World Journal of *Clinical Cases*

World J Clin Cases 2021 June 16; 9(17): 4116-4459

Published by Baishideng Publishing Group Inc

W J C C World Journal of Clinical Cases

Contents

Thrice Monthly Volume 9 Number 17 June 16, 2021

EDITORIAL

4116 Is it time to put traditional cold therapy in rehabilitation of soft-tissue injuries out to pasture? Wang ZR, Ni GX

MINIREVIEWS

- 4123 Health-related quality of life after gastric cancer treatment in Brazil: Narrative review and reflections Pinheiro RN, Mucci S, Zanatto RM, Picanço Junior OM, Oliveira AF, Lopes Filho GJ
- 4133 Nonalcoholic fatty liver disease and COVID-19: An epidemic that begets pandemic Ahmed M. Ahmed MH

ORIGINAL ARTICLE

Retrospective Study

4143 Why MUC16 mutations lead to a better prognosis: A study based on The Cancer Genome Atlas gastric cancer cohort

Huang YJ, Cao ZF, Wang J, Yang J, Wei YJ, Tang YC, Cheng YX, Zhou J, Zhang ZX

- 4159 Design and development of a new type of phimosis dilatation retractor for children Yue YW, Chen YW, Deng LP, Zhu HL, Feng JH
- Primary needle-knife fistulotomy for preventing post-endoscopic retrograde cholangiopancreatography 4166 pancreatitis: Importance of the endoscopist's expertise level

Han SY, Baek DH, Kim DU, Park CJ, Park YJ, Lee MW, Song GA

Observational Study

4178 Patients with functional bowel disorder have disaccharidase deficiency: A single-center study from Russia

Dbar S, Akhmadullina O, Sabelnikova E, Belostotskiy N, Parfenov A, Bykova S, Bakharev S, Baulo E, Babanova A, Indeykina L, Kuzmina T, Kosacheva T, Spasenov A, Makarova A

4188 Self-perceived burden and influencing factors in patients with cervical cancer administered with radiotherapy

Luo T, Xie RZ, Huang YX, Gong XH, Qin HY, Wu YX

SYSTEMATIC REVIEWS

4199 COVID-19 in gastroenterology and hepatology: Lessons learned and questions to be answered Liu S, Tang MM, Du J, Gong ZC, Sun SS

Contents

Thrice Monthly Volume 9 Number 17 June 16, 2021

META-ANALYSIS

4210 Efficacy of topical vs intravenous tranexamic acid in reducing blood loss and promoting wound healing in bone surgery: A systematic review and meta-analysis

Xu JW, Qiang H, Li TL, Wang Y, Wei XX, Li F

CASE REPORT

4221 Ex vivo liver resection followed by autotransplantation in radical resection of gastric cancer liver metastases: A case report

Wang H, Zhang CC, Ou YJ, Zhang LD

4230 Bone marrow inhibition induced by azathioprine in a patient without mutation in the thiopurine Smethyltransferase pathogenic site: A case report

Zhou XS, Lu YY, Gao YF, Shao W, Yao J

4238 Eosinophilic gastroenteritis with abdominal pain and ascites: A case report Tian XQ, Chen X, Chen SL

4244 Tunica vaginalis testis metastasis as the first clinical manifestation of pancreatic adenocarcinoma: A case report

Zhang YR, Ma DK, Gao BS, An W, Guo KM

- 4253 "AFGP" bundles for an extremely preterm infant who underwent difficult removal of a peripherally inserted central catheter: A case report Chen Q, Hu YL, Su SY, Huang X, Li YX
- 4262 Dynamic magnetic resonance imaging features of cavernous hemangioma in the manubrium: A case report

Lin TT, Hsu HH, Lee SC, Peng YJ, Ko KH

- 4268 Diagnosis and treatment of pediatric anaplastic lymphoma kinase-positive large B-cell lymphoma: A case report Zhang M, Jin L, Duan YL, Yang J, Huang S, Jin M, Zhu GH, Gao C, Liu Y, Zhang N, Zhou CJ, Gao ZF, Zheng QL, Chen D, Zhang YH
- 4279 Stevens-Johnson syndrome and concurrent hand foot syndrome during treatment with capecitabine: A case report

Ahn HR, Lee SK, Youn HJ, Yun SK, Lee IJ

- 4285 Rosai-Dorfman disease with lung involvement in a 10-year-old patient: A case report Wu GJ, Li BB, Zhu RL, Yang CJ, Chen WY
- 4294 Acute myocardial infarction in twin pregnancy after assisted reproduction: A case report Dai NN, Zhou R, Zhuo YL, Sun L, Xiao MY, Wu SJ, Yu HX, Li QY
- 4303 Complete recovery of herpes zoster radiculopathy based on electrodiagnostic study: A case report Kim HS, Jung JW, Jung YJ, Ro YS, Park SB, Lee KH

.	World Journal of Clinical Cases
Conten	Thrice Monthly Volume 9 Number 17 June 16, 2021
4310	Acute liver failure with thrombotic microangiopathy due to sodium valproate toxicity: A case report
	Mei X, Wu HC, Ruan M, Cai LR
4318	Lateral epicondyle osteotomy approach for coronal shear fractures of the distal humerus: Report of three cases and review of the literature
	Li J, Martin VT, Su ZW, Li DT, Zhai QY, Yu B
4327	Pancreatic neuroendocrine carcinoma in a pregnant woman: A case report and review of the literature
	Gao LP, Kong GX, Wang X, Ma HM, Ding FF, Li TD
4336	Primary primitive neuroectodermal tumor in the pericardium – a focus on imaging findings: A case report
	Xu SM, Bai J, Cai JH
4342	Minimally invasive surgery for glycogen storage disease combined with inflammatory bowel disease: A case report
	Wan J, Zhang ZC, Yang MQ, Sun XM, Yin L, Chen CQ
4348	Coronary sinus endocarditis in a hemodialysis patient: A case report and review of literature
	Hwang HJ, Kang SW
4357	Clostridium perfringens bloodstream infection secondary to acute pancreatitis: A case report
	Li M, Li N
4365	Kidney re-transplantation after living donor graft nephrectomy due to <i>de novo</i> chromophobe renal cell carcinoma: A case report
	Wang H, Song WL, Cai WJ, Feng G, Fu YX
4373	Pelvic lipomatosis with cystitis glandularis managed with cyclooxygenase-2 inhibitor: A case report
	Mo LC, Piao SZ, Zheng HH, Hong T, Feng Q, Ke M
4381	Prone position combined with high-flow nasal oxygen could benefit spontaneously breathing, severe COVID-19 patients: A case report
	Xu DW, Li GL, Zhang JH, He F
4388	Primary intratracheal schwannoma misdiagnosed as severe asthma in an adolescent: A case report <i>Huang HR, Li PQ, Wan YX</i>
4395	Prenatal diagnosis of cor triatriatum sinister associated with early pericardial effusion: A case report
	Cánovas E, Cazorla E, Alonzo MC, Jara R, Álvarez L, Beric D
4400	Pulmonary alveolar proteinosis complicated with tuberculosis: A case report
	Dal 11, Meng LK, 11ng BW, Uten AK
4408	Surgical treatment of four segment lumbar spondylolysis: A case report
	Li DM, Peng BG

