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Abstract
As an irreversible and perennial process, aging is accompanied by functional and
morphological declines in organs. Generally, aging liver exhibits a decline in
volume and hepatic blood flow. Even with a preeminent regenerative capacity to
restore its functions after liver cell loss, its biosynthesis and metabolism abilities
decline, and these are difficult to restore to previous standards. Apoptosis is a
programmed death process via intrinsic and extrinsic pathways, in which Bcl-2
family proteins and apoptosis-related genes, such as p21 and p53, are involved.
Apoptosis inflicts both favorable and adverse influences on liver aging.
Apoptosis eliminates transformed abnormal cells but promotes age-related liver
diseases, such as nonalcoholic fatty liver disease, liver fibrosis, cirrhosis, and liver
cancer. We summarize the roles of apoptosis in liver aging and age-related liver
diseases.

Key words: Apoptosis; Liver aging; Oxidative stress; Caloric restriction; Cirrhosis
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Core tip: Aging liver exhibits functional and morphological changes. Apoptosis
eliminates transformed abnormal cells but promotes age-related liver diseases, such as
nonalcoholic fatty liver disease, liver fibrosis, cirrhosis, and liver cancer. Apoptosis
including intrinsic and extrinsic pathways has protective and deleterious effects on liver
aging. The occurrence, development, and treatment of age-related liver diseases correlate
highly with liver aging and apoptosis. This paper elaborates the effects of apoptosis on
liver aging.
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INTRODUCTION
Aging process  is  always accompanied by a  gradual  decline  in  the  physiological
functions  of  tissues  and  organs.  In  the  late  phase,  aging  goes  along  with  some
degenerative diseases and mortality. Aging liver exhibits some age-related changes,
such as a decline in volume and hepatic blood flow[1]. In aging people, the liver shows
a brown-like appearance, which is usually caused by the accumulation of lipofuscins
in the liver cells  with aging[2].  Liver cell  survivability decreases due to excessive
reactive  oxygen  species  (ROS)  caused  by  lipofuscins[3].  Liver  cells  consist  of
hepatocytes and non-hepatocytes,  and non-hepatocytes include endothelial  cells,
Kupffer cells,  lymphocytes,  stellate cells,  and biliary cells[4].  As a site of immune
maturation and differentiation, aging liver involves some immune-related changes[5].
There were some immune cells such as macrophages, natural killer cells, T cells, B
cells,  and  neutrophils  congregating  in  the  liver  tissue  of  the  aged  mice[6].  The
inflammatory cytokines  and chemokines also increased in the aged liver,  which
caused  inflammation  and  associated  with  the  foreign  antigens  into  the  liver.
Furthermore,  it  has  also  been  shown  that  the  increased  natural  killer  cells  and
macrophages in the aged liver produced more interferon gamma, which impaired the
capacity of liver regeneration[7]. The aging process of the liver is associated with the
decline of immune response compared with young liver, rendering aging liver more
susceptible  to  infections,  malignancies,  and autoimmunity[8-10].  During the aging
process,  mitochondrial  dysfunction is  induced by perturbation in  the  electronic
conversion process, which results in the reduction of adenosine triphosphate (ATP)
production and the increase in oxidation products, such as phospholipids, proteins,
and DNA[11]. ROS are by-products of oxidative phosphorylation in the mitochondria.
As a perpetrator, senescence severely impairs the antioxidant capacity of normal cells,
and its resultant ROS products trigger oxidative stress, damage mitochondrial DNA,
and may eventually lead to DNA mutations[12].

As a programmed death pathway, apoptosis can eliminate some degenerative cells,
such as abnormal polyploid liver cells,  via  intrinsic or extrinsic pathways[13].  The
former resorts to pro-apoptotic proteins like cytochrome c, and the latter is mainly
dependent on death receptors to induce apoptosis. Apoptosis and aging are generally
believed to be two biological  interaction processes,  in which aging regulates the
apoptosis progression, and abnormal apoptosis conversely influences the normal
aging process[14].  Aging reduces  the  expressions  of  several  key molecules  in  the
endoplasmic reticulum (ER) and affects its biological functions, including protein
folding and lipid synthesis, thereby resulting in ER stress[15]. When long-term chronic
ER stress is not relieved in aging liver, the disordered lipid metabolism may cause
lipotoxicity  that,  in  turn,  would  induce  cell  apoptosis  and  may  finally  cause
development of non-alcoholic fatty liver disease (NAFLD)[16]. Although some progress
has been made in recent years, the interrelationships among apoptosis, hepatic organ
senescence, and age-related liver diseases are not yet fully clear. We recently reported
the causes of apoptosis during liver aging[17]. Here, we reference and summarize the
recent relevant literature to further elaborate the effects of apoptosis on liver aging.

