
World Journal of Clinical Cases

World J Clin Cases 2021 January 16; 9(2): 291-520

Contents

Thrice Monthly Volume 9 Number 2 January 16, 2021

OPINION REVIEW

Continuity of cancer care in the era of COVID-19 pandemic: Role of social media in low- and middle-291 income countries

Yadav SK, Yadav N

REVIEW

Effect of a fever in viral infections — the 'Goldilocks' phenomenon? 296

Belon L, Skidmore P, Mehra R, Walter E

308 Overview of bile acid signaling in the cardiovascular system

Zhang R, Ma WQ, Fu MJ, Li J, Hu CH, Chen Y, Zhou MM, Gao ZJ, He YL

MINIREVIEWS

321 Gut microbiota and inflammatory bowel disease: The current status and perspectives

Zheng L, Wen XL

ORIGINAL ARTICLE

Retrospective Cohort Study

334 Effective immune-inflammation index for ulcerative colitis and activity assessments

Zhang MH, Wang H, Wang HG, Wen X, Yang XZ

Retrospective Study

344 Risk factors associated with acute respiratory distress syndrome in COVID-19 patients outside Wuhan: A double-center retrospective cohort study of 197 cases in Hunan, China

Hu XS, Hu CH, Zhong P, Wen YJ, Chen XY

META-ANALYSIS

357 Limb length discrepancy after total knee arthroplasty: A systematic review and meta-analysis

Tripathy SK, Pradhan SS, Varghese P, Purudappa PP, Velagada S, Goyal T, Panda BB, Vanyambadi J

CASE REPORT

Lateral position intubation followed by endoscopic ultrasound-guided angiotherapy in acute esophageal 372 variceal rupture: A case report

Wen TT, Liu ZL, Zeng M, Zhang Y, Cheng BL, Fang XM

379 Perioperative mortality of metastatic spinal disease with unknown primary: A case report and review of literature

Li XM. Jin LB

Contents

Thrice Monthly Volume 9 Number 2 January 16, 2021

- 389 Massive gastric bleeding - perforation of pancreatic pseudocyst into the stomach: A case report and review of literature
 - Jin Z, Xiang YW, Liao QS, Yang XX, Wu HC, Tuo BG, Xie R
- 396 Natural history of inferior mesenteric arteriovenous malformation that led to ischemic colitis: A case report Kimura Y, Hara T, Nagao R, Nakanishi T, Kawaguchi J, Tagami A, Ikeda T, Araki H, Tsurumi H
- 403 Coil embolization of arterioportal fistula complicated by gastrointestinal bleeding after Caesarian section: A case report
 - Stepanyan SA, Poghosyan T, Manukyan K, Hakobyan G, Hovhannisyan H, Safaryan H, Baghdasaryan E, Gemilyan M
- 410 Cholecystoduodenal fistula presenting with upper gastrointestinal bleeding: A case report Park JM, Kang CD, Kim JH, Lee SH, Nam SJ, Park SC, Lee SJ, Lee S
- 416 Rare case of fecal impaction caused by a fecalith originating in a large colonic diverticulum: A case report Tanabe H, Tanaka K, Goto M, Sato T, Sato K, Fujiya M, Okumura T
- 422 Intravitreal dexamethasone implant — a new treatment for idiopathic posterior scleritis: A case report Zhao YJ, Zou YL, Lu Y, Tu MJ, You ZP
- 429 Inflammatory myofibroblastic tumor successfully treated with metformin: A case report and review of literature
 - Liang Y, Gao HX, Tian RC, Wang J, Shan YH, Zhang L, Xie CJ, Li JJ, Xu M, Gu S
- 436 Neonatal isovaleric acidemia in China: A case report and review of literature Wu F, Fan SJ, Zhou XH
- 445 Malignant solitary fibrous tumor of the greater omentum: A case report and review of literature Guo YC, Yao LY, Tian ZS, Shi B, Liu Y, Wang YY
- 457 Paratesticular liposarcoma: Two case reports Zheng QG, Sun ZH, Chen JJ, Li JC, Huang XJ
- 463 Sinistral portal hypertension associated with pancreatic pseudocysts - ultrasonography findings: A case report
 - Chen BB, Mu PY, Lu JT, Wang G, Zhang R, Huang DD, Shen DH, Jiang TT
- Epstein-Barr virus-associated monomorphic post-transplant lymphoproliferative disorder after pediatric 469 kidney transplantation: A case report
 - Wang Z, Xu Y, Zhao J, Fu YX
- 476 Postoperative complications of concomitant fat embolism syndrome, pulmonary embolism and tympanic membrane perforation after tibiofibular fracture: A case report