.	World Journal of Clinical Cases
Conten	Thrice Monthly Volume 9 Number 17 June 16, 2021
4415	Efficacy of artificial liver support system in severe immune-associated hepatitis caused by camrelizumab: A case report and review of the literature
	Tan YW, Chen L, Zhou XB
4423	Anti-Yo antibody-positive paraneoplastic cerebellar degeneration in a patient with possible cholangiocarcinoma: A case report and review of the literature
	Lou Y, Xu SH, Zhang SR, Shu QF, Liu XL
4433	Intraneural ganglion cyst of the lumbosacral plexus mimicking L5 radiculopathy: A case report
	Lee JG, Peo H, Cho JH, Kim DH
4441	Effectiveness of patient education focusing on circadian pain rhythms: A case report and review of literature
	Tanaka Y, Sato G, Imai R, Osumi M, Shigetoh H, Fujii R, Morioka S
4453	Schwannoma mimicking pancreatic carcinoma: A case report
	Kimura K, Adachi E, Toyohara A, Omori S, Ezaki K, Ihara R, Higashi T, Ohgaki K, Ito S, Maehara SI, Nakamura T, Fushimi F, Maehara Y

Contents

Thrice Monthly Volume 9 Number 17 June 16, 2021

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Pietro Scicchitano, MD, Professor, Research Scientist, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari 70124, Italy. piero.sc@hotmail.it

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2019 is 0.3 and Scopus CiteScore rank 2019: General Medicine is 394/529.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Jia-Hui Li; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Clinical Cases	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2307-8960 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
April 16, 2013	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Thrice Monthly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2307-8960/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE June 16, 2021	STEPS FOR SUBMITTING MANUSCRIPTS https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2021 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

W J C C World Journal of Clinical Cases

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2021 June 16; 9(17): 4210-4220

DOI: 10.12998/wjcc.v9.i17.4210

ISSN 2307-8960 (online)

META-ANALYSIS

Efficacy of topical vs intravenous tranexamic acid in reducing blood loss and promoting wound healing in bone surgery: A systematic review and meta-analysis

Jian-Wen Xu, Hong Qiang, Ting-Li Li, Yi Wang, Xiao-Xiao Wei, Fei Li

ORCID number: Jian-Wen Xu 0000-0002-1360-6795; Hong Qiang 0000-0001-7436-5764; Ting-Li Li 0000-0003-4709-1010; Yi Wang 0000-0003-3756-6801; Xiao-Xiao Wei 0000-0001-5173-5400; Fei Li 0000-0002-8810-1759.

Author contributions: Xu JW and Li F conceptualized this study; Xu JW, Qiang H, and Li F collected the data; Xu JW, Wang Y, and Wei XX performed the formal analysis; Xu JW and Wang Y drafted the manuscript; Li F edited and reviewed the manuscript.

Conflict-of-interest statement:

There are no conflicts of interest of any authors in relation to the submission of this manuscript.

PRISMA 2009 Checklist statement:

The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to

Jian-Wen Xu, Hong Qiang, Ting-Li Li, Xiao-Xiao Wei, Nursing Department, Yangpu District Shidong Hospital, Shanghai 200438, China

Yi Wang, Emergency Services Department, Yangpu District Shidong Hospital, Shanghai 200438, China

Fei Li, The Second Neurological Department, Yangpu District Shidong Hospital, Shanghai 200438, China

Corresponding author: Fei Li, MD, Chief Doctor, The Second Neurological Department, Yangpu District Shidong Hospital, No. 999 Shiguang Road, Yangpu District, Shanghai 200438, China. lifeimedicine@163.com

Abstract

BACKGROUND

Tranexamic acid (TXA) has been used as an anti-fibrinolytic drug for over half a century and has received much attention in recent decades.

AIM

To evaluate the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery.

METHODS

From the electronic resources, PubMed, Cochrane Library, Embase, ISI, and Scopus were used to perform a literature search over the last 10 years between 2010 and 2020. EndNote[™] X8 was used for managing the electronic resource. Searches were performed with mesh terms. The data were retracted blindly by two independent reviewers. Random effects were used to deal with potential heterogeneity and I^2 showed heterogeneity. Chi-square (I^2) tests were used to quantify the extent of heterogeneity (P < 0.01 was considered statistically significant). The efficacy of topical TXA in reducing blood loss and promoting wound healing in bone surgery was compared with intravenous TXA and placebo.

RESULTS

According to the research design, 1360 potentially important research abstracts and titles were discovered in our electronic searches, and 18 papers remained in

Manuscript source: Unsolicited manuscript

Specialty type: Chemistry, medicinal

Country/Territory of origin: China

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

Received: December 24, 2020 Peer-review started: December 24. 2020

First decision: January 7, 2021 Revised: February 24, 2021 Accepted: March 29, 2021 Article in press: March 29, 2021 Published online: June 16, 2021

P-Reviewer: Leite CBG S-Editor: Gong ZM L-Editor: Filipodia P-Editor: Yuan YY

agreement with our inclusion criteria. It was found that TXA reduced 277.51 mL of blood loss compared to placebo, and there was no significant difference between topical TXA and IV TXA in reducing blood loss in bone surgery. Our analyses also showed that TXA significantly reduced blood transfusion compared to placebo and there was no significant difference between topical TXA and IV TXA.

