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Abstract
Pancreatic cancer, a highly lethal cancer, has the lowest 5-year survival rate for 
several reasons, including its tendency for the late diagnosis, a lack of serologic 
markers for screening, aggressive local invasion, its early metastatic 
dissemination, and its resistance to chemotherapy/radiotherapy. Pancreatic 
cancer evades immunologic elimination by a variety of mechanisms, including 
induction of an immunosuppressive microenvironment. Cancer-associated 
fibroblasts interact with inhibitory immune cells, such as tumor-associated 
macrophages and regulatory T cells, to form an inflammatory shell-like desmo-
plastic stroma around tumor cells. Immunotherapy has the potential to mobilize 
the immune system to eliminate cancer cells. Nevertheless, although 
immunotherapy has shown brilliant results across a wide range of malignancies, 
only anti-programmed cell death 1 antibodies have been approved for use in 
patients with pancreatic cancer who test positive for microsatellite instability or 
mismatch repair deficiency. Some patients treated with immunotherapy who 
show progression based on conventional response criteria may prove to have a 
durable response later. Continuation of immune-based treatment beyond disease 
progression can be chosen if the patient is clinically stable. Immunotherapeutic 
approaches for pancreatic cancer treatment deserve further exploration, given the 
plethora of combination trials with other immunotherapeutic agents, targeted 
therapy, stroma-modulating agents, chemotherapy, and multi-way combination 
therapies.

Key Words: Pancreatic adenocarcinoma; Pancreatic cancer; Immunotherapy; Immune 
checkpoint inhibitor
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INTRODUCTION
Pancreatic cancer, which most commonly occurs as pancreatic ductal adenocarcinoma 
(PDAC), is a highly lethal cancer with the lowest reported 5-year survival rate (9% for 
all stages of the disease) among various cancers[1]. The dismal prognosis for PDAC is 
attributable to the tendency for a late diagnosis of this disease, a lack of biomarkers, 
aggressive local invasion, early metastatic nature, and resistance to systemic 
therapies[2,3]. Decades of extensive scientific and clinical research, as well as advances 
in the diagnostic and therapeutic modalities for PDAC, have resulted in a modest 
extension of survival among patients with PDAC. Most patients with pancreatic cancer 
eventually experience disease progression, even after complete surgical resection of 
their tumors[4,5]. Projection of cancer incidence and deaths to 2030 indicates that 
pancreatic cancer will be the second most common cause of cancer-related deaths[6].

Pancreatic cancer can suppress the host immune response, either directly or via 
immune cells in the tumor microenvironment[7]. The abundant tumor stromal content 
of pancreatic cancer is responsible for its high invasiveness and resistance to 
treatment[2,8]. In particular, immune cells make up approximately 50% of the cell mass 
of a PDAC tumor[2]. Tumor-associated macrophages, myeloid-derived suppressor cells 
(MDSC), and regulatory T (Treg) cells are the major immune cell types responsible for 
the immunosuppressive activity of the tumor microenvironment[2,4].

Activation of negative regulatory pathways, or the so-called "checkpoints," by 
cancer cells leads to suppression of the cytotoxic T (Tc) cells and allows the cancer to 
grow undisturbed[9]. The rigidity of the extracellular matrix (ECM) in the PDAC 
microenvironment, related with dense fibrosis, further contributes to therapeutic 
resistance in PDAC by compressing blood vessels. This compression reduces 
perfusion, thereby lowering the concentration of chemotherapy drugs in the stroma 
and concomitantly impeding the delivery of the anticancer drugs to the tumor cells[2,10].

One alternative to chemotherapy drugs as a cancer treatment is to use immuno-
therapy, the science-driven therapeutic approach of mobilizing the immune system to 
destroy cancer[11]. The United States Food and Drug Administration (FDA) has 
approved several new immunotherapies in the past few years, including: (1) 
Immunomodulatory antibodies that block checkpoints in patients with a variety of 
cancers, such as melanoma, non-small cell lung cancer, Hodgkin's disease, solid 
tumors with high microsatellite instability (MSI-h), etc.; and (2) Chimeric antigen 
receptor (CAR)-modified T cell immunotherapy for B cell malignancies[12,13]. Approved 
immune checkpoint inhibitors include antibodies that block cytotoxic T lymphocyte-
associated protein 4 (CTLA-4), programmed cell death 1 (PD-1), programmed cell 
death ligand 1 (PD-L1), and combinations. In association with pancreatic cancer 
immunotherapy, FDA recently approved the use of anti-PD-1 (pembrolizumab and 
nivolumab) immunotherapy for all solid tumors with MSI-h or mismatch repair 
deficiency.