П

- Shao J, Kong DC, Zheng XH, Chen TN, Yang TY
- 482 Double-hit lymphoma (rearrangements of MYC, BCL-2) during pregnancy: A case report Xie F, Zhang LH, Yue YQ, Gu LL, Wu F

World Journal of Clinical Cases

Contents

Thrice Monthly Volume 9 Number 2 January 16, 2021

- 489 Is sinusoidal obstructive syndrome a recurrent disease after liver transplantation? A case report Liu Y, Sun LY, Zhu ZJ, Wei L, Qu W, Zeng ZG
- 496 Portal hypertension exacerbates intrahepatic portosystemic venous shunt and further induces refractory hepatic encephalopathy: A case report
 - Chang YH, Zhou XL, Jing D, Ni Z, Tang SH
- Repair of a severe palm injury with anterolateral thigh and ilioinguinal flaps: A case report 502 Gong HY, Sun XG, Lu LJ, Liu PC, Yu X
- 509 Indirect inguinal hernia containing portosystemic shunt vessel: A case report Yura M, Yo K, Hara A, Hayashi K, Tajima Y, Kaneko Y, Fujisaki H, Hirata A, Takano K, Hongo K, Yoneyama K, Nakagawa
- 516 Recurrent inverted papilloma coexisted with skull base lymphoma: A case report Hsu HJ, Huang CC, Chuang MT, Tien CH, Lee JS, Lee PH

III

Contents

Thrice Monthly Volume 9 Number 2 January 16, 2021

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Dr. Mukul Vij is Senior Consultant Pathologist and Lab Director at Dr Rela Institute and Medical Center in Chennai, India (since 2018). Having received his MBBS degree from King George Medical College in 2004, Dr. Vij undertook postgraduate training at Sanjay Gandhi Postgraduate Institute of Medical Sciences, receiving his Master's degree in Pathology in 2008 and his PDCC certificate in Renal Pathology in 2009. After 2 years as senior resident, he became Assistant Professor in the Department of Pathology at Christian Medical College, Vellore (2011), moving on to Global Health City as Consultant Pathologist and then Head of the Pathology Department (2013). (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Jia-Hui Li; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Dennis A Bloomfield, Sandro Vento, Bao-gan Peng

EDITORIAL BOARD MEMBERS

https://www.wignet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

January 16, 2021

COPYRIGHT

© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wignet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wignet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

ΙX

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2021 January 16; 9(2): 476-481

DOI: 10.12998/wjcc.v9.i2.476 ISSN 2307-8960 (online)

CASE REPORT

Postoperative complications of concomitant fat embolism syndrome, pulmonary embolism and tympanic membrane perforation after tibiofibular fracture: A case report

Jin Shao, De-Ce Kong, Xin-Hui Zheng, Tian-Ning Chen, Tie-Yi Yang

ORCID number: Jin Shao 0000-0002-9858-2314; De-Ce Kong 0000-0002-5896-4633; Xin-Hui Zheng 0000-0003-1664-5068; Tian-Ning Chen 0000-0003-4879-0905; Tie-Yi Yang 0000-0002-2097-0675.