CONCLUSION

The use of both topical and intravenous TXA are equally effective in reducing blood loss in bone surgery, which might be beneficial for wound healing after surgery.

Key Words: Tranexamic acid; Blood loss; Wound healing; Bone surgery; Meta-analysis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Although tranexamic acid (TXA) is regularly used by surgeons, a comprehensive guideline on safe topical doses and methods for TXA administration has remained controversial. This study showed that both topical and intravenous TXA are equally effective in reducing blood loss in bone surgery, which is thus beneficial for wound healing after surgery.

Citation: Xu JW, Qiang H, Li TL, Wang Y, Wei XX, Li F. Efficacy of topical vs intravenous tranexamic acid in reducing blood loss and promoting wound healing in bone surgery: A systematic review and meta-analysis. World J Clin Cases 2021; 9(17): 4210-4220 URL: https://www.wjgnet.com/2307-8960/full/v9/i17/4210.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i17.4210

INTRODUCTION

Wound healing is a natural biological process, in which all four stages, including homeostasis (stop bleeding), inflammation, proliferation, and maturation, must occur within a time frame for successful wound healing[1,2]. The use of tranexamic acid (TXA) as an anti-fibrinolytic drug has been available for over half a century and has received much attention in recent decades[3]. By binding to plasminogen, TXA prevents the conversion of plasminogen to plasmin, thus preventing fibrinolysis[4]. The use of TXA reduces blood loss and blood transfusion in major orthopedic surgery, and the safety is also well recognized[5-8]. Previous studies have not confirmed any increased risk of thromboembolism after the use of TXA in various surgeries[9-11]. Topical use of TXA is increasingly popular today, but surgeons do not have a comprehensive guideline on safe topical doses and methods of administration, as topical use is still off-label[12]. There have been two meta-analysis studies discussing efficacy of topical vs intravenous TXA in total hip arthroplasty and total knee arthroplasty, respectively [13,14]. However, the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery remains to be systemically reviewed.

Therefore, the aim of this systematic review and meta-analysis was to evaluate the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery.

MATERIALS AND METHODS

Search strategy techniques

From the electronic resources, PubMed, Cochrane Library, Embase, ISI, and Scopus were used to perform a literature search over the last 10 years between 2010 and 2020. EndNote™ X8 was used for managing the electronic resources. Searches were performed with mesh terms: ("Tranexamic Acid/administration and dosage"[Mesh]

OR "Tranexamic Acid/adverse effects" [Mesh] OR "Tranexamic Acid/blood" [Mesh] OR "Tranexamic Acid/standards" [Mesh] OR "Tranexamic Acid/toxicity" [Mesh])) AND ("Wound Healing/blood" [Mesh] OR "Wound Healing/blood supply" [Mesh] OR "Wound Healing/complications" [Mesh] OR "Wound Healing/drug effects" [Mesh] OR "Wound Healing/drug therapy" [Mesh] OR "Wound Healing/innervation" [Mesh] OR "Wound Healing/pharmacology" [Mesh] OR "Wound Healing/surgery" [Mesh] OR "Wound Healing/therapy" [Mesh])) OR ("Blood Loss, Surgical" [Mesh] OR "Hemorrhage" [Mesh] OR "Postoperative Hemorrhage" [Mesh])) OR "Homeostasis" [Mesh]) OR "Bleeding Time" [Mesh]) OR "Inflammation" [Mesh]) OR "Cell Proliferation" [Mesh].

The present systematic review and meta-analysis protocol was prepared by PRISMA checklist^[15], and Population/Patient, Exposure/Intervention, Comparison, and Outcome strategy (Table 1).

Selection criteria

Inclusion criteria: Randomized controlled trials, controlled clinical trials, and prospective and retrospective cohort studies; human; topical TXA or intravenously administered TXA; adults; bone surgery trials; and in English.

Exclusion criteria: In vitro studies, case studies, case reports, and reviews; animal studies; oral TXA; and studies without a control group.

Data extraction and method of analysis: The data were extracted from the related studies including years, study design, number of patients, mean/range of age, interventions group, control group, and clinical endpoints. The quality of studies included was assessed using the Cochrane Collaboration's tool[16]. The scale score for low risk was 1 and that for high and unclear risk was 0. Scale scores ranged from 0 to 6. A higher score indicated higher quality.

Two reviewers blindly and independently extracted the data. Odds ratio (OR) with 95% confidence interval (CI), fixed effects model and Mantel-Haenszel method and mean difference with 95%CI, random effect model and restricted maximum likelihood method were calculated. Random effects were used to deal with potential heterogeneity and *l*² showed heterogeneity. Chi-square (*l*²) tests were performed to quantify the extent of heterogeneity (P value < 0.01 was considered statistically significant). l^2 values > 50% indicated moderate-to-high heterogeneity. Software Stata/MP v.16 (fastest version of Stata) was used for statistical analysis.

RESULTS

According to the research design, 1360 potentially important research abstracts and titles were discovered in our electronic searches. In the first phase of the study selection, 1312 studies were left after removing copies. Then 1247 in vitro studies, case studies, case reports, and reviews or those that did not meet the eligibility criteria were excluded. Therefore, we fully assessed the complete full-text papers of the remaining 65 studies in the second stage, and 47 publications were excluded due to the lack of the defined inclusion criteria. Finally, 18 papers remained in agreement with our inclusion criteria required (Figure 1).

Characteristics

Eighteen studies (randomized controlled trials) were included. The total sample size was 1994. All of the studies evaluated the efficacy of TXA in bone surgical patients. In detail, nine studies evaluated the efficacy of TXA in total knee arthroplasty, two evaluated the efficacy of TXA in trochanteric fracture surgery, one evaluated the efficacy of TXA in intertrochanteric fractures, two evaluated the efficacy of TXA in total shoulder arthroplasty, two evaluated the efficacy of TXA in total hip replacement and one evaluated the efficacy of TXA in orthognathic surgery (Table 2)[17-34].