CELL APOPTOSIS SIGNALING PATHWAYS
Cell apoptosis is mediated by extracellular or intracellular cascade signaling pathways
separately. The extracellular pathway mainly involves special ligands activating its
receptors through inward signaling pathways. By contrast, the intracellular apoptosis
pathway relies on intracellular organelles, like the mitochondrion and ER[17].

EXTRINSIC SIGNALING PATHWAY
The binding of extracellular ligands and their corresponding receptors on the plasma
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membrane is the first step by which cell apoptosis is initiated within the extrinsic
signaling pathway. These receptors are known as death receptors, including tumor
necrosis factor receptor 1 (TNF-R1), TNF-related apoptosis-inducing ligand receptor
(TRAIL-R), and Fas[18]. The corresponding extracellular ligands include TNF-alpha
(TNF-α), TRAIL, and Fas ligand. When the death receptors are activated by their
ligands, conformational changes of death receptors occur, and a tripolymer is formed.
Furthermore, the activated receptors recruit cytoplasmic adaptor molecules, including
Fas-associated  death  domain-containing  protein  and  TNFR-associated  death
domain[19].  Moreover,  apoptosis  signaling molecules  are  also  recruited.  Adaptor
molecules then bind with apoptosis-signaling molecules to form a complex named the
death-inducing signaling complex (DISC)[20]. Eventually, DISC leads to the activation
of  caspase-8,  and caspase-8 activates  executioner caspases,  such as  caspase-3,  to
induce apoptosis[21].

INTRINSIC SIGNALING PATHWAY
Within the intrinsic pathway, organelle dysfunction triggers apoptosis from diverse
perspectives.  For instance,  lysosomal permeabilization,  ER stress,  mitochondrial
dysfunction, and the perturbation of other organelles are all involved in apoptosis[22].
Among these organelles, the mitochondrion is the protagonist in the initiation and
progression  of  apoptosis[23].  Mitochondrial  dysfunction  induces  the  opening  of
mitochondrial permeability transition pore (mtPTP), which allows the release of pro-
apoptotic proteins, such as cytochrome c, from mitochondrial intermembrane space
into the cytoplasm. Subsequently, with the participation of cytochrome c, apoptotic-
protein activation factor-1, and caspase-9, a complex known as the apoptosome is
formed, which activates downstream effector caspase-3 to induce apoptosis (Figure
1)[24,25].

The mitochondrion is  regulated directly or obliquely by Bcl-2 family proteins,
which can be divided into three groups: the pro-apoptotic multi-domain proteins
consisting of Bax, Bak, and Bok; the pro-apoptotic BH3-only proteins, such as Bad;
and the anti-apoptotic multi-domain proteins, including Bcl-2, Bcl- XL, and Bcl-W[26,27].
With additional proapoptotic proteins, the ratio of pro-apoptotic proteins to anti-
apoptotic proteins, such as Bax/Bcl-2, is increased significantly, which causes cellular
apoptosis[28]. Mitochondrial dysfunction results in the generation of ROS, which are
engendered primarily by deployed electron transport chain and excessive stress in the
mitochondrion[29].  Given  that  the  majority  of  oxygen  is  consumed  in  the  mi-
tochondrion,  the  mitochondrion determines  the  generation of  most  oxygen free
radicals and hydroperoxides. Given that mitochondrial dysfunction contributes to the
overloading of ROS, overabundance of ROS is detrimental and leads to lipotoxicity,
DNA lesion, and protein damage[30,31].