Author contributions: Shao J, Kong DC, and Yang TY participated in the diagnosis and treatment of the patient, provided follow-up, and drafted and reviewed the manuscript; Kong DC, Zheng XH, and Chen TN acquired clinical data; Shao J, Kong DC, and Yang TY conducted investigations, reviewed literature, and assisted in polishing the manuscript for final publication; All of the authors read and approved the final manuscript.

Supported by The Subject Leadership Project of Shanghai Pudong New Area, No. PWRd2016-06; and the Featured Clinical Discipline Project of Shanghai Pudong, No. PWYts2018-

Informed consent statement:

Consent was obtained from the patient for publication of this report and any accompanying

Conflict-of-interest statement: All the authors declare that they have no conflicts of interest.

Jin Shao, De-Ce Kong, Tie-Yi Yang, Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China

Xin-Hui Zheng, Tian-Ning Chen, Graduate School, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China

Corresponding author: Tie-Yi Yang, MD, Chief Doctor, Director, Professor, Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, No. 219 Miaopu Road, Pudong New Area, Shanghai 200135, China. yangtieyi@163.com

Abstract

BACKGROUND

Fat embolism syndrome (FES) is a rare disease characterized by pulmonary distress, neurologic symptoms, and petechial rash and seriously threatens human life and health. It is still neglected clinically because of the lack of verifiable diagnostic criteria and atypical clinical symptoms. No studies on FES with pulmonary embolism (PE) and tympanic membrane perforation have been reported to date. Here, we report a rare case of concomitant FES, PE and tympanic membrane perforation after surgery in a patient with a tibiofibular fracture.

CASE SUMMARY

A 39-year-old man presented with right lower extremity pain due to a car accident while driving a motorbike on the road. X-ray and computed tomography scans revealed a fracture of the right mid-shaft tibia and proximal fibula categorized as a type A2 fracture according to the AO classification. A successful minimally invasive operation was performed 3 d after the injury. Postoperatively, the patient developed sudden symptoms of respiratory distress and hearing loss. Early diagnosis was made, and supportive treatments were used at the early stage of FES. Seven days after surgery, he presented a clear recovery from respiratory symptoms. The outcome of fracture healing was excellent, and his hearing of the left ear was mildly impaired at the last follow-up of 4 mo.

CONCLUSION

Concomitant FES, PE and tympanic membrane perforation are very rare but represent potentially fatal complications of trauma or orthopedic surgery and present with predominantly pulmonary symptoms. Early diagnosis and treatment

CARE Checklist (2016) statement:

The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Unsolicited

manuscript

Specialty type: Medicine, research and experimental

Country/Territory of origin: China

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B, B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

Received: August 27, 2020 Peer-review started: August 27,

First decision: November 3, 2020 Revised: November 9, 2020 Accepted: November 21, 2020 Article in press: November 21, 2020 Published online: January 16, 2021

P-Reviewer: Ampollini L S-Editor: Huang P L-Editor: Filipodia P-Editor: Zhang YL

can reduce the mortality of FES, and prevention is better than a cure.

Key Words: Fat embolism syndrome; Tibiofibular fracture; Pulmonary embolism; Tympanic membrane perforation; Postoperative complication; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Fat embolism syndrome (FES) is a rare complication after internal fixation. This case suggests that any clinical manifestations of patients should be identified after internal fixation to avoid delays in treatment. Even with a lack of verifiable diagnostic criteria for FES, it should be highly suspected for patients with sudden hypoxemia and atypical neurological symptoms. Early diagnosis and supportive treatment are still recommended.