Transfusion rate

The effects of TXA and placebo were compared in 10 studies about bone surgery. The OR was -1.56 (95% CI: -1.96 to -1.17; P = 0.00), and moderate heterogeneity was found $(I^2 = 35.63\%)$. Our results showed that TXA significantly reduced blood transfusion compared to placebo (Figure 2).

The effects of topical TXA and IV TXA were compared in five studies about bone surgery. The OR was 0.20 (95%CI: -0.50 to 0.89; P = 0.58), and there was mild hetero-

WJCC | https://www.wjgnet.com

Table 1 Population/Patient, Exposure/Intervention, Comparison, and Outcome strategy									
PICO or PECO strategy	Description								
Р	Population/Patient: Adult patients								
Ε	Exposure/Intervention: Tranexamic acid								
C	Comparison: Placebo or standard care								
0	Outcome: Blood loss								

PECO: Population/Patient, Exposure, Comparison, and Outcome; PICO: Population/Patient, Intervention, Comparison, and Outcome.

Ta	Table 2 Studies selected for systematic review and meta-analysis											
	Ref.	Study design Sam		Procedure	Intervention group and control group							
1	Lei <i>et al</i> [17], 2020	RCT	132	Total knee arthroplasty	IV TXA, placebo							
2	Luo <i>et al</i> [18], 2019	RCT	90	Trochanteric fracture surgery	IV TXA, placebo							
3	Chen et al[19], 2019	RCT	166	Trochanteric fracture surgery	IV TXA, placebo							
4	Zhang et al[20], 2019	RCT	50	Total knee arthroplasty	Topical TXA, IV TXA							
5	Zhou <i>et al</i> [21], 2019	RCT	100	Intertrochanteric fractures	Topical TXA (1 g), placebo							
6	Cvetanovich et al[22], 2018	RCT	110	Total shoulder arthroplasty	TXA, placebo							
7	Huang <i>et al</i> [23], 2017	RCT	150	Total knee arthroplasty	Topical TXA (1 g), IV TXA, placebo							
8	Vara et al[24], 2017	RCT	102	Total shoulder arthroplasty	Topical TXA, placebo							
9	Goyal <i>et al</i> [25], 2017	RCT	168	Total knee arthroplasty	TXA, IV TXA							
10	Chen <i>et al</i> [26], 2016	RCT	100	Total knee arthroplasty	Topical TXA, IV TXA							
11	Drosos et al[27], 2016	RCT	90	Total knee arthroplasty	Topical TXA: 1 g, placebo, IV TXA							
12	Keyhan et al[28], 2016	RCT	120	Total knee arthroplasty	Topical TXA: 3 g, placebo, IV TXA (500 g)							
13	North <i>et al</i> [29], 2016	RCT	139	Total hip replacement	Topical TXA: 2 g, IV TXA (2 g)							
14	Aguilera et al[30], 2015	RCT	150	Total knee arthroplasty	Topical TXA: 1 g, IV TXA (2 g), placebo							
15	Eftekharian et al[<mark>31</mark>], 2015	RCT	56	Orthognathic surgery	Topical TXA: 1 g, placebo							
16	Gillespie et al[32], 2015	RCT	111	Total shoulder arthroplasty	Topical TXA: 2 g, placebo							
17	Taheriazam et al[33], 2015	RCT	80	Total hip replacement	Topical TXA, IV TXA							
18	Yang et al[34], 2015	RCT	80	Total knee arthroplasty	Topical TXA, placebo							

RCT: Randomized Controlled Trial; TXA: Tranexamic acid.

geneity ($l^2 < 0\%$). Our results showed there was no significant difference between topical TXA and IV TXA in reducing blood transfusion in bone surgery (Figure 3).

Blood loss

The blood loss after topical TXA *vs* IV TXA was compared among six studies about bone surgery, and the mean difference was 74.06 mL (mean difference [MD]: 74.06, 95% CI: -8.17 to 156.39; P = 0.08), with high heterogeneity found ($I^2 = 88.98\%$). Our results showed there was no significant difference between topical TXA and IV TXA in reducing blood loss in bone surgery (Figure 4).

The blood loss after TXA *vs* placebo administration was compared among 12 studies about bone surgery, and the mean difference was -277.51 mL (MD: -277.51, 95% CI: - 410.47 to -144.5; P = 0.00), with high heterogeneity ($I^2 = 97.94\%$). The results showed that TXA reduced 277.51 mL of blood loss compared to placebo (Figure 5).

Zaishidena® WJCC | https://www.wjgnet.com

Xu JW et al. Efficacy of topical vs intravenous TXA in bone surgery

Figure 1 Study attrition. Eighteen papers were finally included in the meta-analysis.

DISCUSSION

The present meta-analysis showed that TXA reduced 277.51 mL of blood loss compared to placebo in bone surgery, and there was no significant difference between topical TXA and IV TXA in reducing blood loss. Moreover, TXA significantly reduced blood transfusion compared to placebo in bone surgery and there was no significant difference between topical TXA and IV TXA. In a systematic review and meta-analysis study with a sample size of 10488 patients[35], regardless of the type of TXA administration, it was shown that 30% of patients only needed an injection. These results were consistent with our study. If a theoretical comparison is made between the topical TXA and IV TXA, the topical TXA would result in a 90% reduction in plasma concentrations[36-38]. Also, a study with regression analysis showed no significant relationship between topical TXA and reduced dose-dependent risk of transmission, and topical TXA also has the advantage of lower doses and medical costs[39,40]. Moreover, previous studies have shown that there is no significant advantage of systemic TXA in various surgical and non-surgical procedures compared to topical TXA[39,41]. Taken together, these findings indicate that topical TXA is recommended to reduce blood loss and transfusion at least in bone surgery.

Much blood loss is common in bone surgery, which is a major source of mortality, and blood transfusions are often required during the perioperative period. However, blood transfusions may lead to increased length of hospital stay, a raised risk of infection, and an increased medical cost[42-44]. TXA prevents the conversion of plasminogen to plasmin, thus preventing fibrinolysis and blood loss[4]. Thus, it is clinically significant to use TXA to reduce blood loss and transfusion in bone surgery, which might be beneficial for wound healing.