PROTECTIVE EFFECTS OF APOPTOSIS ON LIVER AGING

Elimination of transformed cells
Under physiological  conditions,  hepatic intrinsic apoptosis increases with age[32].
When exposed to genotoxins from daily diets and free radicals, injured hepatocytes
may  form  neoplasia  without  sufficient  self-clearance  due  to  DNA  damage[33].
Fortunately,  apoptosis  eliminates  abnormal  cells  in  a  timely  manner  to  avoid
malignant change and preserve homeostasis. In contrast to abnormal cells, normal
liver  cells  proliferate  and  are  renewed,  thereby  maintaining  their  fundamental
physiological function[34]. Giorgadze et al[35] evaluated the effects of age on hepatocyte
apoptosis and proliferation in male rats under physiological conditions. Their results
suggested that in senescent rats, the amount of polyploid nuclei in liver cells was
dramatically  high  compared  with  that  in  young  rats.  However,  polyploid  cells
exhibited less survival opportunity compared with liver cells. If excessive polyploid
cells  are  present,  and renewing cells  are  lacking,  failure  may occur  during liver
damage. Given that polyploid cells are eliminated through apoptosis to avoid liver
failure, apoptosis is deemed to protect liver aging.

Decline of oxidative stress
The free radical theory of aging was first proposed by Harman in 1956, in which
oxidative stress was thought to be associated with aging intimately[36]. During liver
aging, excessive oxidative stress generates ROS, which perturb the balance between
oxidative and antioxidative processes and induce liver injury. Moderate apoptosis can
maintain hepatic  homeostasis  by purging transformed cells.  However,  excessive
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Figure 1

Figure 1  Extrinsic and intrinsic pathways in liver apoptosis. ROS: Reactive oxygen species; ER: Endoplasmic reticulum; TNF-R1: Tumor necrosis factor receptor
1; TRAIL-R: Tumor necrosis factor-related apoptosis-inducing ligand receptor; DISC: Death-inducing signaling complex.

oxidative stress induces excessive apoptosis, impairs hepatic function, and accelerates
liver aging[37].  Hence, resolving oxidative stress can be a valid strategy to reduce
apoptosis and to protect the liver from ROS overload.

Martin et al[38] studied the impact of long-term Mg intake on oxidative stress and
apoptosis in rat livers.  Treated with deficient Mg dose diets,  rat  livers showed a
decline in glutathione peroxidase (GSH-Px)  activity and caspase-3 activation.  In
addition, telomere shortening was observed in the Mg-deficient group[38].  Herein,
adequate Mg dose in diets may reduce oxidative damage and apoptosis, which slows
down  the  progression  of  liver  aging.  D-galactose  (D-Gal),  a  monosaccharide
consisting of six carbons and one aldehyde, was used to mimic the natural aging
process in mice through the induction of oxidative damage and cellular apoptosis[39].
Moderate concentration of D-gal can be wholly metabolized, but its high dose induces
ROS that  further  trigger  apoptosis[40].  Based  on  the  aging  animal  model,  whose
senescence is induced with D-Gal, drugs at a certain amount are used to counteract
oxidative stress, thereby reducing liver damage. Colla corii asini (E’jiao), a traditional
Chinese medicine,  ameliorates superoxide dismutase (SOD), catalase (CAT),  and
GSH-Px activities to slow down aging process in D-Gal-induced mice[41].  As a by-
product of silymarin production, Silybum marianum oil decreases monoamine oxidase
and  malondialdehyde  (MDA)  levels  to  alleviate  oxidative  damage  apart  from
improving SOD and GSH-Px activities[42].  Furthermore,  polydatin  treatment  can
enhance antioxidant enzyme activities, increase Bcl-2/Bax ratio, and down-regulate
caspase-3 protein expression to mitigate D-Gal-induced liver damage[43]. In general,
apoptosis is a serviceable and efficacious target for many drugs to diminish oxidative
stress and lower liver injury during aging.

Caloric restriction
Dieting, a vital and protective approach for delaying aging, is very significant in
preserving liver function, and caloric restriction (CR) is a major participant in slowing
the  aging  process  and  extending  the  life  span  of  animals[44].  CR  attenuates  the
generation of H2O2 in the mitochondria of rat liver and increases the activities of SOD,
CAT,  and GSH-Px at  old  age[2,45].  In  addition,  CR protects  the  liver  through the
modulation of apoptosis-related genes. Higami et al[46] examined the effects of aging
and diet restriction on the Fas  gene. They found that the overexpression of Fas  in
advanced age increased the susceptibility to apoptosis. However, diet restriction can
suppress the overexpression of Fas to reduce apoptosis in hepatocyte aging[46]. The
expression of not only Fas but also Fas receptor mRNA is affected by CR. With a 30%
reduction in food intake in aging male F344 rats, age-enhanced Fas receptor mRNA
and  pro-apoptotic  gene  p53  expression  in  hepatocytes  were  suppressed  by  CR,
thereby improving hepatocyte survival in senescent liver[47]. Furthermore, gadd153, a
pro-apoptotic gene, is affected by liver aging and CR. Ikeyama et al[48] examined the
effects of liver aging and CR on gadd153. Aging increased the expression of gadd153,
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which sensitized hepatocytes to oxidative damage. CR also decreased the decline of
oxidative stress tolerance and attenuated gadd153 expression. Herein, CR reduced
oxidative stress and suppressed the overexpression of pro-apoptotic genes, such as
gadd153 and Fas, to address liver injury.

