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Abstract
BACKGROUND
Spinal cord injury (SCI) is a destructive disease that incurs huge personal and
social costs, and there is no effective treatment. Although the pathogenesis and
treatment mechanism of SCI has always been a strong scientific focus, the
pathogenesis of SCI is still under investigation.

AIM
To determine the key genes based on the modularization of in-depth analysis, in
order to identify the repair mechanism of astrocytes and non-astrocytes in SCI.

METHODS
Firstly, the differences between injured and non-injured spinal cord of astrocyte
(HA), injured and non-injured spinal cord of non-astrocyte (FLOW), injured
spinal cord of non-injured astrocyte (HA) and non-injured spinal cord of non-
astrocyte (FLOW), and non-injured spinal cord of astrocyte (HA) and non-
astrocyte (FLOW) were analyzed. The total number of differentially expressed
genes was obtained by merging the four groups of differential results. Secondly,
the genes were co-expressed and clustered. Then, the enrichment of GO function
and KEGG pathway of module genes was analyzed. Finally, non-coding RNA,
transcription factors and drugs that regulate module genes were predicted using
hypergeometric tests.

RESULTS
In summary, we obtained 19 expression modules involving 5216 differentially
expressed genes. Among them, miR-494, XIST and other genes were differentially
expressed in SCI patients, and played an active regulatory role in dysfunction
module, and these genes were recognized as the driving genes of SCI.
Enrichment results showed that module genes were significantly involved in the
biological processes of inflammation, oxidation and apoptosis. Signal pathways
such as NF-kappa B/A20, AMPK and MAPK were significantly regulated. In
addition, non-coding RNA pivot (including miR-136-5p and let-7d-5p, etc.) and
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transcription factor pivot (including NFKB1, MYC, etc.) were identified as
significant regulatory dysfunction modules.

CONCLUSION
Overall, this study uncovered a co-expression network of key genes involved in
astrocyte and non-astrocyte regulation in SCI. These findings helped to reveal the
core dysfunction modules, potential regulatory factors and driving genes of the
disease, and to improve our understanding of its pathogenesis.

Key words: Astrocyte; Non-astrocyte; Spinal cord injury; Repair mechanism; Dysfunction
module; Module genes

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The present study uncovered a co-expression network of key genes involved in
astrocyte and non-astrocyte regulation in spinal cord injury. These findings helped to
reveal the core dysfunction modules, potential regulatory factors and driving genes of the
disease, and to improve our understanding of its pathogenesis.
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INTRODUCTION
Spinal  cord injury  (SCI)  is  one  of  the  most  destructive  diseases  of  all  traumatic
diseases  patients  may encounter[1],  and it  has always been a challenging clinical
disease, which exerts a considerable socio-economic impact on the patient’s family
and health care system. Despite the improvement in medical care and rehabilitation,
the outcome of SCI tissue regeneration treatment is still inadequate[2]. At present, SCI
cannot be cured, and its treatment is limited to reducing secondary complications,
and maximizing residual function through rehabilitation[3]. It can lead to lower limb
paralysis,  paraplegia,  quadriplegia  and other  lifelong disabilities[4].  In  addition,
respiratory complications are common in patients with SCI[5]. The sequelae of SCI
includes denervation atrophy and paralysis, glucose intolerance, skin and wound
rupture, and depression[6]. SCI occurs worldwide, with an annual incidence of 15 of 40
cases, which is caused by factors including vehicle accidents, community violence,
recreational activities and workplace injuries[7]. At this stage, scientists interpret SCI
from various perspectives, and have achieved some success. Among them, the loss of
downward control after SCI and the constant stimulation of a single synaptic pathway
cause the intrinsic sensory impulse from muscles and tendons to enter the spinal cord,
which leads to the exaggerated activity of alpha-motor neurons and the increase in
reflex response[8]. At the same time, the down-regulation of microglia microRNA-128
may promote the development of neuropathic pain after SCI by activating P38[9]. In
vivo  experiments  showed  that  over-expressed  microRNA-136-5p  promoted  the
production of inflammatory factors and chemokines in SCI rats, and inhibited the
expression of  A20 protein,  inflammatory cell  infiltration and SCI[10].  In  addition,
naringenin  significantly  inhibited  SCI-induced  neutrophil  activation  through
microRNA-223[11]. On the other hand, microRNA-155 has been proved to be a new
therapeutic target of SCI, which can overcome both internal and external neuronal
barriers to repair SCI[12]. These findings deepen our understanding of the pathogenesis
of SCI and provide guidance for further research.