However, our study also had some limitations. First, the optimal dose and timing of the topical TXA were not evaluated in our study due to lack of clinical guideline for TXA and inconsistency in dose and timing of TXA across studies, which remain to be evaluated in the further research. Second, significant heterogeneity was detected in blood loss and our findings remain to be further verified by more well-designed studies.

CONCLUSION

We found that the use of both topical and intravenous TXA are effective in reducing blood loss and might be beneficial for wound healing in bone surgery. Given the consideration of smaller dose and less medical cost, topical TXA is recommended for bone surgery. However, more studies are needed to further verify our findings in the future.

WJCC | https://www.wjgnet.com

Ref.	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome Assessment	incomplete outcome data	Selective reporting	Total score
Lei <i>et al</i> [<mark>17</mark>], 2020	+	+	+	+	+	+	6
Luo <i>et al</i> [<mark>18</mark>], 2019	+	+	+	+	+	+	6
Chen <i>et al</i> [<mark>19</mark>], 2019	?	+	+	+	+	+	5
Zhang <i>et al</i> [<mark>20</mark>], 2019	+	+	+	+	+	+	6
Zhou <i>et al</i> [<mark>21</mark>], 2019	+	?	?	+	+	+	4
Cvetanovich <i>et al</i> [22], 2018	+	+	+	?	+	+	5
Huang <i>et al</i> [<mark>23</mark>], 2017	+	+	+	+	?	+	5
Vara <i>et al</i> [<mark>24</mark>], 2017	+	+	•	+	+	+	5
Goyal <i>et al</i> [<mark>25</mark>], 2017	+	?	?	+	+	+	4
Chen <i>et al</i> [<mark>26</mark>], 2016	+	+	+	?	+	+	5
Drosos <i>et al</i> [<mark>27</mark>], 2016	+	+	+	-	?	+	4
Keyhan <i>et al</i> [<mark>28</mark>], 2016	+	+	-	+	+	+	5
North <i>et al</i> [<mark>29</mark>], 2016	+	+	+	?	?	+	4
Aguilera <i>et al</i> [<mark>30</mark>], 2015	+	+	+	+	-	+	5
Eftekharian <i>et al</i> [<mark>31</mark>], 2015	+	+	?	+	•	+	4
Gillespie <i>et al</i> [<mark>32</mark>], 2015	+	-	+	+	?	+	4
Taheriazam <i>et al</i> [<mark>33</mark>], 2015	+	+	?	+	+	+	5
Yang <i>et al</i> [<mark>34</mark>], 2015	+	+	?	+	?	+	4

Risk of bias assessment

(+): Low; (?): Unclear; (-): High.

Figure 2 Risk of bias assessment. (+): Low; (?): Unclear; (-): High.

 Jaisbideng®
 WJCC
 https://www.wjgnet.com

Xu JW et al. Efficacy of topical vs intravenous TXA in bone surgery

Blood transfusion	Tranexar	nic ac	id Pla	acebo	Log Odd	s-Ratio	Weight
Study	Yes	No	Yes	No	with 9	5% CI	(%)
Lei et al.,2020	1	65	8	58	-2.19 [-4.	30, -0.08]	6.62
Luo et al.,2019	6	38	29	17	-2.38 [-3.	43, -1.33]	20.58
Chen et al.,2019	15	88	31	88	-0.73 [-1.	41, -0.04]	20.66
Zhou et al.,2019	5	45	27	23	-2.36 [-3.	44, -1.28]	20.42
Cvetanovich et al.,2018	0	52	0	56	0.07 [-3.	86, 4.01]	0.40
Huang et al.,2017	0	50	8	42 -	-3.01 [-5.	89, -0.12]	7.07
Vara et al.,2017	3	50	7	42	-1.02 [-2.	44, 0.39]	5.77
Drosos et al.,2016	3	17	18	12	-2.14 [-3.	57, -0.71]	10.29
Keyhan et al.,2016	3	37	10	30	-1.41 [-2.	79, -0.04]	7.77
Eftekharian et al.,2015	0	28	0	28	0.00 [-3.	95, 3.95]	0.41
Overall					◆ -1.56 [-1.	96, -1.17]	
Heterogeneity: I ² = 35.6	3%, H ² =	1.55					
Test of $\theta_i = \theta_j$: Q(9) = 13	8.98, p = 0	.12					
Test of $\theta = 0$: $z = -7.70$,	p = 0.00						
					5 0 5		
Fixed-effects Mantel-Hae	enszel mo	del					

Figure 3 Forest plot showed odds ratio (95% confidence interval) for risk of blood transfusion between tranexamic acid and placebo in bone surgery. Cl: Confidence interval.

Figure 4 Forest plot showed odds ratio for risk of blood transfusion between topical tranexamic acid and IV tranexamic acid in bone surgery. CI: Confidence interval; TXA: Tranexamic acid.

Blood loss	Topical TXA			IV TXA					Mean Diff.	Weight
Study	Ν	Mean	SD	Ν	Mean	SD		w	ith 95% CI	(%)
Zhang et al.,2019	50	601.08	101.12	50	512.64	98.45		88.44 [49.32, 127.56]	22.19
Chen et al.,2016	50	799	373.33	50	730	297.78		69.00 [-63.37, 201.37]	14.55
Drosos et al.,2016	30	1048.15	214.49	30	1123.42	216.58		-75.27 [-184.35, 33.81]	16.56
Keyhan et al.,2016	40	422	51	40	406	36		16.00 [-3.35, 35.35]	23.07
North et al.,2016	69	1442.7	562.7	70	1195	485.9	_	247.70 [73.00, 422.40]	11.37
Aguilera et al.,2015	50	1021.57	481.09	49	817.54	324.82		204.03 [42.00, 366.06]	12.25
Overall							-	74.06 [-8.17, 156.29]	
Heterogeneity: τ ² = 7532.92, I ² = 88.98%, H ² = 9.07										
Test of $\theta_i = \theta_i$: Q(5) = 24.83, p = 0.00										
Test of θ = 0: z = 1.7	Test of θ = 0: z = 1.77, p = 0.08									
						-2	00 0 200	400		

Random-effects REML model

Figure 5 Forest plot showed mean difference (95% confidence interval) of blood loss between topical tranexamic acid and IV tranexamic acid in bone surgery. CI: Confidence interval; SD: Standard deviation; TXA: Tranexamic acid.