The  anti-aging  ability  of  CR  is  also  implicated  by  mitochondrial  dynamics
involving fusion and fission. The outer membrane GTPases mitofusin 1 (Mfn1) and
Mfn2 collaborate  with  the  inner  membrane  GTPase,  optic  atrophy 1  (OPA1),  to
regulate  mitochondrial  fusion[49].  Mitochondrial  fission is  mainly regulated by a
GTPase,  referred to as dynamin-related protein 1,  the corresponding receptor of
which is fission 1 (Fis1)[50]. In a study by Khraiwesh et al[51], the expression of OPA1 as
it relates to mitochondrial fusion can be significantly increased by CR, which can also
reduce  the  expression  of  Fis1  in  hepatocytes.  Increased  OPA1  upregulates
mitochondrial fusion, which is known as an underlying and effective mitochondrial
complementation  of  mtDNA  defects[52].  For  instance,  the  complementation  of
respiratory deficiency caused by mutant mtDNAs significantly reduces oxidative
stress[53].  Furthermore,  overexpression of  the mitochondrial  fission protein,  Fis1,
promotes  apoptosis,  indicating  that  Fis1  may  be  a  driver  of  apoptosis [54 ].
Downregulation  of  Fis1  expression  reduces  mitochondrial  fission  and  leads  to
extensive mitochondrial elongation and elevated levels of PTEN-induced putative
kinase 1,  both of which lead to resistance of old cells to oxidative stress-induced
apoptosis[55].  Therefore,  CR can maintain mitochondrial  homeostasis  and reduce
mitochondrial oxidative stress to slow the aging process through the regulation of
mitochondrial fusion and fission.

DELETERIOUS EFFECTS OF APOPTOSIS ON LIVER AGING

Mitochondrial dysfunction
The mitochondrion, the main producer of intrinsic ROS, is the core component in
apoptosis during liver aging. In aging process, mitochondrial dysfunction leads to an
imbalance between ROS production and antioxidant ability[56]. Therefore, aging can be
recognized  as  a  risk  factor  for  apoptosis  in  maintaining  liver  mitochondrial
homeostasis[57].  Braidy  et  al[58]  investigated  the  influence  of  aging  on  cofactor
nicotinamide  adenine  dinucleotide  (NAD+).  They  found  that  the  decline  of
intracellular NAD+ with age reduced mitochondrial activities, which impaired DNA
and perturbed redox status. Aging increases ROS production and enhances mutations
in  mtDNA.  Conversely,  the  accumulation  of  mtDNA mutations  may  accelerate
mammalian aging process. Aging enhances the activity of mtPTP and the release of
proapoptotic proteins, including cytochrome c, procaspases-2 and -3, as well as other
apoptosis-initiating factors from the mitochondrial intermembrane space[59,60]. Release
of proapoptotic proteins induces apoptosis in aging liver by triggering the intrinsic
pathway. For the pro-apoptotic and anti-apoptotic proteins in the mitochondria, aging
diminishes  the  levels  of  pro-apoptotic  proteins,  such  as  Bak,  whereas  the  anti-
apoptotic  proteins are not  affected[61].  Thus,  the ratio of  Bax/Bcl-2 increases and
further induces apoptosis.  Mitochondrial  dysfunction increases apoptosis  extent
during liver aging and aggravates liver damage.

Accumulation of iron and sphingolipids
During aging, the accumulation of diverse deleterious changes impairs liver functions
of retaining homeostasis[62]. Cleaning ability of the liver diminishes with aging, which
triggers  the  accumulation  of  various  deleterious  materials,  such  as  iron  and
sphingolipids. The deposition of iron, a result of the aging process,  leads to iron
excess, thereby increasing the concentration of reactive oxygen and nitrogen species,
and causes the toxicity of superoxide and perturbation of the antioxidant capacity of
NO[63,64]. In senescent liver mitochondria, an accumulation of non-heme iron enhances
the opening of mtPTP, which changes membrane permeability and even causes the
release  of  diverse  signaling  transduction  molecules  that  eventually  induce
mitochondrial dysfunction and oxidative damage[65].