Although there is a series of studies on SCI, the overall effect of these results is still
elusive. In order to comprehensively and deeply examine the repair mechanism of
astrocytes and non-astrocytes in SCI, we carried out a systematic modular analysis
and exploration. In summary, our work describes in detail the relationship between
multifactor-mediated dysfunction modules and astrocytes and non-astrocytes in SCI,
and identifies potential therapeutic targets and related biological processes, which
may help to understand and treat SCI. It provides abundant candidate resources for
future experimental validation and drug relocation, and provides theoretical guidance
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for future research on SCI biology.

MATERIALS AND METHODS

Data resources
The NCBI Gene Expression Omnibus (GEO) database[13] includes a broad classification
of  high-throughput  experimental  data,  which includes single-channel  and dual-
channel microarray-based determination of gene abundance, and experimental data
on genomic DNA and protein molecules. In addition, it includes data from non-array-
based high-throughput functional genomics and proteomics techniques. First, we
collected a set of gene expression profiles of astrocytes and non-astrocytes in SCI
repair from the GEO, the number of which is GSE7609[14]. The data set includes 11
astrocytes  and 11 non-astrocytes  under SCI.  We then screened non-coding RNA
(ncRNA)-RNA (protein)  interaction pairs  with a  score ≥  0.5  from the RAID v2.0
database[15], including 431937 interaction pairs involving 5431 ncRNAs. The RAID v2.0
database recruited more than 5.27 million RNA-related interactions, including more
than  4  million  RNA-RNA  interactions  and  more  than  1.2  million  RNA-protein
interactions. In addition, all human transcription factor target data, involving 2492
transcription factors (TF) and 9396 interaction pairs, were downloaded and used in
the TRRUST V2 database[16].

Differentially expressed genes
The differential expression analysis of gene expression profile data in this study was
implemented by R language Limma package[17-19]. Firstly, background correct function
was  used for  background correction  and standardization.  Secondly,  the  normal
between the array function quantile normalization method was used to filter out the
control probe and the low expression probe. Then, differentially expressed genes in
datasets were identified based on lmFit and eBayes functions, and default parameters
were used.

Co-expression analysis
In order to explore the drivers of SCI repair, we analyzed the gene expression profiles
of astrocytes and non-astrocytes and obtained the differential gene expression profiles
of  SCI repair.  In addition,  in  order to  explore the co-expression of  differentially
expressed genes in the repair of SCI, we used weighted gene co-expression network
analysis[20] to analyze the matrix of differentially expressed genes in the repair of SCI,
and  to  find  the  co-expression  gene  module.  Firstly,  the  weighted  value  of  the
correlation coefficient, i.e., the N power of gene correlation coefficient, was used to
calculate the correlation coefficient (Pearson Coefficient) between any two genes. The
connection between genes in the network obeys scale-free networks, which makes the
algorithm more biologically meaningful.  Then, a hierarchical  clustering tree was
constructed by the correlation coefficient between genes. Different branches of the
clustering  tree  represent  different  gene  modules,  and different  colors  represent
different modules. According to the regulatory power of genes in each dysfunction
module,  we  excavated  the  key  genes  that  lead  to  the  dysfunction  module,  and
considered them as the key genes for the repair of SCI.

Functional and pathway enrichment
Exploring  the  functions  and  signaling  pathways  of  gene  involvement  is  often
beneficial in studying the molecular mechanisms of diseases, and the enrichment of
genes  in  dysfunctional  modules  is  an  effective  means  to  explore  the  potential
mechanisms of SCI repair. Therefore, we used R language Cluster Profiler package[21]

to analyze the enrichment of GO function (P value Cutoff = 0.01, Q value Cutoff =
0.01)  and KEGG pathway (P  value  Cutoff  =  0.05,  Q value  Cutoff  =  0.2).  Cluster
Profiler is a software package by Bioconductor, which can be adopted for statistical
analysis and visualization of functional clustering of gene sets or gene clusters. In
addition,  we  used BinGO[22]  application  by  Cytoscape  to  analyze  the  integrated
module network.