Baisbidena® WJCC | https://www.wjgnet.com

Blood loss	Tranexamic acid				Placebo			Mean Diff.			Weight	
Study	Ν	Mean	SD	Ν	Mean	SD			1	with 95% C	L.	(%)
Lei et al.,2020	66	536.5	215.46	66	850.54	259.56		-	-314.04 [-395.42,	-232.66]	8.66
Luo et al.,2019	44	384.5	366.3	46	566.2	361.5		-	-181.70 [-332.08,	-31.32]	8.03
Chen et al.,2019	88	411	108.8	88	616.5	106.3			-205.50 [-237.28,	-173.72]	8.90
Zhou et al.,2019	50	563.37	197.51	50	819.25	273.96		-	-255.88 [-349.49,	-162.27]	8.57
Cvetanovich et al.,2018	52	1100.9	367.4	56	1274.5	460		_	-173.60 [-331.38,	-15.82]	7.95
Huang et al.,2017	50	627.7	198.1	50	1584.3	414.3	-		-956.60 [-1083.89,	-829.31]	8.27
Vara et al.,2017	53	1122.4	411.6	49	1472.6	475.4		_	350.20 [-522.42,	-177.98]	7.78
Drosos et al.,2016	24	1048.15	71.4	22	1116.1	89.2			-67.95 [-114.46,	-21.44]	8.85
Keyhan et al.,2016	40	422	51	40	494	73			-72.00 [-99.60,	-44.40]	8.91
Aguilera et al.,2015	47	1021.57	481.09	48	1415.72	595.11			394.15 [-612.03,	-176.27]	7.22
Eftekharian et al.,2015	28	575	286.9	28	817.85	261.83		-	-242.85 [-386.72,	-98.98]	8.10
Yang et al.2015	40	589	122	40	758	173		-	-169.00 [-234.60,	-103.40]	8.76
Overall								-	-277.51 [-410.47,	-144.55]	
Heterogeneity: T ² = 51426	6.95, I ³	= 97.94%	$H^2 = 48$.64								
Test of $\theta_i = \theta_i$: Q(11) = 24	0.68, p	0.00										
Test of θ = 0: z = -4.09, p	= 0.00)										
							1000	-500	o			

Random-effects REML model

Figure 6 Forest plot showed mean difference (95% confidence interval) for blood loss between tranexamic acid and placebo in bone surgery. Cl: Confidence interval; SD: Standard deviation.

ARTICLE HIGHLIGHTS

Research background

Tranexamic acid (TXA) as an anti-fibrinolytic drug has been available for over half a century and Topical use of TXA is more and more popular today.

Research motivation

Although TXA is regularly used in surgeons, a comprehensive guideline on safe topical doses and methods for TXA administration has remained controversial.

Research objectives

This study evaluated the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery.

Research methods

From the electronic resources, PubMed, Cochrane Library, Embase, ISI, and Scopus were used to perform a literature search over the last 10 years between 2010 and 2020. EndNote[™] X8 was used for managing the electronic resource. Searches were performed with mesh terms. The data were retracted blindly by two independent reviewers. Random effects were used to deal with potential heterogeneity and I² showed heterogeneity. Chi-square (I²) tests were used to quantify the extent of heterogeneity (P < 0.01 was considered statistically significant). The efficacy of topical TXA in reducing blood loss and promoting wound healing in bone surgery was compared with intravenous TXA and placebo.

Research results

According to the research design, 1360 potentially important research abstracts and titles were discovered in our electronic searches, and eighteen papers remained in agreement with our inclusion criteria required. It was found that TXA reduced 277.51 mL of blood loss compared to placebo, and there was no significant difference between topical TXA and IV TXA in reducing blood loss in bone surgery. Our analysis also showed that TXA significantly reduced blood transfusion compared to placebo and there was no significant difference between topical TXA and IV TXA.

Research conclusions

This meta-analysis showed that both topical and intravenous TXA are effective in reducing blood loss and might be beneficial for wound healing in bone surgery. Given the consideration of smaller dose and less medical cost, topical TXA is recommended

for bone surgery.

Research perspectives

Both topical and intravenous TXA are effective in reducing blood loss and might be beneficial for wound healing in bone surgery.