This review addresses the role of immune cells in the development of pancreatic 
cancer, the tumor microenvironment, the cancer immunity cycle, the mechanisms and 
efficacies of immunotherapeutic drugs in pancreatic cancer, and the response criteria 
for use in trials aimed at testing immunotherapeutics.

https://www.wjgnet.com/2307-8960/full/v9/i13/2969.htm
https://dx.doi.org/10.12998/wjcc.v9.i13.2969
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LITERATURE REVIEW STRATEGY
The PubMed database was used to search publications related to immunotherapy for 
pancreatic cancer employing the following keywords: (“pancreatic cancer”, OR 
“pancreatic adenocarcinoma”) and (“immunotherapy” OR “vaccine” OR “antibody”). 
Pertinent articles published in the English language literature were reviewed. All of 
the references were manually verified, and all reference lists in the retrieved articles 
were scrutinized to identify any additional articles that might have been missed by the 
PubMed search.

TUMOR MICROENVIRONMENT AND THE ROLE OF IMMUNE CELLS IN 
PDAC DEVELOPMENT
The pancreatic tumor microenvironment represents plentiful fibrotic stroma 
comprising a variety of cells and extracellular matrix components with blood vessels 
and nerves[7].

Cancer-associated fibroblasts and tumor microenvironment
Activated pancreatic stellate cells, pan-endothelial cells, and infiltrating immune cells 
such as MDSC, Treg cells, and tumor-associated macrophages encircle the cancer cells 
during pancreatic tumorigenesis[14,15]. Interactions between these cells create the PDAC 
stroma—suitably termed the tumor microenvironment—that supports the process of 
carcinogenesis and shields the cancer cells from the anti-tumorigenic immune 
system[16], although some components of the tumor stroma can act to restrain tumor 
growth[17]. Activated pancreatic stellate cells, the so-called cancer-associated fibroblasts 
(CAFs), are the predominant source of ECM proteins and collagen that form 
desmoplastic PDAC stroma[18]. The PDAC stroma consists of cellular and acellular 
components, such as CAFs, infiltrating immune cells, blood vessels, and ECM 
components that include collagen, fibronectin, proteoglycans, hyaluronic acids, and 
enzymes[2]. This desmoplastic stroma may act as an inflammatory shell that impairs 
the responses of cancer cells to chemotherapy and radiation[19,20].

The CAFs interact with pancreatic cancer cells, endothelial cells, and inflammatory 
cells, although CAFs are not considered an immune component of PDAC[18,21]. The 
PDAC cells first recruit CAFs to their area and promote fibrogenesis. The CAFs 
reciprocate by promoting cancer cell proliferation and migration[18,19,22]. Interference 
with T-cell function by CAF is mediated by immune crosstalk mediated by activation 
of transforming growth factor beta (TGF-β) and production of C-X-C motif chemokine 
12 (CXCL12)[23]. The in vitro co-culture of PDAC cells with pancreatic stellate cells 
enhances PDAC cell proliferation by way of growth factors and cytokines release[2]. 
CAFs also stimulate angiogenesis by endothelial cells through the expression of 
angiogenic factors, including vascular endothelial growth factor (VEGF), angiopoietin-
1, periostin, and hypoxia inducible factor-1[18].

M2-polarized tumor-associated macrophages
Macrophages normally act as phagocytic cells that destroy damaged cells. However, 
cancer cells can escape immune surveillance by phagocytic cells through generation of 
the 'don't eat me' signal by driving CD47 overexpression[24,25]. In fact, macrophage 
infiltration is increased in the PDAC microenvironment when compared to normal 
pancreatic tissue[21,24]. Tumor-induced cytokines, such as macrophage colony-
stimulating factor, chemokines, and vascular endothelial growth factor, recruit 
circulating blood monocytes into the PDAC microenvironment and induce their 
differentiation into resident tumor-associated macrophages that have the M2 
phenotype[21].

Two discrete states of 'polarized' activation have been recognized for macrophages. 
While M1 macrophages are classically activated by T helper 1 cytokines, such as 
interferon-γ, interleukin-1β (IL-1β), and lipopolysaccharide, the M2 macrophages are 
alternatively activated by T helper 2 cytokines, such as IL-4 and IL-13[26]. These 
macrophage subtypes are a functional division, and specific signals induce 
macrophage polarization from the M1 subtype to the immune-suppressive tumor-
associated M2 subtype, and vice versa. The M2-polarized tumor-associated 
macrophages can suppress Tc cells by secreting IL-10 and producing carbon 
monoxide. Resultantly, the M2 subtype macrophages are an important component of 
the immune cells in the PDAC microenvironment and are associated with a poor 
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prognosis in patients with PDAC[21,24].