Sphingolipids consisting of ceramide and sphingosine accumulate during liver
aging, and their metabolism is influenced by oxidative stress, which increases the risk
of  progression  of  age-related  hepatic  diseases[66,67].  The  elevated  activation  of
sphingomyelin synthase and the diminished sphingomyelinase activity disrupt the
balance  of  sphingomyelin,  thereby  resulting  in  its  accumulation;  apoptosis  and
relevant damage occur in aging liver[68]. In addition, the changes incurred in ceramide
species  are  potential  risk  factors  that  are  implicated  in  the  development  and
progression of age-related diseases. Six ceramide synthase (CerS) isoforms participate
in the synthesis of ceramide species via the de novo pathway and salvage pathway[69].
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Furthermore,  ceramide  is  regarded  as  a  crucial  component  in  sphingolipid
biosynthesis  and degradation[70,71].  The different  distributions of  CerS in various
tissues lead to the difference in ceramide species among tissues[72]. In Wistar rats with
age-related obesity, although the levels of total ceramide contents in epidydimal white
adipose tissue showed no increase, levels of C16 ceramide produced by CerS6 were
increased,  which resulted in age-associated adipose tissue hypertrophy and was
correlated with insulin resistance[73]. Turpin et al[74] reported that the CerS6-deficient
mice with a high-fat diet exhibited reduced C16 ceramide in white adipose tissue, and
the CerS6-deficient mice not only had reduced body weight and adipocyte size, but
also reduced serum insulin concentrations, improved glucose tolerance and insulin
sensitivity compared to control littermates. Therefore, the increased levels of CerS6-
derived C16 ceramide attribute to age-related obesity and insulin resistance[75].

Defect of apoptosis
A defect  in  apoptosis  disrupts  antiapoptotic  and proapoptotic  homeostasis  and
gradually causes severe organ dysfunction. As a part of cysteine protease family,
caspase-2  participates  in  apoptosis  and  can  be  activated  by  signals  relative  to
oxidative  stress.  In  mammalian  liver  aging,  the  liver  with  caspase-2  deficiency
possesses increased content of oxidized proteins compared with the wild-type liver,
which suggests that the activity of eliminating damaged cells is impaired. In addition,
caspase-2 deficiency may incur apoptosis by affecting the executioner caspase-3 and
then inducing apoptosis disorder[76]. Here we summarize the effects of apoptosis on
liver aging systematically in Figure 2.

EFFECTS OF APOPTOSIS ON AGE-RELATED LIVER
DISEASES

NAFLD
Excessive lipids may transfer from saturated white adipose tissue to non-adipose
tissues, such as the liver, and enter non-oxidative pathways where the toxic reactive
lipid species are produced. Lipotoxicity, which is induced by reactive lipids, can
eventually  lead  to  apoptosis  in  the  liver[77].  NAFLD,  which  is  characterized  by
significant accumulation of lipids, such as triglycerides, free fatty acids, cholesterol,
and phospholipids, is considered the most common chronic liver disorder[78,79] (Figure
3). NAFLD consists of a wide spectrum of liver diseases from benign hepatic steatosis
to  non-alcoholic  steatohepatitis  (NASH),  advanced  fibrosis,  cirrhosis,  and  even
hepatocellular carcinoma[80,81].

Aging process upregulates the sensibility of cells to lipotoxicity and represses the
metabolic  ability  concerning  lipids,  which  causes  considerable  lipotoxicity  and
increases apoptosis in aging liver[82]. Herein, the prevalence of NAFLD increases in
proportion to age[83]. The accumulation of lipotoxicity accelerates apoptosis and liver
aging process, and aging increases the severity of lipotoxic damage, thereby forming a
vicious circle if prolonged. In NAFLD, the loss of Ca2+ pumping activity induces not
only lipotoxicity but also oxidative stress and apoptosis in aging liver through the
reduction of senescence marker protein-30 (SMP30). With oxidative and ER stresses,
the decline of SMP30 induces inflammatory responses and hepatic steatosis[84].  In
addition, NAFLD can evolve into NASH in the presence of oxidative stress, and aging
itself enhances this process[85,86]. The occurrence of NASH is relevant to mitochondrial
fusion and fission. A high-fat diet and excess glucose can increase Fis1 expression and
reduce  the  levels  of  Mfn2[87].  Increased  Fis1  and  reduced  Mfn2  interfere  with
mitochondrial  dynamics,  thereby  causing  mitochondrial  fission,  which  in  turn
induces  mitochondrial  fragmentation  and  inhibits  mitochondrial  fusion[49].  The
mitochondrial  fragmentation  is  associated  with  increased  ROS  production  and
inflammation[88,89]. Thus in aging liver, lipotoxicity, SMP30, mitochondrial fission, and
oxidative stress may contribute to apoptosis and progression of NAFLD.