REFERENCES

- Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010; 89: 219-229 [PMID: 1 20139336 DOI: 10.1177/0022034509359125]
- Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol 2 Rev 2019; 99: 665-706 [PMID: 30475656 DOI: 10.1152/physrev.00067.2017]
- Tengborn L, Blombäck M, Berntorp E. Tranexamic acid--an old drug still going strong and making a 3 revival. Thromb Res 2015; 135: 231-242 [PMID: 25559460 DOI: 10.1016/j.thromres.2014.11.012]
- 4 Björlin G, Nilsson IM. The effect of antifibrinolytic agents on wound healing. Int J Oral Maxillofac Surg 1988; 17: 275-276 [PMID: 3139802 DOI: 10.1016/s0901-5027(88)80056-0]
- 5 Huang F, Wu D, Ma G, Yin Z, Wang Q. The use of tranexamic acid to reduce blood loss and transfusion in major orthopedic surgery: a meta-analysis. J Surg Res 2014; 186: 318-327 [PMID: 24075404 DOI: 10.1016/j.jss.2013.08.020]
- Hu M, Liu ZB, Bi G. Efficacy and safety of tranexamic acid in orthopaedic trauma surgery: a meta-6 analysis. Eur Rev Med Pharmacol Sci 2019; 23: 11025-11031 [PMID: 31858574 DOI: 10.26355/eurrev 201912 19810
- Amer KM, Rehman S, Amer K, Haydel C. Efficacy and Safety of Tranexamic Acid in Orthopaedic 7 Fracture Surgery: A Meta-Analysis and Systematic Literature Review. J Orthop Trauma 2017; 31: 520-525 [PMID: 28938282 DOI: 10.1097/BOT.000000000000919]
- Nishiwaki T, Oya A, Fukuda S, Nakamura S, Nakamura M, Matsumoto M, Kanaji A. Curved periacetabular osteotomy via a novel intermuscular approach between the sartorius and iliac muscles. Hip Int 2018; 28: 642-648 [PMID: 29739254 DOI: 10.1177/1120700018772047]
- CRASH-2 collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, Gando S, Guyatt G, Hunt BJ, Morales C, Perel P, Prieto-Merino D, Woolley T. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet 2011; 377: 1096-1101, 1101.e1-1101. e2 [PMID: 21439633 DOI: 10.1016/S0140-6736(11)60278-X]
- 10 Roberts I, Belli A, Brenner A, Chaudhri R, Fawole B, Harris T, Jooma R, Mahmood A, Shokunbi T, Shakur H; CRASH-3 trial collaborators. Tranexamic acid for significant traumatic brain injury (The CRASH-3 trial): Statistical analysis plan for an international, randomised, double-blind, placebocontrolled trial. Wellcome Open Res 2018; 3: 86 [PMID: 30175246 DOI: 10.12688/wellcomeopenres.14700.2]
- WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, 11 hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet 2017; 389: 2105-2116 [PMID: 28456509 DOI: 10.1016/S0140-6736(17)30638-4]
- Eikebrokk TA, Vassmyr BS, Ausen K, Gravastrand C, Spigset O, Pukstad B. Cytotoxicity and effect 12 on wound re-epithelialization after topical administration of tranexamic acid. BJS Open 2019; 3: 840-851 [PMID: 31832591 DOI: 10.1002/bjs5.50192]
- Lin C, Qi Y, Jie L, Li HB, Zhao XC, Qin L, Jiang XQ, Zhang ZH, Ma L. Is combined topical with 13 intravenous tranexamic acid superior than topical, intravenous tranexamic acid alone and control groups for blood loss controlling after total knee arthroplasty: A meta-analysis. Medicine (Baltimore) 2016; 95: e5344 [PMID: 28002321 DOI: 10.1097/MD.00000000005344]
- 14 Tuttle JR, Feltman PR, Ritterman SA, Ehrlich MG. Effects of Tranexamic Acid Cytotoxicity on In Vitro Chondrocytes. Am J Orthop (Belle Mead NJ) 2015; 44: E497-E502 [PMID: 26665251]
- 15 Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535 [PMID: 19622551 DOI: 10.1136/bmj.b2535]
- Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks 16 L, Sterne JA. Cochrane bias methods group; cochrane statistical methods group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 343: 5928 [PMID: 22008217 DOI: 10.1136/bmj.d5928]
- 17 Lei YT, Xie JW, Huang Q, Huang W, Pei FX. The antifibrinolytic and anti-inflammatory effects of a high initial-dose tranexamic acid in total knee arthroplasty: a randomized controlled trial. Int Orthop 2020; **44**: 477-486 [PMID: 31879812 DOI: 10.1007/s00264-019-04469-w]
- Luo X, He S, Lin Z, Li Z, Huang C, Li Q. Efficacy and Safety of Tranexamic Acid for Controlling 18 Bleeding During Surgical Treatment of Intertrochanteric Fragility Fracture with Proximal Femoral Nail Anti-rotation: A Randomized Controlled Trial. Indian J Orthop 2019; 53: 263-269 [PMID: 30967695 DOI: 10.4103/ortho.IJOrtho_401_17]
- 19 Chen F, Jiang Z, Li M, Zhu X. Efficacy and safety of perioperative tranexamic acid in elderly patients undergoing trochanteric fracture surgery: a randomised controlled trial. Hong Kong Med J

2019; 25: 120-126 [PMID: 30919809 DOI: 10.12809/hkmj187570]