MDSC
The MDSC represent a mixture of immature cell types (monocytic or granulocytic) 
with a potent immune suppressor function[27-29]. MDSC suppress both innate and 
adaptive immunity, and they impede T cell activation by diverse mechanisms[27]. An 
accumulation of MDSC has been described in patients with PDAC and in experimental 
animals with pancreatic cancer[4,21,28]. Cancer-derived signals, such as VEGF and 
granulocyte-macrophage colony-stimulating factor (GM-CSF), block the maturation of 
myeloid cells, leading to accumulation of MDSC in the tumor microenvironment, as 
well as in the blood, lymph nodes, and bone marrow[21,28,30]. Therefore, pro-inflam-
matory mediators that can induce gathering of MDSC in the tumor microenvironment 
represent attractive therapeutic targets in anti-tumor strategies. Elevated levels of 
MDSC are associated with progression of disease, as well as poor prognosis in patients 
with PDAC[21,31].

Regulatory T cells
CD4+ Foxp3+ Treg cells are accumulated in the PDAC microenvironment from the 
early pancreatic tumorigenesis stage through invasive cancer[15,21,32]. PDAC micro-
environment has significantly higher number of Treg cells than non-neoplastic 
inflamed pancreatic stroma has[15,32]. Treg cells suppress effector T-cell activation, 
proliferation, and cytokine production for minimizing deleterious immune-mediated 
inflammation in the normal host. Foxp3 is the transcription factor that specifies the 
Treg cell lineage and act as a critical regulator of T-cell homeostasis[33]. Humans and 
mice deficient in Foxp3 suffer from a fatal early-onset immune-mediated disorder 
characterized by T-cell dependent lymphoproliferation. In cancer immunology, Treg 
cells are critical for a tumor's ability to actively impede the anti-tumor immune 
response. Higher levels of Treg cells in the PDAC microenvironment are associated 
with poor prognosis in patients with PDAC[21].

THE CANCER IMMUNITY CYCLE AND RELEVANT ISSUES IN PDAC
Elimination of cancer cells by Tc cells is the last stage in the cancer immunity cycle, but 
it requires maintenance of an elegantly delicate balance between the perception of 
non-self and the avoidance of autoimmunity. The proposed model of the cancer 
immunity cycle includes seven immunologic steps for killing tumor cells[10,34]: (step 1) 
release of cancer cell antigens; (step 2) cancer antigen presentation by antigen 
presenting cells (APCs); (step 3) priming and activation of T cells; (step 4) trafficking of 
Tc cells to tumors; (step 5) infiltration of Tc cells into tumors; (step 6) recognition of 
cancer cells by Tc cells through T cell receptor (TCR) signaling; and (step 7) killing of 
cancer cells.

The immune escape mechanisms during these seven steps in PDAC are as follows[10]

: (step 1) low mutational load; (step 2) tumor-induced signal transducer and activator 
of transcription 3 signaling and impaired function of dendritic cells; (step 3) CTLA-4 
signaling, reduced serum levels of stimulatory IL-2 and elevated levels of immune-
suppressive tumor necrosis factor alpha, TGF-β1, IL-10, and IL-1β; (step 4) preferential 
trafficking of Tregs to PDAC, attraction of Tc cell to the panstromal rather than the 
juxtatumoral compartment by the CXCL12 expression in pancreatic stellate cells; (step 
5) reduced migratory ability of T-cells due to dense stroma; (step 6) downregulation of 
major histocompatibility complex (MHC) class I molecules; and (step 7) PD-1/PD-L1 
signaling, infiltrating immune cells such as MDSC and M2-polarized macrophages.

IMMUNOTHERAPEUTIC DRUGS FOR PDAC
Allison JP and Honjo T won the 2018 Nobel Prize in Physiology or Medicine for their 
work on cancer immunotherapy. Immunotherapy using immune checkpoint inhibitors 
(anti-CTLA-4 and anti-PD-1 antibodies) represents a successful translation from gene 
discovery to the development of therapeutics[35]. Current immunotherapy includes 
checkpoint inhibitors, adoptive T cell transfer therapy, and vaccines (Table 1). 
Unfortunately, the brilliant clinical results seen with immunotherapy across a wide 
range of malignancies has not been reproduced in the PDAC (Table 2)[36]. Resistance of 
PDAC to immunotherapy has been attributed to the poor intrinsic antigenicity of the 
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Table 1 Potential immunotherapeutic agents for pancreatic cancer

Immunotherapeutics Mechanisms FDA approval

Ipilimumab Antagonist antibody to CTLA-4 on T cells CTLA-4: Suppressing the initiation of 
immune response