TF and ncRNA of regulatory dysfunction module
Gene transcription and post-transcriptional regulation are often driven by non-coding
genes (ncRNA) and TF. Therefore, we scientifically predicted and tested its role in the
relevant modules of SCI repair. Axonal regulators are defined as regulators that have
significant regulatory effects on modules during the repair of SCI, including ncRNA
and TF.  We required that  there  were  more than two control  links  between each
regulator and each module, and that the significance of the enriched targets in each
module based on hypergeometric test calculation had a P value lower than 0.01.
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RESULTS

To determine the expression disorders of astrocytes and non-astrocytes in the
repair mechanism of SCI
Biologists have carried out many experiments and studies on the pathogenesis of SCI,
and thus identified the potential pathogenic genes involved. However, the complex
molecular linkages and overall  effects of these genes remain unclear.  In order to
analyze the changes in the repair mechanism of astrocytes and non-astrocytes during
SCI repair, we analyzed the differential expression of astrocytes and non-astrocytes
based on microarray data. The integration results showed that 4937 differentially
expressed genes were identified. We believe that these differentially expressed genes
are related to the repair mechanism of SCI.

Functional modules for identifying genes related to SCI repair
Firstly, the expression profile matrix was constructed based on 4937 differentially
expressed  genes  and  their  interaction  genes  from  SCI  patients.  Then,  based  on
weighted gene co-expression network analysis, we observed significant grouping co-
expression of these genes in disease samples. Modularization is a subsystem that
deals with global complex systems and decomposes them into more detailed and
orderly subsystems. Each subsystem has its own characteristics. For each element
gene, a module is a set of genes with co-expression relationship, and the genes of the
same module have the same expression behavior. On the other hand, each module
also  has  certain  interaction  relationships.  The  overall  effect  of  these  interaction
relationships represents the global characteristics and is the bridge for each element
gene to play a role in the global network. Clustering the expression behavior of SCI in
patients' samples into modules is helpful for us to observe the complex synergistic
relationship  between  these  genes  from  the  perspective  of  expression  behavior.
Therefore,  by  identifying  the  co-expression  group as  a  module,  we  obtained 19
functional impairment modules of SCI (Figure 1A, 1B). The key genes of each module
were identified based on the functional impairment module, and the core genes with
Sox13, Syt6 and so on were obtained. According to the correlation between module
and phenotypic data, we can conclude that MEturquoise, MEblue and MEbrown are
related to the repair mechanism of astrocytes in SCI, while MEtan is related to the
repair mechanism of non-astrocytes in SCI (Figure 1C).

Functions and pathways of interested gene participation
Function and pathway are important mediators of disease physiological response.
Exploring the function and pathway of gene involvement in dysfunctional modules is
not only helpful to determine the upstream and downstream relationship of the same
pathway gene in  the  module,  but  also  helpful  to  establish  the  molecular  bridge
between module and disease in system biology, and to deepen the understanding of
the potential molecular mechanism of disease. We analyzed the enrichment of GO
function and KEGG pathway in 19 modules, and obtained 59518 biological processes
(Figure  2),  6988  cell  components,  11522  molecular  functions  and  3532  KEGG
pathways. It was found that these functions were mainly concentrated in reactive
oxygen species, phosphoribose metabolism, regulation of T cell activation and T cell
activation. On the other hand, the enrichment of KEGG pathway demonstrated that
the differentially expressed genes of SCI were mainly involved in MAPK, PI3K-Akt,
Ras  and  other  signaling  pathways.  Looking  back  at  the  overall  situation,  we
integrated 19 module networks and used BinGO for circuit analysis (Figure 3).

TF and ncRNA driving modules related to SCI repair
From the perspective of systems biology and genetics, gene transcription and post-
transcriptional regulation have been considered key regulators of disease occurrence
and development,  and TF and ncRNA are common regulators of expression and
function. Although many biologists have paid attention to the regulation of single or
several TF and ncRNA on the repair process of SCI, few studies have focused on their
overall  effects  on  dysfunctional  mechanisms  and  their  bridging  role  in  their
development. Therefore, in this study, we conducted pivot analysis of the common
modules based on the targeting regulation relationship between TF and ncRNA to
determine the key transcriptional regulators regulating the repair process of SCI. The
predicted results showed that 173 ncRNAs involved 210 ncRNA-module regulatory
pairs and 59 TF involved 66 TF-module target pairs. These results were introduced
into  Cytoscape  to  observe  the  regulation  of  regulatory  factors  in  dysfunctional
modules.  In  addition,  the  number  of  pivot  regulatory  modules  was  statistically
analyzed, and the dysfunctional modules with the most regulation of ncRNA (miR-
758-3p) and TF (Nfkb1, Sp1) were obtained. These TF and ncRNA may regulate the
repair process of SCI by mediating dysfunctional modules. Therefore, we identified
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Figure 1