- 20 Zhang YM, Yang B, Sun XD, Zhang Z. Combined intravenous and intra-articular tranexamic acid administration in total knee arthroplasty for preventing blood loss and hyperfibrinolysis: A randomized controlled trial. *Medicine (Baltimore)* 2019; 98: e14458 [PMID: 30762760 DOI: 10.1097/MD.00000000014458]
- Zhou XD, Zhang Y, Jiang LF, Zhang JJ, Zhou D, Wu LD, Huang Y, Xu NW. Efficacy and Safety of 21 Tranexamic Acid in Intertrochanteric Fractures: A Single-Blind Randomized Controlled Trial. Orthop Surg 2019; 11: 635-642 [PMID: 31419080 DOI: 10.1111/os.12511]
- 22 Cvetanovich GL, Fillingham YA, O'Brien M, Forsythe B, Cole BJ, Verma NN, Romeo AA, Nicholson GP. Tranexamic acid reduces blood loss after primary shoulder arthroplasty: a doubleblind, placebo-controlled, prospective, randomized controlled trial. JSES Open Access 2018; 2: 23-27 [PMID: 30675563 DOI: 10.1016/j.jses.2018.01.002]
- 23 Huang Z, Xie X, Li L, Huang Q, Ma J, Shen B, Kraus VB, Pei F. Intravenous and Topical Tranexamic Acid Alone Are Superior to Tourniquet Use for Primary Total Knee Arthroplasty: A Prospective, Randomized Controlled Trial. J Bone Joint Surg Am 2017; 99: 2053-2061 [PMID: 29257010 DOI: 10.2106/JBJS.16.01525]
- 24 Vara AD, Koueiter DM, Pinkas DE, Gowda A, Wiater BP, Wiater JM. Intravenous tranexamic acid reduces total blood loss in reverse total shoulder arthroplasty: a prospective, double-blinded, randomized, controlled trial. J Shoulder Elbow Surg 2017; 26: 1383-1389 [PMID: 28162887 DOI: 10.1016/j.jse.2017.01.005]
- 25 Goyal N, Chen DB, Harris IA, Rowden NJ, Kirsh G, MacDessi SJ. Intravenous vs Intra-Articular Tranexamic Acid in Total Knee Arthroplasty: A Randomized, Double-Blind Trial. J Arthroplasty 2017; 32: 28-32 [PMID: 27567057 DOI: 10.1016/j.arth.2016.07.004]
- 26 Chen JY, Chin PL, Moo IH, Pang HN, Tay DK, Chia SL, Lo NN, Yeo SJ. Intravenous versus intraarticular tranexamic acid in total knee arthroplasty: A double-blinded randomised controlled noninferiority trial. Knee 2016; 23: 152-156 [PMID: 26746044 DOI: 10.1016/j.knee.2015.09.004]
- 27 Drosos GI, Ververidis A, Valkanis C, Tripsianis G, Stavroulakis E, Vogiatzaki T, Kazakos K. A randomized comparative study of topical versus intravenous tranexamic acid administration in enhanced recovery after surgery (ERAS) total knee replacement. J Orthop 2016; 13: 127-131 [PMID: 27222617 DOI: 10.1016/j.jor.2016.03.007]
- 28 Keyhani S, Esmailiejah AA, Abbasian MR, Safdari F. Which Route of Tranexamic Acid Administration is More Effective to Reduce Blood Loss Following Total Knee Arthroplasty? Arch Bone Jt Surg 2016; 4: 65-69 [PMID: 26894222]
- North WT, Mehran N, Davis JJ, Silverton CD, Weir RM, Laker MW. Topical vs Intravenous 29 Tranexamic Acid in Primary Total Hip Arthroplasty: A Double-Blind, Randomized Controlled Trial. J Arthroplasty 2016; 31: 928-929 [PMID: 26783121 DOI: 10.1016/j.arth.2015.12.001]
- Aguilera X, Martínez-Zapata MJ, Hinarejos P, Jordán M, Leal J, González JC, Monllau JC, Celaya F, 30 Rodríguez-Arias A, Fernández JA, Pelfort X, Puig-Verdie Ll. Topical and intravenous tranexamic acid reduce blood loss compared to routine hemostasis in total knee arthroplasty: a multicenter, randomized, controlled trial. Arch Orthop Trauma Surg 2015; 135: 1017-1025 [PMID: 25944156 DOI: 10.1007/s00402-015-2232-8]
- Eftekharian H, Vahedi R, Karagah T, Tabrizi R. Effect of tranexamic acid irrigation on perioperative 31 blood loss during orthognathic surgery: a double-blind, randomized controlled clinical trial. J Oral Maxillofac Surg 2015; 73: 129-133 [PMID: 25443384 DOI: 10.1016/j.joms.2014.07.033]
- 32 Gillespie R, Shishani Y, Joseph S, Streit JJ, Gobezie R. Neer Award 2015: A randomized, prospective evaluation on the effectiveness of tranexamic acid in reducing blood loss after total shoulder arthroplasty. J Shoulder Elbow Surg 2015; 24: 1679-1684 [PMID: 26480877 DOI: 10.1016/j.jse.2015.07.029
- 33 Lacko M, Cellar R, Schreierova D, Vasko G. Comparison of intravenous and intra-articular tranexamic acid in reducing blood loss in primary total knee replacement. Eklem Hastalik Cerrahisi 2017; 28: 64-71 [PMID: 28760121 DOI: 10.5606/ehc.2017.54914]
- 34 Yang Y, Lv YM, Ding PJ, Li J, Ying-Ze Z. The reduction in blood loss with intra-articular injection of tranexamic acid in unilateral total knee arthroplasty without operative drains: a randomized controlled trial. Eur J Orthop Surg Traumatol 2015; 25: 135-139 [PMID: 24816760 DOI: 10.1007/s00590-014-1461-9]
- Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: 35 systematic review and cumulative meta-analysis. BMJ 2012; 344: e3054 [PMID: 22611164 DOI: 10.1136/bmj.e3054]
- 36 Abrishami A, Wong J, El-Beheiry H, Hasan S, Chung F. Intra-articular application of tranexamic acid for perioperative blood loss in total knee arthroplasty: a randomized controlled trial. Can J Anesth 2009; 56: 138
- 37 McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs 2012; 72: 585-617 [PMID: 22397329 DOI: 10.2165/11209070-000000000-00000]
- Pabinger I, Fries D, Schöchl H, Streif W, Toller W. Tranexamic acid for treatment and prophylaxis 38 of bleeding and hyperfibrinolysis. Wien Klin Wochenschr 2017; 129: 303-316 [PMID: 28432428 DOI: 10.1007/s00508-017-1194-v]
- Montroy J, Hutton B, Moodley P, Fergusson NA, Cheng W, Tinmouth A, Lavallée LT, Fergusson 39 DA, Breau RH. The efficacy and safety of topical tranexamic acid: A systematic review and metaanalysis. Transfus Med Rev 2018; Online ahead of print [PMID: 29567052 DOI:

10.1016/j.tmrv.2018.02.003]

- Drakos A, Raoulis V, Karatzios K, Doxariotis N, Kontogeorgakos V, Malizos K, Varitimidis SE. 40 Efficacy of Local Administration of Tranexamic Acid for Blood Salvage in Patients Undergoing Intertrochanteric Fracture Surgery. J Orthop Trauma 2016; 30: 409-414 [PMID: 26978136 DOI: 10.1097/BOT.000000000000577]
- Baric D, Unic D, Rudez I, Bacic-Vrca V, Planinc M, Jonjic D. Systemic usage of tranexamic acid is 41 superior to topical: Randomized placebo-controlled trial. Interact Cardiovasc Thorac Surg 2011; 12: S92
- Hill GE, Frawley WH, Griffith KE, Forestner JE, Minei JP. Allogeneic blood transfusion increases 42 the risk of postoperative bacterial infection: a meta-analysis. J Trauma 2003; 54: 908-914 [PMID: 12777903 DOI: 10.1097/01.TA.0000022460.21283.53]
- Saleh A, Small T, Chandran Pillai AL, Schiltz NK, Klika AK, Barsoum WK. Allogenic blood 43 transfusion following total hip arthroplasty: results from the nationwide inpatient sample, 2000 to 2009. J Bone Joint Surg Am 2014; 96: e155 [PMID: 25232085 DOI: 10.2106/JBJS.M.00825]
- Shokoohi A, Stanworth S, Mistry D, Lamb S, Staves J, Murphy MF. The risks of red cell transfusion 44 for hip fracture surgery in the elderly. Vox Sang 2012; 103: 223-230 [PMID: 22540265 DOI: 10.1111/j.1423-0410.2012.01606.x]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