Given  the  crucial  role  of  apoptosis  in  NAFLD,  alleviating  apoptosis  as  a
modulatory method may provide curable and innovational strategies to treat NAFLD.
The main sources of ROS production and oxidative stress come from mitochondria
that participate in the progression of NAFLD[90]. Impaired mitochondria lead to the
peroxidation of lipids and induce cell apoptosis known as “lipoapoptosis”. Therefore,
mitigation  of  mitochondrial  impairment  impedes  the  progression  of  NAFLD[91].
Resveratrol  ameliorates  NAFLD through significantly  increasing SOD and CAT
activities and decreasing TNF-α, lipid peroxidation, and apoptotic cell contents[92].
Ginkgolide A reduces cellular lipogenesis  and lipid accumulation by decreasing
mitochondrial oxidative stress and inducing lipoapoptosis to alleviate NAFLD[93].
Lipotoxicity, a complex process, is tightly associated with ER stress. During aging,
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Figure 2

Figure 2  Effects of apoptosis process on aging of the liver. ER: Endoplasmic reticulum; DISC: Death-inducing signaling complex; ROS: Reactive oxygen species;
CR: Caloric restriction; NAFLD: Non-alcoholic fatty liver disease; HSC: Hepatic stellate cells.

activated  ER  stress  is  associated  with  fat  accumulation,  insulin  resistance,  and
apoptosis in NAFLD[16]. Hence, alleviating ER stress is an effective approach to treat
NAFLD[94].  In  NAFLD,  the  unfolded  protein  response  (UPR)  perturbs  hepatic
lipogenesis  and metabolism and contributes  to  the progression of  NASH. SIRT7
activation can regulate the UPR pathways to suppress ER stress and alleviate and
even revert NAFLD[95]. Caspase-3 activation and the imbalance between pro-apoptotic
and anti-apoptotic proteins in Bcl-2 family result in liver apoptosis in NAFLD or
NASH[96]. Garcimartin et al[97] investigated the effects of silicon on senescent rats with
NASH and found that  the  treatment  of  silicon can block  apoptosis  by  lowering
activated caspase-3 and -9 and the mitochondrial ratio of Bax to Bcl-2 efficiently.
Mitochondrial fission may increase the severity of NASH. Conversely, mitochondrial
fusion is deemed to ameliorate NASH. Sacerdoti et al[98] reported that induction of
heme  oxygenase  1  (HO-1)  can  reduce  steatosis  and  inflammation  in  NASH  by
improving mitochondrial fusion. Mitochondrial fusion contributes to mitochondrial
elongation, which not only increases the capacity for mitochondrial ATP synthesis,
but  also  reduces  oxidative  stress,  restores  insulin  sensitivity,  and  decreases
lipogenesis[99,100]. Thus, hepatic mitochondrial fusion, induced by HO-1, is beneficial in
reducing the severity of NASH.

Liver fibrosis
During  sustained  liver  damage,  liver  fibrosis  results  from  the  production  and
degradation imbalance of  extracellular matrix (ECM).  Once fibrogenesis  exceeds
fibrolysis, ECM deposits and leads to liver fibrosis. Indeed, with excessive ECM, liver
fibrosis is the outcome of chronic hepatic insults, such as NASH and viral hepatitis[101].
In hepatic fibrosis development, activation of hepatic stellate cells (HSCs) and other
myofibroblastic  cells  is  the  major  mechanism  in  fibrogenesis.  Hepatocytes
demonstrate significantly impaired regeneration and are then replaced by ECM when
exposed to chronic injury[102]. Thus, the activation of HSCs and hepatocyte apoptosis
participate in the occurrence of liver fibrosis[76].