Citation: Shao J, Kong DC, Zheng XH, Chen TN, Yang TY. Postoperative complications of concomitant fat embolism syndrome, pulmonary embolism and tympanic membrane perforation after tibiofibular fracture: A case report. World J Clin Cases 2021; 9(2): 476-481

URL: https://www.wjgnet.com/2307-8960/full/v9/i2/476.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i2.476

INTRODUCTION

Fat embolism syndrome (FES) is a rare disease characterized by pulmonary distress, neurologic symptoms, and petechial rash and seriously threatens human life and health. Due to the lack of verifiable diagnostic criteria, the actual incidence of FES varies in different reports[1-3]. Despite extensive reports of the morbidity and mortality of FES^[4-6], this condition may still be neglected clinically. FES refers to the clinical symptoms that follow a clear history of trauma, particularly long bone fractures (e.g., femur or tibia). Although the exact mechanisms that result in FES are still unknown, it is likely that both mechanical and biochemical components contribute to the pathologic and physical manifestations of FES. Here, we report a rare case of concomitant FES, pulmonary embolism (PE), and tympanic membrane perforation after surgery in a patient with a tibiofibular fracture.

CASE PRESENTATION

Chief complaints

Severe pain and swelling on his right calf.

History of present illness

A 39-year-old man was admitted to the Department of Emergency Orthopedics in our hospital due to right lower extremity trauma from a car accident 2 h prior.

History of past illness

The patient had a free previous medical history.

Personal and family history

The patient had no prior surgeries and did not smoke tobacco or drink alcohol. Family history was negative.

Physical examination

After admission, the patient's temperature was 36.8 °C, heart rate was 89 bpm, respiratory rate was 19 breaths per minute, and blood pressure was 112/89 mmHg. Severe pain and swelling were found on the patient's right calf, while no numbness was found. Peripheral circulation was in good condition, with the dorsalis pedis artery pulse detected. There was limitation of the right ankle joint during flexion and extension. Calcaneal traction was used to relieve pain and reduce swelling after admission.

Laboratory examinations

There are no specific laboratory tests for FES; however, anemia, hypoxia, decreases in red blood cell count and hematocrit, and fluctuations in the inflammatory indices (e.g., white blood cell (WBC), C-reactive protein (CRP) were found at the early stage of FES (Table 1).

Imaging examinations

After X-ray and computed tomography (CT) examinations, he was diagnosed with fractures of the right midshaft tibia and proximal fibula (type A2 according to the AO classification) (Figure 1A). Preoperative routine examinations, including chest radiography (Figure 1B) and color Doppler ultrasound of the lower extremity blood vessels, were performed, and the results showed no significant abnormalities.

FINAL DIAGNOSIS

The patient was diagnosed with fracture of the right midshaft tibia and proximal fibula.

TREATMENT

The patient was scheduled to undergo internal fixation of the tibia 3 d after the injury. A successful operation (Figure 1C) was performed via a minimally invasive anteromedial approach with an operation time of 90 min and intraoperative bleeding volume of 100 mL.

Unfortunately, approximately 30 h after surgery, the patient developed sudden symptoms of respiratory distress. He became confused and developed tachypnea (respiratory rate of 36 breaths/min) and tachycardia (heart rate: 120 bpm), and his oxygen saturation dropped below 90% on 4 L/min of oxygen via nasal cannula. No obvious petechial rash was present. A medical consultation was requested immediately for persistent respiratory distress symptoms, and the patient became weaker and more unresponsive. Decreased breath sounds and a small amount of scattered moist rales could be heard. However, his pupils were equal and round, and his reaction to light was normal. Computed tomography angiography (CTA) of the chest and CT of the head were performed. Moreover, the patient was transferred to the intensive care unit for close monitoring and supportive care. Then, he developed a fever of 38.4 °C 4 h later and required 50 L/min of oxygen to maintain a saturation > 95%. The CT scan of the head did not show any lesions (Figure 1D); however, the chest radiograph (Figure 1E) and CTA (Figure 1F) demonstrated diffuse ground-glass opacities in both lungs, and a limited mural thrombus was found in one distal pulmonary artery (Figure 1G, orange arrow). There are no specific laboratory tests for FES; however, anemia, hypoxia, decreases in red blood cell count and hematocrit, and fluctuations in the inflammatory indices (e.g., WBC, CRP) are found at the early stage of FES (Table 1). Given that the patient's dyspnea was caused by a fat embolism (FE) and PE, high-flow oxygen inhalation (50 L/min), corticosteroids, anticoagulants, and other supportive treatments were used. He experienced hearing loss in his left ear 4 d after surgery, and an otoscopic examination demonstrated that the left tympanic membrane had a small circular perforation (Figure 1H). He was treated conservatively with analgesia and empiric antibiotics.