Figure 1  Synergistic expression of differentially expressed genes in patients with spinal cord injury. A: Nineteen expression groups were identified as
modules, and nineteen colors represented nineteen expression modules; B: The expression thermograms of all genes in the samples were clustered into 19
expression modules; C: Each row represents a module, and each column represents a phenotype. The color of each cell is mapped by the corresponding correlation
coefficient. The values range from - 1 to 1, and the color changes from blue to white, then to red. The deeper the color, the stronger the correlation.

these potential regulators as dysfunctional molecules in the repair process of SCI.
Finally, by constructing a comprehensive landscape of astrocytes and non-astrocytes
in the repair mechanism of SCI, we found that the key gene Lrrtm2 of ncRNA RNA
RNA RNA RNA micro344d-3p regulation module 3 and Rest of microRNA-302b-3p
regulation module 19. Rest is a key gene as well as a TF.

DISCUSSION
SCI is a destructive acute nervous system disease, with loss of function and poor long-
term prognosis, which is usually associated with loss of motor and sensory function
and, sexual dysfunction[23,24]. At present, SCI is a major medical problem worldwide[25].
It  has been found that astrocytes around lesions become reactive after traumatic
injury of the central nervous system, including SCI, and usually undergo hypertrophy
and elongation. These reactive astrocytes migrate to the heart and contribute to the
tissue  repair  process[26].  In  this  study,  we  collected  genes  of  astrocytes  or  non-
astrocytes from SCI lesions in the NCBI Gene Expression Omnibus database. Based on
their differentially expressed gene profiles, the functional modules of repair genes of
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Figure 2

Figure 2  Functional and pathway enrichment analysis of modular genes. GO functional enrichment analysis of module genes (excerpts). From blue to purple,
the enrichment increased significantly. The larger the circle, the larger the proportion of module genes in GO functional entry genes.

SCI were analyzed in order to further understand the repair mechanism of astrocytes
and non-astrocytes in SCI. At the module level, modules are significantly involved in
reactive  oxygen species,  phosphoribose  metabolism,  T  cell  activation and T cell
activation. In addition, they also participate in the signaling pathways of MAPK,
PI3K-Akt, Ras, endocytosis and human T-cell leukemia virus 1 infection. Resveratrol
is  an  antioxidant  that  has  a  protective  effect  in  rat  SCI  by inhibiting the  MAPK
pathway. Some studies have also shown that through inhibition of EGFR/MAPK,
microglia activation and related cytokines can be inhibited, and secondary injury
related to neuroinflammation can be reduced, thus providing neuroprotection in SCI
rats[27]. Fibroblast growth factor 10 derived from neurons and microglia/macrophages
activates the signal transduction of fibroblast growth factor 2/PI3K/Akt and inhibits
microglia/macrophages  TLR4/NF-kappa  B-dependent  neuroinflammation  to
improve functional recovery after SCI[28].  There is  evidence that activation of the
PI3K/Akt/mTOR signaling pathway is associated with glial  scar formation after
SCI[29]. In addition, studies have shown that Ras/Raf/ERK1/2 signaling may be up-
regulated in the injured spinal cord and participate in the recovery of SCI[30]. On the
other hand, autophagy plays a key role in SCI, including traumatic SCI and ischemia-
reperfusion SCI[31].

At the molecular level, 19 key genes such as Sox13 and Scrt2 were identified by co-
expression analysis. These core genes are not only differentially expressed, but also
play an important regulatory role in dysfunction modules. Sox13 is mainly expressed
in neuroepithelial precursors, oligodendrocytes and astrocytes in developing mouse
spinal  cord.  Sox13  is  an important  regulator  of  oligodendrocyte  development[32].
Scratch 2 regulates neurogenesis and cell migration by antagonizing bHLH protein in
the developing neocortex[33]. In addition, CD52 can regulate T cell activation through
its intracellular signaling pathway or through the interaction between soluble CD52
and Siglec-10 expressed on T cells[34]. The effects of other key genes on the repair of
SCI have not been found, but the results of our analysis show that its significant
regulatory dysfunction module is the direction of further research in the future.