Other cancers

Pembrolizumab, nivolumab, 
cemiplimab

Antagonist antibody to PD-1 on T cells PD-1: Suppressing the antitumor 
response of Tc cell

Yes1

Atezolizumab, durvalumab, avelumab Antagonist antibody to PD-L1 on cancer 
cell or MDSC

PD-L1: A ligand of PD-1, promoting 
PD-1 signaling

Other cancers

Imiquimod Agonist of TLR7 on MDSC or M2 
macrophage

TLR7: Promoting macrophage 
polarization towards an M1 phenotype

Other cancers

Plerixafor (AMD3100), BL-8040 Antagonist of CXCR4 on T cells CXCR4: Receptor of CXCL12, 
negatively regulating Tc cell immune 
function

Other cancers

Indoximod Antagonist of IDO in MDSC or APC IDO: Inducing tolerance to tumor-
derived antigens in APC and inhibiting 
Tc cell

-

Imidazole-dioxolane Antagonist of HO in M2 macrophage HO: Suppressing Tc cell by producing 
carbon monoxide

-

APX005M, CP-870893 Agonist antibody to CD40 on APC, T cell, 
or M1 macrophage

CD40: Proinflammatory action -

CAR T cells Directly targeting cancer cells via 
reprogramming a patient's own T cells 
with a CAR that recognizes a specific 
antigen

Potential targets in pancreatic cancers: 
CEA, mesothelin, ROR1, EpCAM, 
HER2, MUC1

Other cancers

Cancer vaccines Activating T cell via presentation by APC GVAX2, GV1001 (telomerase peptide 
vaccine)

Other cancers

1All solid tumors with microsatellite instability.
2Allogeneic irradiated whole-cell tumor vaccine transfected with granulocyte-macrophage colony-stimulating factor gene. CTLA-4: Cytotoxic T lymphocyte-
associated protein 4; PD-1: Programmed cell death 1; PD-L1: Programmed cell death ligand 1; TLR7: Toll-like receptor 7; MDSC: Myeloid-derived 
suppressor cell; CXCR4: C-X-C chemokine receptor type 4 or CD184; CXCL12: C-X-C motif chemokine 12; IDO: Indoleamine 2,3-dioxygenase; HO: Heme 
oxygenase; Tc cell: Cytotoxoc T cell; APC: Antigen presenting cell; CAR: Chimeric antigen receptor; ROR1: Receptor tyrosine kinase-like orphan receptor 1; 
EpCAM: Epithelial cell adhesion molecule; HER2: Human epidermal growth factor receptor 2; MUC1: Mucin 1; FDA: United States Food and Drug 
Administration; CEA: Carcinoembryonic antigen; GVAX: Granulocyte-macrophage colony-stimulating factor-transfected pancreatic tumor vaccine.

tumor cells and defective antigen presentation, as well as a strongly immuno-
suppressive microenvironment enriched in MDSC and Treg cells[36-38]. In 2018, the 
clinical practice guideline update of the American Society of Clinical Oncology 
(ASCO) for metastatic pancreatic cancer stipulated that the PD-1 immune checkpoint 
inhibitor pembrolizumab is recommended as second-line therapy for patients who 
have tested positive for mismatch repair deficiency or MSI-h[39]. Other agents are also 
undergoing preclinical/clinical trials as combination therapies.

Anti-CTLA-4 antibodies
CTLA-4 has an important role in preserving normal immune function, as supported by 
the reports that mice deficient in CTLA-4 died of fulminant lymphoproliferative 
disorder[13,40,41]. In the lymph node, a T cell normally recognizes a specific tumor 
antigen, which is presented by an APC such as a dendritic cell (Figure 1A). The T cell 
interacts with the APC via 1) TCR engagement with a MHC on the APC and 2) CD28 (a 
costimulatory signal) with B7 on the APC (Figure 1A). CTLA-4, a close homolog of 
CD28, is an intracellular protein in resting T cells. After T cell activation, CTLA-4 
translocates to the cell surface and mediates inhibitory signaling into the T cell, via 
competitive inhibition of CD28, resulting in a pause in both proliferation and 
activation[13,40].

