention[21,22]. The association of muscle relaxants with ICU-AW was widely acknowledged[23]. These results suggest that the factors influencing ICU-AW are complex.

The mechanisms linking ICU stay duration and mechanical ventilation to ICU-AW remain unclear. In the current study, researchers posited that patients with extended ICU stays and mechanical ventilation often experience restricted movement, and heightened use of sedatives, possibly coupled with muscle relaxants, sepsis, hypoxia, and malnutrition. These factors collectively may contribute to neuro-muscular damage.

The current study faced certain limitations. Firstly, its generalizability was constrained as data originated from a single center. Secondly, the potential impacts of disease severity and treatment efficacy on ICU-AW were not thoroughly investigated. Future research endeavors should aim to broaden their scope by encompassing multiple centers and larger sample sizes, while also incorporating a more extensive array of biomarkers and other influential factors for a comprehensive understanding.

CONCLUSION

This study emphasized the significant influence of the length of ICU stay and the duration of mechanical ventilation on ICU-AW. The primary strategy for preventing ICU-AW involves reducing these durations, where feasible under clinical conditions. However, it is crucial to acknowledge that numerous other factors contribute to the occurrence of ICU-AW. Therefore, minimizing these factors collectively can effectively mitigate the risk of ICU-AW. These insights provide clinicians with valuable information for making informed decisions in the prevention and treatment of ICU-AW.

ARTICLE HIGHLIGHTS

Research background

Intensive care unit-acquired weakness (ICU-AW) is a common complication that significantly impacts the patient's recovery process, even leading to adverse outcomes. Currently, there is a lack of effective preventive measures.

Research motivation

Provide meaningful insights for the prevention of ICU-AW.

Research objectives

Identify the main risk factors for ICU-AW.

Research methods

Utilizing iterative machine learning techniques, a multilayer perceptron neural network model was developed, and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve, and analyzed the importance of independent variables in models.

1240

Research results

The most influential factors contributing to ICU-AW were identified as the length of ICU stay (100.0%) and the duration of mechanical ventilation (54.9%). The neural network model predicted ICU-AW with an area under the curve of 0.941, sensitivity of 92.2%, and specificity of 82.7%.

Research conclusions

The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.

Research perspectives

A primary preventive strategy, when feasible, involves minimizing both ICU stay and mechanical ventilation duration. Future research needs to clarify the mechanism of ICU-AW occurrence and refine prevention strategies.

FOOTNOTES

Author contributions: Wang L contributed to the research design, research implementation, data management, statistical analysis, manuscript writing-review and editing; Long DY contributed to the research conduct, data organization, research execution, review.

Supported by Science and Technology Support Program of Qiandongnan Prefecture, No. Qiandongnan Sci-Tech Support [2021]12; and Guizhou Province High-Level Innovative Talent Training Program, No. Qiannan Thousand Talents [2022]201701.

Institutional review board statement: The study was approved by the Medical Ethics Committee of People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture (No. 2021012).

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Data sharing statement: Dataset available from the corresponding author at 463082910@qq.com.

STROBE statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Ling Wang 0000-0001-7114-0519.

S-Editor: Zhang H L-Editor: A P-Editor: Li X

REFERENCES

- Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med 2020; 46: 637-653 [PMID: 32076765 DOI: 10.1007/s00134-020-05944-4]
- Li Z, Zhang Q, Zhang P, Sun R, Jiang H, Wan J, Wu F, Wang X, Tao X. Prevalence and risk factors for intensive care unit acquired weakness: 2 A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99: e22013 [PMID: 32899052 DOI: 10.1097/MD.0000000000022013]
- Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med 3
- Dres M, Jung B, Molinari N, Manna F, Dubé BP, Chanques G, Similowski T, Jaber S, Demoule A. Respective contribution of intensive care 4 unit-acquired limb muscle and severe diaphragm weakness on weaning outcome and mortality: a post hoc analysis of two cohorts. Crit Care 2019; 23: 370 [PMID: 31752937 DOI: 10.1186/s13054-019-2650-z]
- MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome 2021; 64: 416-425 [PMID: 33091314 DOI: 10.1139/gen-2020-0131]
- Haug CJ, Drazen JM. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N Engl J Med 2023; 388: 1201-1208 [PMID: 6 36988595 DOI: 10.1056/NEJMra2302038]
- Li XJ, Wu D, Ding XM. Research progress on risk prevention and prediction model of intensive care unit acquired weakness. Zhonghua