Efficacious therapies targeting liver fibrosis  rely on the induction of  HSC and
myofibroblastic cell senescence and apoptosis[103]. CR is involved in preventing age-
related liver fibrosis through decreasing the levels of proinflammatory cytokines. The
senescence of HSCs can be induced by interleukin (IL)-22 through expressing both IL-
10  receptor  2  and  IL-22  receptor  1,  thereby  ameliorating  liver  fibrosis[104].  Te-
tramethylpyrazine can suppress the activation of HSCs and promote HSC senescence
via increasing the expression of p53 and silencing Yes-associated protein, which is a
therapeutic  for  liver  fibrosis[105].  As  a  key  participant  in  liver  fibrosis,  hepatic
myofibroblast (MFB) is a target for atorvastatin; hepatic fibrosis is attenuated by
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Figure 3

Figure 3  Causes and treatment of non-alcoholic fatty liver disease. NAFLD: Non-alcoholic fatty liver disease; ER: Endoplasmic reticulum; CAT: Catalase; UPR:
Unfolded protein response.

induction of hepatic MFB senescence[106]. However, compared with HSC senescence,
whole liver aging is a risk factor for and increases the severity of liver fibrosis[107]. The
ability of fibrolysis is gradually impaired in liver aging[108]. Mitogen-activated protein
kinases  (MAPKs),  including  p38-MAPK,  c-Jun  N-terminal  kinase  (JNK),  and
extracellular  signal-regulated  kinase,  participate  in  the  activation  of  HSCs  via
transforming  growth  factor  β1  (TGF-β1),  which  is  closely  associated  with  the
development of liver fibrosis[109,110]. Horrillo et al[111] studied the effects of alterations in
CR on liver fibrosis in aged Wistar rats. They reported that CR could lower levels of
p38-MAPK, JNK, and nuclear factor kappa B to ameliorate liver fibrosis in the elderly.
Park et al[112] utilized daumone to mimic CR and found that it effectively inhibited
hepatic fibrosis by reducing TGF-β1 in aged mice. In addition, CR can ameliorate the
aging related increase  in  HSC number  and reduce the  gene expression of  α1-(I)
collagen in old mice, thereby halting hepatic fibrosis and ECM accumulation[113]. Thus,
the induction of HSC and MFB senescence, and the inhibition of MAPK signaling
pathways by CR can be therapeutic strategies for age-related liver fibrosis.

Cirrhosis
From a histological perspective, cirrhosis is structured by regenerative nodules that
are  encircled  by  fibrous  bands  and  is  regarded  as  an  advanced  stage  of  liver
fibrosis[114]. For some patients, NASH and hepatitis C virus are two risk factors for
cirrhosis[115,116]. The initial clinical manifestations of cirrhosis are hepatic vasculature
disorders, such as portal hypertension, and terminal cirrhosis is characterized by
serious complications like hepatic encephalopathy[117].

Telomeres are repeating hexanucleotide sequences and can maintain the stability of
chromosomes  by  avoiding  chromosomal  end-end  fusion.  During  liver  aging,  a
commensurate loss of the length of telomeres occurs with the progress of aging[118].
Wiemann et al[119] found that telomeres in cirrhosis shorten more significantly than in
non-cirrhosis samples. Particularly, in liver cirrhosis, telomere shortening is more
evident  in  hepatocytes  than  in  stellate  cells,  and  the  senescence  and  telomere
shortening of hepatocytes are tightly associated with the progression from fibrosis to
cirrhosis.  At  cirrhosis  stage,  telomere  shortening  restricts  hepatocyte  renewing
capacity by triggering the p53/p21 pathway that elevates hepatocytes apoptosis,
thereby accelerating the development and progression of cirrhosis[120,121]. Furthermore,
ER stress involves the formation of cirrhosis. ER stress-related proteins, including
inositol-requiring  enzyme 1  and C/EBP homologous  protein,  are  activated  and
induce apoptosis in cirrhosis[122].

The progression from cirrhosis to hepatocellular carcinoma is a complicated and
long-term process whose mechanism is not yet clear but may closely involve the
relationship between cell apoptosis and cirrhosis[123]. Xu et al[124] discovered that in
diethylnitrosamine-induced rat liver cirrhosis, hepatic oval cells are activated and
proliferate under the stimulation of hepatocyte apoptosis, which may be the major
driver in the evolvement from cirrhosis to hepatocellular carcinoma.