Ipilimumab is a fully humanized IgG1 monoclonal antibody that inhibits CTLA-4. It 
is approved by the FDA for the treatment of melanoma and renal cell carcinoma. 
While durable tumor regressions after treatment with ipilimumab can occur in 
advanced melanoma, this can be accompanied by immune-related adverse events 
resulting from tissue-specific inflammation[13]. The common adverse events include 
enterocolitis, inflammatory hepatitis, and dermatitis. Algorithmic use of 
corticosteroids or other immunosuppressants can readily control these adverse events 
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Table 2 Clinical outcomes of immunotherapies in advanced pancreatic cancer

Study drug Ref. Clinical setting Therapeutic protocol Study phase Number of 
patients Outcomes Adverse events (Grade 3 or 4)

Anti-CTLA-4 antibodies

Ipilimumab Royal et al[42], 2010 Locally advanced or 
metastatic

Ipilimumab only II 27 ORR: 0%, but one delayed 
tumor regression after initial 
progression

11.1% (3/27; 1 fatal pneumonia, 1 
confusion and lethargy, 1 hypophysitis)

Ipilimumab Kamath et al[66], 
2020

Locally advanced or 
metastatic

Gemcitabine + Ipilimumab Ib 21 ORR: 14% (3/21). PFS: 2.78 
mo. OS: 6.90 mo

76.2% (16/21; elevated ALT, diarrhea, 
mostly hematologic toxicity)

Anti-PD-1 antibodies and anti-PD-L1 antibodies

Pembrolizumab Le et al[46], 2017 Solid tumor with 
MSI-h

Pembrolizumab only II 8 (all cancer 86) ORR: 53% in solid tumor with 
MSI-h

N-A (mostly low grade)

Pembrolizumab Weiss et al[68], 2018 Metastatic Gemcitabine + Nab-paclitaxel + Pembrolizumab Ib/II 17 PFS: 9.1 mo. OS: 15.0 mo 70.6% (12/17)

Nivolumab Wainberg et al[67], 
2020

Locally advanced or 
metastatic

Gemcitabine + Nab-paclitaxel + Nivolumab I 50 ORR: 18%. PFS: 5.5 mo. OS: 9.9 
mo

36.0% (18/50; peripheral neuropathy, 
hypokalemia, diarrhea, increased 
AST/ALT, mostly hematologic toxicity)

Durvalumab Renouf, 2020 
(abstract)

Metastatic Gemcitabine + Nab-paclitaxel + Durvalumab + 
Tremelimumab vsGemcitabine + Nab-paclitaxel

II 119 vs 61 ORR: 30.3% vs 23.0%. PFS: 5.5 
mo vs 5.4 mo. OS: 9.8 mo vs 8.8 
mo

N-A

CAR T cell immunotherapy

Mesothelin-specific Beatty et al[51], 2018 Metastatic Mesothelin-specific CAR T cells I 6 Disease stabilized: 2 patients 
(33%) with PFS of 3.8 and 5.4 
mo

0% (0/6)

Vaccine-based immunotherapy

GV1001 Middleton et al[54], 
2014

Locally advanced or 
metastatic

Gemcitabine + Capecitabine vs Gemcitabine + 
Capecitabine with sequential GV1001 vs 
Gemcitabine + Capecitabine with concurrent 
GV1001

III 358 vs 350 vs 354 OS: 7.9 mo vs 6.9 mo vs 8.4 mo 13.1% vs 12.6% vs 12.4%

GVAX Le et al[56], 2019 Metastatic, 
previously treated

Cy/GVAX + CRS-207 vs CRS-207 vs Single-agent 
chemotherapy

IIb 73 vs 68 vs 72 OS: 3.7 mo vs 5.4 mo vs 4.6 mo 46.8% vs 36.8% vs 27.8%

GVAX Wu et al[55], 2020 Metastatic GVAX + Ipilimumab after FOLFIRINOX vs 
FOLFIRINOX continuation

II 40 vs 42 PFS: 2.4 mo vs 5.55 mo. OS: 
9.38 mo vs 14.7 mo

41.0% (16/39; adrenal insufficiency, 
hypophysitis, rash, diarrhea)

ORR: Objective response rate; OS: Overall survival (median); PFS: Progression free survival (median); GV1001: Telomerase reverse transcriptase catalytic subunit class II 16mer peptide vaccine; GVAX: Granulocyte-macrophage colony-
stimulating factor-transfected pancreatic tumor vaccine; Cy: Cyclophosphamide; CRS-207: Live attenuated Listeria monocytogenes expressing mesothelin; PD-1: Programmed cell death 1; ALT: Alternative lengthening of telomeres; AST: 
Aspartate aminotransferase; CAR: Chimeric antigen receptor; CTLA-4: Cytotoxic T lymphocyte-associated protein 4; MSI-h: Microsatellite instability-high; PD-L1: Programmed cell death ligand 1.
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without any apparent loss of antitumor activity[13]. Endocrinopathies due to 
inflammation of the thyroid, pituitary, and adrenal glands are infrequent develop-
ments that can require lifelong hormone replacement.