OUTCOME AND FOLLOW-UP

The patient gradually became more alert, his breathing became smooth, and his hearing in the left ear improved. Seven days after surgery, he presented a clear recovery from respiratory symptoms, showed improvements, and moved all his limbs against gravity without problems. His oxygen requirements decreased from 50 L/min to 4 L/min to maintain a saturation of > 95%. On the 10th d after the operation, the repeat chest CT demonstrated remarkable absorption of the diffuse ground-glass opacities and mural thrombus (Figure 1I and J). The patient returned to the orthopedic ward and was discharged on the 18th d after the operation. The outcome of fracture

Table 1 Laboratory tests					
Variable	Reference range	Preoperation	30 h after surgery	48 h after surgery	72 h after surgery
WBC, 10 ⁹ /L	3.50-9.50	13.63	11.25	8.73	14.8
HG, g/L	130-175	146	104	91	93
RBC, 10 ¹² /L	4.30-5.80	4.85	3.27	2.98	2.97
Hematocrit, %	40.0-50.0	44.8	30.5	28.0	28.1
Platelet count, 10 ⁹ /L	125-350	245	198	207	233
CRP, mg/L	0-10.0	8.6	85.4	116.0	44.7
Prothrombin time, s	11.0-15.0	14.0	14.9	14.5	14.5
Prothrombin time/international normalized ratio	0.85-1.50	1.10	1.19	1.15	1.15
Activated partial-thromboplastin time, s	25.0-45.0	37.1	38.1	52.9	39.2
Potassium, mmol/L	3.50-5.10	4.50	3.65	3.76	3.50
Sodium, mmol/L	137-147	141	140	143	141
Chloride, mmol/L	99.0-110.0	104.0	108.6	109.3	108.9
Calcium, mmol/L	2.11-2.52	2.19	1.89	1.95	1.85
Carbon dioxide, mmol/L	22.0-29.0	30.0	27.9	28.9	27.4
Alanine aminotransferase, U/L	9.0-60.0	24.3	70.0	64.0	47.8
Aspartate aminotransferase, U/L	15.0-45.0	21.0	48.0	28.0	29.9
Alkaline phosphatase, U/L	45.0-125.0	49.1	104.0	91.0	58.3
Albumin, g/L	40.0-55.0	42.4	27.8	29.6	31.1
Total protein, g/L	65.0-85.0	68.8	54.5	56.4	51.4
Urea, mmol/L	3.10-8.00	6.19	3.25	5.64	7.63
Creatinine, µmol/L	57-97	62	44	49	60
Uric acid, μmol/L	238-416	311	183	178	163
Arterial blood gas, fraction of inspired oxygen					
Partial pressure of CO ₂ , mmHg	35-48		43	38	37
Partial pressure of O ₂ , mmHg	83-108		58	135	130
Base excess, %	-2.0-3.0		1.3	3.9	2.6

CRP: C-reactive protein; HG: Hemoglobin; RBC: Red blood cell count; WBC: White blood cell count.

healing was excellent, and his hearing of the left ear was mildly impaired at the last follow-up of 4 mo. He was satisfied with the treatments he received.