Liver cancer
Carcinogenesis is inseparable from apoptosis and cellular senescence. Apoptosis and
senescence are generally two beneficial mechanisms to suppress cancer progression
but may be reversed to a detrimental one at a later stage of cancer[125]. After age 40, the
occurrence of hepatocellular carcinoma increases gradually with age but decreases at
around ages of 70–75 years[126]. In aging liver mostly, apoptosis is characterized by
perturbation  and  imbalance  in  regulation.  Thus,  maintaining  the  stability  of
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hepatocyte number and preserving liver functions as before is very difficult.  The
continuation of this process further decreases apoptosis gradually and increases the
incidence of liver cancer. Apoptosis itself can eliminate abnormal cells in the liver. If
apoptosis is excessively suppressed and abnormal liver cells cannot be eliminated
timely,  these abnormal cells  may become cancerous and eventually lead to liver
cancer[33].  The  agonists  of  the  peroxisome  proliferator  activated  receptor-alpha
(PPARα), such as peroxisome proliferators, can suppress hepatocyte apoptosis[127].
Through  downregulating  the  expression  of  Bax  mRNA  and  Fas  mRNA  and
decreasing the level of caspase-2, activated PPARα suppresses hepatic apoptosis,
which may promote the generation of liver cancer[128].

Given the central role of aging and apoptosis in tumorigenesis, both apoptosis and
aging  can  become  targets  in  response  to  liver  cancer,  which  provides  a  novel
perspective  for  future  treatment  of  liver  cancer.  p53,  a  tumor suppression gene,
triggers apoptosis and cellular senescence by restricting oncogenes, thereby clearing
transformed cells[129]. Xue et al[130] disclosed that the reactivation of p53 gene in liver
cancer causes an inhibitory effect on tumors and triggers cell senescence to achieve
this  inhibitory  effect,  which  is  related  to  upregulating  inflammatory  cytokines.
Furthermore, p53 can induce innate immune response to eliminate tumor cells[130].
Apoptosis is usually at a low level in tumors. Thus, increasing apoptosis of tumor
cells is an efficient strategy for a number of anti-tumor drugs. As a non-steroidal anti-
inflammatory drug, aspirin in hepatocellular carcinoma cells increases Bax/Bcl-2
ratio, releases cytochrome c, and activates caspase-3, -8, and -9 activities, thereby
inhibiting tumor proliferation[131]. Doxorubicin also shows an anti-cancer effect; it can
provide highly effective synergy and induce apoptosis when combined with aspirin
by increasing the activities of caspase-3, -8, and -9 in human hepatocellular carcinoma
cells, which is a novel method to inhibit tumor growth[132].

CONCLUSION
The liver  is  an  irreplaceable  organ with  a  series  of  functions,  including protein
synthesis and detoxification, and its functions and state are critical to human health
from a long-term perspective. Liver aging is a natural and spontaneous process with
physiological function declines and morphological changes[1,2]. Intrinsic and extrinsic
pathways  are  two primary mechanisms involved in  apoptosis  and may achieve
synergistic effects under some cases[13]. In liver senescence, apoptosis is likened to a
double-edged sword: excessive apoptosis causes liver cell loss that can easily lead to
liver failure, whereas insufficient apoptosis can lead to the accumulation of abnormal
cells, which may conduce to the generation of malignant cells[133].

During liver aging, the overall liver function declines gradually with age. This
process  may  lead  to  excessive  hepatocyte  apoptosis,  which  in  turn  leads  to
accumulation of ECM and gradual formation of hepatic fibrosis[76]. Apoptosis and
aging play a central role in the occurrence, development, and treatment of age-related
liver diseases. Therefore, understanding the role of apoptosis in these diseases will
have far-reaching and significant implications for the complete treatment of these
diseases  in  the  future.  It  is  vital  to  explore  more  accurate  methods  of  detecting
apoptosis in the liver. Classic diagnosis of liver damage relies on the histological
evaluation from biopsy samples. So, some more accurate noninvasive evaluations
remain  to  be  explored  for  examining  cell  apoptosis.  Many  studies  above  have
identified that an age-related increase in inflammation and cellular stress correlates
with numerous apoptosis-related genes. Adjusting the expression of apoptosis-related
genes to prevent or delay liver disease progression is still  challenging. Exploring
apoptotic genes further will provide far more valuable insights into apoptosis and
better  strategies  to  reduce the  morbidity  of  liver  diseases.  Therefore,  additional
scientific research on apoptosis and liver aging needs to be commenced in order to
explore potential mechanisms and provide effective countermeasures for treating age-
related liver diseases.
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