Royal et al[42] reported a phase II trial that evaluated the efficacy of ipilimumab for 
advanced PDAC[42]. No responders were observed that met the Response Evaluation 
Criteria in Solid Tumors (RECIST) criteria. However, a delayed regression of tumor 
was found in one subject with initial progressive disease.

Anti-PD-1/anti-PD-L1 antibodies
The PD-1 inhibitory receptor has a dominant role in the maintenance of peripheral 
immune tolerance, although its name is attributed to its initially identified ability to 
induce apoptosis (programmed cell death)[13,40,43,44]. PD-1 is expressed at the cell surface 
of activated T cells (Figure 1B)[43]. PD-L1, which is the ligand of PD-1, is expressed on 
the surface of cancer cells, MDSCs, or M2 macrophages within the tumor 
microenvironment[43]. Engagement of PD-1 with PD-L1 within a tumor causes PD-1 to 
inhibit kinase signaling pathways that normally lead to T-cell activation. The result is 
inhibition of Tc cell activity within the tumor and evasion of immune surveillance by 
the cancer cells.

Pembrolizumab, nivolumab, and cemiplimab are monoclonal antibodies that target 
PD-1. Pembrolizumab and nivolumab may be interchangeable alternatives that target 
their approved indications[45]. Atezolizumab, durvalumab, and avelumab are 
monoclonal antibodies that target PD-L1. They are approved by the FDA for the 
treatment of various tumors, which are classified into two categories: (1) high response 
rate (53%-87%), including Hodgkin's disease, desmoplastic melanoma, Merkel cell 
carcinoma, and MSI-h cancer; and (2) intermediate response rate (15%-40%), including 
skin melanoma, non-small cell lung cancer, head and neck squamous cell cancer, 
gastroesophageal cancer, bladder and urinary tract cancer, renal cell cancer, and 
hepatocellular carcinoma. Adverse events associated with single-agent anti-PD-1 or 
anti-PD-L1 antibodies are uncommon, but they can include the development of 
fatigue, diarrhea, rash, and pruritus in 15% to 20% of patients[13]. As with anti-CTLA-4 
antibodies, endocrinopathies due to inflammation of the thyroid, pituitary, and 
adrenal glands can be infrequent development that require lifelong hormone 
replacement. Serious toxicities due to visceral organ inflammation are very rare, but 
these can affect any organ, including the brain, meninges, and heart[13].

Le et al[46] reported that treatment with pembrolizumab accomplished objective 
radiographic responses in 53% of patients and achieved complete responses in 21% of 
86 patients with 12 different cancer types with MSI-h (pancreas, n = 8), who had 
received at least one prior therapy and had evidence of disease progression[46]. The 
researchers also suggested that the large proportion of mutant neoantigens (tumor 
mutational burden) in cancers with MSI-h lead the tumor responsive to immune 
checkpoint blockade, regardless of the origin of cancer[46]. Despite the small population 
of pancreatic cancers in this study, the ASCO guideline 2018 included pembrolizumab 
as a second-line therapy for patients with metastatic PDAC who have tested positive 
for mismatch repair deficiency or MSI-h[39]. Therefore, routine testing for MSI-h, using 
immunohistochemistry, polymerase chain reaction, or next-generation sequencing 
(NGS), is recommended for patients with PDAC who are considered candidates for 
checkpoint inhibitor therapy[39]. However, clinicians also must remain aware that the 
reported incidence of MSI-h in patients with PDAC was very low (< 1%)[47,48].

CAR T cell immunotherapy
CAR T cells can be used in one form of adoptive T cell transfer[12]. Adoptive T cell 
transfer therapy makes good use of the patient's own immune system[49]. CAR is a 
fusion protein composed of an extracellular part derived from an antibody and 
intracellular signaling molecules originated from T cell signaling proteins[12]. After the 
harvest of an individual patient's own T cells, CAR replaces one part of the TCR so 
that identifies a specific tumor antigen (Figure 2)[49]. After ex vivo expansion, the CAR T 
cells are re-infused into the patient, allowing the patient's own T cells to target a 
specified antigen within the context of the patient's own MHC[49]. Based on the durable 
clinical responses of treatment-refractory B cell malignancies, anti-CD19 CAR T cell 
therapy has recently been approved by the FDA for the treatment of refractory pre-B 
cell acute lymphoblastic leukemia and diffuse large B cell lymphoma. Adverse events 
of CAR T cell therapy include cytokine release syndrome and neurotoxicity[12].