In addition, 173 ncRNAs were predicted to participate in the repair mechanism of
astrocytes and non-astrocytes in SCI through mediation modules, and their abnormal
expression in SCI was verified by differential analysis. According to the statistical
analysis,  we  confirmed  that  microRNA-758-3p  has  significant  effects  on  four
dysfunctional modules and is the gene that regulates the most modules. However,
miR-124-3p,  miR-136-5p,  miR-24-3p,  miR-34c-5P  and  miR-449b  regulate  three
modules.  MiR-758-3p  inhibits  the  proliferation,  migration  and  invasion  of
hepatocellular  carcinoma  cells  by  targeting  MDM2  and  mTOR[35].  In  addition,
microRNA-758-3p,  as  a  tumor  suppressor,  plays  a  key  role  in  inhibiting  the
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Figure 3

Figure 3  Path analysis of the integrated module network.

proliferation, migration and invasion of gastric cancer by targeting chromobox 5,
suggesting its potential application in cancer therapy[36]. MiR-124-3p attenuates MPP-
induced  neuronal  damage  by  targeting  STAT3  in  SH-SY5Y cells[37].  In  addition,
silencing of miR-136-5p significantly reduced the protein expression of miR-136-5p
after overexpression, and improved inflammatory cell infiltration and SCI, which may
be a new target for SCI treatment[38]. On the other hand, long non-coding RNA NEAT1
promotes  glioma  pathogenesis  by  regulating  the  miR-449b-5p/c-Met  axis[39].  In
addition to the fact that miR-136-5p is associated with the repair of SCI, no effect on
SCI has been found in other ncRNA studies that significantly regulate dysfunction
modules. However, our analysis showed that it affected the repair of SCI, which is
one of  the key research directions in  the future.  In  addition,  other  ncRNAs that
significantly regulate the dysfunction modules of SCI may also participate in the basic
process  of  SCI  repair,  which  can  be  used  as  candidates  for  further  molecular
experimental verification.

We  then  identified  59  TF  differentially  expressed  in  varying  degrees  and
significantly regulated the repair dysfunction module of SCI. According to statistical
analysis, Nfkb1 and Sp1 significantly regulated three modules, which may play an
important role in the repair of SCI. Among them, the importance of Nfkb1 function
can be seen in Nfkb1 mouse models with increased inflammation and susceptibility to
certain forms of DNA damage, leading to cancer and rapid aging phenotype[40]. Also,
NK cells activated by human IL-2 could not up-regulate the expression of NKp44, an
activation marker, and showed decreased proliferation ability[41]. Some studies have
shown that TF LEF1 and SP1 may play an important role in regulating cholesterol
metabolism and injury response after SCI[42]. In addition, transcription factor SP1 has
been  shown  to  be  up-regulated  in  SCI  rats,  and  is  predicted  to  be  a  potential
transcription regulator of classical inflammatory response genes in rats[43]. Other TF
that significantly regulate the dysfunction module of metastatic breast cancer may
also  participate  in  the  basic  process  of  asthma,  which  requires  experimental
confirmation. Finally, by constructing a comprehensive landscape of astrocytes and
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non-astrocytes in the repair mechanism of SCI, we found that ncRNA miR344d-3p
regulated the key gene Lrrtm2  of module 3 and miR-302b-3p regulated the rest of
module 19. The rest is both a transcription factor and a key gene. LRRTM2 interacts
with PSD-95 and regulates the expression of the AMPA receptor. Lentivirus-mediated
LRRTM2 knockdown in vivo decreases the intensity of the induced excitatory synaptic
current[44].  IGF-1R is  the  direct  target  of  microRNA-302b-3p.  Overexpression  of
microRNA-302b-3p and silencing of IGF-1R decrease AKT phosphorylation[45].  In
addition, down-regulation of N-acetylglucosaminotransferase GCNT3 by microRNA-
302b-3p can reduce the proliferation, migration and invasion of non-small cell lung
cancer (NSCLC)[46].
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