- Xiandai Huli Za Zhi 2022; 28: 269-275 [DOI: 10.3760/cma.j.cn115682-20210528-02314]
- Liu Y, Liu S, Wang Y, Lombardi F, Han J. A Survey of Stochastic Computing Neural Networks for Machine Learning Applications. IEEE 8 Trans Neural Netw Learn Syst 2021; 32: 2809-2824 [PMID: 32755867 DOI: 10.1109/TNNLS.2020.3009047]
- Zhu LW, Zhang HF. Analysis of high-risk factors for acquired weakness in ICU and exploration of related nursing interventions. Hangkong Hangtian Yixue Za Zhi 2021; **32**: 985-987 [DOI: 10.3969/j.issn.2095-1434.2021.08.056]
- Yang Z, Wang X, Chang G, Cao Q, Wang F, Peng Z, Fan Y. Development and validation of an intensive care unit acquired weakness 10 prediction model: A cohort study. Front Med (Lausanne) 2023; 10: 1122936 [PMID: 36910489 DOI: 10.3389/fmed.2023.1122936]
- van Wagenberg L, Witteveen E, Wieske L, Horn J. Causes of Mortality in ICU-Acquired Weakness. J Intensive Care Med 2020; 35: 293-296 [PMID: 29241382 DOI: 10.1177/0885066617745818]
- Needham DM, Dinglas VD, Morris PE, Jackson JC, Hough CL, Mendez-Tellez PA, Wozniak AW, Colantuoni E, Ely EW, Rice TW, Hopkins 12 RO; NIH NHLBI ARDS Network. Physical and cognitive performance of patients with acute lung injury 1 year after initial trophic vs full enteral feeding. EDEN trial follow-up. Am J Respir Crit Care Med 2013; 188: 567-576 [PMID: 23805899 DOI: 10.1164/rccm.201304-0651OC]
- Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L. The Sick and the Weak: Neuropathies/ 13 Myopathies in the Critically Ill. Physiol Rev 2015; 95: 1025-1109 [PMID: 26133937 DOI: 10.1152/physrev.00028.2014]
- Liu Y, Luo J, Xie L, Liu M, Zhou XT, Ding YH. Systematic evaluation of ICU acquired weakness risk prediction model. Zhonghua Xiandai 14 Huli Za Zhi 2020; 26: 4769-4774 [DOI: 10.3760/cma.j.cn115682-20200325-02174]
- 15 Zhang W, Tang Y, Liu H, Yuan LP, Wang CC, Chen SF, Huang J, Xiao XY. Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: A systematic review. PLoS One 2021; 16: e0257768 [PMID: 34559850 DOI: 10.1371/journal.pone.0257768]
- 16 Yang T, Li Z, Jiang L, Wang Y, Xi X. Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurol Scand 2018; 138: 104-114 [PMID: 29845614 DOI: 10.1111/ane.12964]
- 17 Wang W, Xu C, Ma X, Zhang X, Xie P. Intensive Care Unit-Acquired Weakness: A Review of Recent Progress With a Look Toward the Future. Front Med (Lausanne) 2020; 7: 559789 [PMID: 33330523 DOI: 10.3389/fmed.2020.559789]
- Montejo González JC, Sánchez-Bayton Griffith M, Orejón García L. [Muscle in critically ill patients]. Nutr Hosp 2019; 36: 12-17 [PMID: 18 31189318 DOI: 10.20960/nh.02676]
- 19 Raurell-Torredà M, Arias-Rivera S, Martí JD, Frade-Mera MJ, Zaragoza-García I, Gallart E, Velasco-Sanz TR, San José-Arribas A, Blazquez-Martínez E; MOviPre group. Care and treatments related to intensive care unit-acquired muscle weakness: A cohort study. Aust Crit Care 2021; **34**: 435-445 [PMID: 33663950 DOI: 10.1016/j.aucc.2020.12.005]
- Wolfe KS, Patel BK, MacKenzie EL, Giovanni SP, Pohlman AS, Churpek MM, Hall JB, Kress JP. Impact of Vasoactive Medications on ICU-20 Acquired Weakness in Mechanically Ventilated Patients. Chest 2018; 154: 781-787 [PMID: 30217640 DOI: 10.1016/j.chest.2018.07.016]
- Ai MH, Lin SC, Yang CB. Risk Factors Analysis and Prediction Model Establishment of ICU-acquired Weakness. Zhongguo Weisheng 21 Biaozhun Guanli 2022; 13: 38-41 [DOI: 10.3969/j.issn.1674-9316.2022.08.011]
- Nakahara S, Takasaki M, Abe S, Kakitani C, Nishioka S, Wakabayashi H, Maeda K. Aggressive nutrition therapy in malnutrition and 22 sarcopenia. Nutrition 2021; 84: 111109 [PMID: 33453622 DOI: 10.1016/j.nut.2020.111109]
- Bellaver P, Schaeffer AF, Leitao CB, Rech TH, Nedel WL. Association between neuromuscular blocking agents and the development of 23 intensive care unit-acquired weakness (ICU-AW): A systematic review with meta-analysis and trial sequential analysis. Anaesth Crit Care Pain Med 2023; 42: 101202 [PMID: 36804373 DOI: 10.1016/j.accpm.2023.101202]

1242

Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

Telephone: +1-925-3991568

E-mail: office@baishideng.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