CAR targets studied in pancreatic cancer include carcinoembryonic antigen, 
mesothelin, receptor tyrosine kinase-like orphan receptor 1, epidermal growth factor 
receptor, epithelial cell adhesion molecule, CD133, mucin 1, human epidermal growth 
factor receptor-2, etc[49,50]. Unfortunately, most patients with advanced PDAC have 
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Figure 1 T cell checkpoints and their inhibitors to induce anti-cancer immunity. A: cytotoxic T lymphocyte-associated protein 4 (CTLA-4) in priming 
and activation of T cell in a lymph node. A T cell normally recognizes a specific tumor antigen, which is presented by an antigen presenting cell in the context of a 
major histocompatibility complex molecule in addition to the costimulatory signal B7. CTLA-4 is a negative regulator of costimulation that mediates inhibitory signaling 
into the T cell via competitive inhibition of CD28. CTLA-4 pathway to suppress initiation of an immune response can be blocked with anti-CTLA-4 antibodies (e.g. 
ipilimumab); B: Programmed cell death 1 (PD-1) in recognition and killing of cancer cell by cytotoxic T cell within a tumor. PD-1 is expressed on activated T cell after 
the triggering of the T cell receptor. Engagement of PD-1 with programmed cell death ligand 1 (PD-L1) mediates inhibitory signaling into the cytotoxic T cell. PD-1 
pathway to suppress antitumor T cell responses can be blocked by anti-PD-1 (e.g. pembrolizumab) or anti-PD-L1 antibodies (e.g. atezolizumab). CTLA-4: Cytotoxic T 
lymphocyte-associated protein 4; APC: Antigen presenting cell; I: Inhibitory signaling; PD-1: Programmed cell death 1; PD-L1: Programmed cell death ligand 1; TCR: 
T cell receptor; MHC: Major histocompatibility complex; MDSC: Myeloid-derived suppressor cell; M2: M2-polarized macrophage.

Figure 2 Illustrations of chimeric antigen receptor T cells immunotherapy. CEA: Carcinoembryonic antigen; ROR1: Receptor tyrosine kinase-like 
orphan receptor 1; EpCAM: Epithelial cell adhesion molecule; HER2: Human epidermal growth factor receptor 2; MUC1: Mucin 1; CAR: Chimeric antigen receptor.

failed to respond well to CAR T cell immunotherapy[49,51].

Vaccine-based immunotherapy
Vaccine-based immunotherapy is an immunotherapeutic strategy that stimulates the 
tumor-specific immunity of patients by administration of a tumor antigen[52,53]. 
Antigens can be delivered in the form of whole tumor cells, whole proteins, peptides, 
DNA, RNA, or antigen-pulsed dendritic cells[52]. Vaccination induces many 
immunologic responses, including infiltration of effector T cells and reduction of 
infiltration of MDSC and Treg cells, as well as antibody formation and tumor killing 
mediated by complement-dependent cytotoxicity[53]. However, cancer vaccines have 
yet to prove effective as a treatment for pancreatic cancer. GM-CSF-transfected 
pancreatic tumor vaccine (GVAX), an allogenic whole cell vaccine generated from a 
PDAC cell line genetically modified to express GM-CSF, and telomerase peptide 
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vaccine GV1001 gave no survival benefit in patients with advanced pancreatic 
cancer[54-56]. Vaccine-based immunotherapy might be an attractive approach as a post-
surgical adjuvant treatment[52]. Zheng et al[57] recently reported that GVAX-induced 
intratumoral lymphoid aggregates correlated with survival following treatment with a 
neoadjuvant and adjuvant vaccine in patients with resectable PDAC[57].

Personalized vaccines for cancer immunotherapy can be viewed as promising 
because every cancer has its own distinctive set of mutations, and only a small fraction 
is shared between patients[58]. With the advances in NGS technology for rapid mapping 
of the mutations within a genome, on-demand production of a customized vaccine for 
an individual patient kicked off the clinical trials using personalized vaccines[58].

RESPONSE CRITERIA FOR USE IN TRIALS TESTING IMMUNO-
THERAPEUTICS
The response to therapy, which is defined as changes in tumor burden after treatment, 
is a mainstay in the evaluation of cancer therapeutics and provides key information 
about the objective response and disease progression[59]. In 2000, the RECIST working 
group simplified the WHO response criteria and proposed the "RECIST criteria", 
which were further refined to RECIST version 1.1 in 2009[60]. In the present era, which 
is characterized by a plethora of trials testing immunotherapeutics, clinicians should 
recognize that the pattern of response may differ between immunotherapies and 
chemotherapeutic drugs[40,59]. Some patients who were treated with immunothe-
rapeutics and whose disease met the criteria for disease progression based on the 
RECIST guideline were noted to have late, but deep and durable, responses. Early 
investigators termed this unique response pattern "pseudoprogression[59].”

To capture the potentially beneficial effects of immunotherapeutics, immune-related 
response criteria were first proposed by investigators in 2009 and revised in 2013[61,62]. 
The need to standardize and validate response criteria led the RECIST working group 
to propose a modified RECIST 1.1 for immune-based therapeutics (termed iRECIST) in 
2017[59]. The category of new lesions is an important difference between RECIST 1.1 
and iRECIST. According to RECIST 1.1, new lesions result in progression without the 
necessity of size measurement. In contrast, iRECIST states that new lesions will be 
categorized as unconfirmed progression, and then followed[59]. Confirmed progression 
in iRECIST is only assigned if additional new lesions appear at next assessment or an 
increase in size of new lesions is seen (≥ 5 mm for sum of new lesion target or any 
increase in new lesion non-target)[59]. According to iRECIST, if a new lesion is 
identified and the patient is clinically stable, treatment should be continued until the 
next assessment (≥ 4 wk later); this next imaging assessment should be no longer than 
8 wk later to ensure that patients remain fit for salvage therapies[59]. A longer 
timeframe before the next assessment might be reasonable if pseudoprogression is 
well described in the tumor type, especially if no effective salvage therapies are 
available; however, this should be justified in the trial protocol.

COMBINATION THERAPIES
Clinical trials that have used single immunotherapeutic agents to find a magic bullet 
that will kill PDAC cancer cells have mostly been disappointing. However, 
immunotherapy may provide a novel opportunity for treatment of patients with 
PDAC when combined with other immunotherapeutic agents, targeted therapies, 
stromal modulating agents, microbial ablation, chemotherapy, radiotherapy, 
chemoradiotherapy, or multi-way combination therapies[37,49,63-65]. As anti-PD-1 agents 
showed efficacy in some type of PDAC, the anti-PD-1/anti-PD-L1 agents may serve as 
a backbone for the combination therapies in the field of PDAC immunotherapy. 
Combinations of anti-PD-1/anti-PD-L1 agents with therapies against 240 different 
targets of many types of cancers are currently being assessed, although only two anti-
PD-1 combination therapies have been approved to date by the FDA[65].

Kamath et al[66] recently reported a similar response rate of gemcitabine and 
ipilimumab in advanced pancreatic cancer, compared with gemcitabine alone[66] 
(Table 2). Wainberg et al[67] reported a similar response rate of gemcitabine, nab-
paclitaxel, and nivolumab in advanced pancreatic cancer[67], but Weiss et al[68] reported 
a slightly improved response rate of gemcitabine, nab-paclitaxel, and pembrolizumab 
in metastatic pancreatic cancer, compared with gemcitabine and nab-paclitaxel 
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chemotherapy[68]. According to Wu et al[55], GVAX and ipilimumab after FOLFIRINOX 
resulted the lower overall survival than continuation of FOLFIRINOX chemotherapy 
in patients with metastatic pancreatic cancer[55].

FUTURE PROSPECTS
As pembrolizumab was associated with considerable objective radiographic responses 
in PDAC with MSI-h[46], research for combinations of anti-PD-1 with other immune 
checkpoint inhibitors, CAR T cells, pathway inhibitors, microenvironment modulating 
agents, chemotherapy, or multiple combination therapies could be tried. For priming 
the immune system, use of various cancer vaccines may initiate the anti-tumor 
immune response in this lethal cancer. Although GVAX failed to improve the overall 
survival, other kind of vaccines might be effective in combination therapies by 
promoting the recruitment of T cells, resultantly enhancing the effect of immune check 
point inhibitors or other agents[48]. For expecting future management of PDAC, 
attentions should be paid ongoing clinical trials. From a plethora of ongoing clinical 
trials, well-organized tables regarding hopeful trials are also available in other review 
articles[48,69].

CONCLUSION
Pancreatic cancer is a highly lethal cancer and has the lowest 5-year survival rate 
because of its aggressive invasion and its resistance to systemic therapies. Pancreatic 
cancer is capable of immune escape, through various mechanisms including the 
immunosuppressive dense fibrotic tumor microenvironment and overall low tumor 
mutational burden. Immunotherapy has the potential to eliminate cancer cells by 
restoring cancer immunity. Despite brilliant results seen with immunotherapy across a 
wide range of malignancies, immunotherapeutics for pancreatic cancer are currently 
not standard of care. Only anti-PD-1 antibodies have been approved by the United 
States FDA for patients with pancreatic cancer who have tested positive for 
microsatellite instability. Combination therapies with other immunotherapeutic 
agents, targeted therapies, stroma-modulating agents, chemotherapy, or multi-way 
combination therapies may provide treatment opportunities for patients with 
pancreatic cancer. We remain hopeful that aggressive pancreatic cancer will become 
one type of chronic diseases that is controllable by immune-based therapy.
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