DISCUSSION

FE is defined as the presence of fat droplets in the systemic circulation after trauma, especially after long bone fracture fixation. FE is not similar to FES; only a minority of patients develop FES clinically, and most patients present as asymptomatic. Numerous studies have found that early surgical stabilization of the fracture (external or internal fixation) before 24 h dramatically reduced the incidence of FES and pulmonary complications^[9-11]. However, the timing of fracture fixation remains controversial, especially in patients with polytraumatic injuries, in terms of the advantages of early fixation and the risk of serious complications of early definitive fixation (a potential second source of trauma)[10].

Both mechanical and biochemical components contribute to the physical manifestations and pathology of FES. Mechanically, fat droplets as emboli are forced into the circulation during orthopedic procedures, especially intramedullary fixation. The emboli can affect different organs and cause symptoms, especially in the lungs

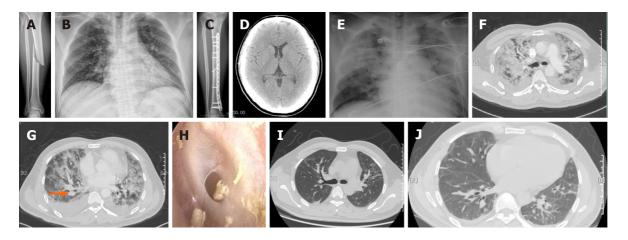


Figure 1 Patient's imaging data. A: Anteroposterior radiograph of the fracture of the right tibia and fibula; B: Anteroposterior radiograph of the chest after admission; C: Anteroposterior radiograph of the right tibia and fibula 3 mo after surgery; D: Computed tomography scan of the brain demonstrated no pathological changes; E: Bedside chest radiography with diffuse interstitial opacities 30 h after surgery; F: Computed tomography angiography of the chest demonstrated diffuse superimposed ground-glass abnormalities in both lungs as well as numerous discrete small nodules, which were consistent with fat embolism syndrome; G: Computed tomography angiography of the chest demonstrated a limited mural thrombus at the right distal pulmonary artery (orange arrow); H: Otoscopic examination demonstrated that the left tympanic membrane had a small circular perforation; I and J: Repeat chest computed tomography demonstrated remarkable absorption of the diffuse ground-glass opacities and mural thrombus 10 d after the operation.

and brain. Biochemically, free fatty acids are released when lipase produced by the lungs acts on embolic fat. Pulmonary endothelial cells and pneumocytes are damaged, leading to arterial hypoxemia^[12].

FES is a potentially devastating cause of morbidity and mortality in polytrauma patients. The clinical features of FES vary. FES usually has an asymptomatic interval for approximately 12 to 72 h after the initial injury, followed by a classical triad of findings: pulmonary distress, neurologic symptoms, and petechial rash^[9]. This condition is often asymptomatic until pulmonary manifestations occur, which is when we first considered FES in this case. A massive pulmonary FE is often found at autopsy. Pulmonary manifestations, including dyspnea, tachypnea, and hypoxemia to acute respiratory distress syndrome (ARDS), are the earliest symptoms and can be seen in 75% of patients^[13]. Hypoxia is the most common finding and is present in 95% of patients[7]. Neurologic manifestations may include ischemic/hemorrhagic strokes, retinal ischemia, seizures, autonomic dysfunction, and diffuse brain injury[14], which are present in 80% of patients[9]. FES is not necessarily accompanied by organic changes in brain tissue; CT scans of the brain may be normal, but brain magnetic resonance imaging is more sensitive in detecting FES^[9,15]. However, isolated cerebral FES without any pulmonary symptoms was reported in a patient with multiple injuries^[16]. This patient initially presented with hypoxia and atypical neurological symptoms 30 h after surgery. The delay in presentation is consistent with the biochemical theory.

A number of respiratory parameters, vital signs, and laboratory results can provide additional information according to Gurd, Schonfeld, and Lindeque's criteria. Overall, in this patient, we diagnosed FES with PE and conductive deafness based on typical hypoxia (PaO,: 58 mmHg in the arterial blood), mild neurological symptoms, fever (temperature: 38.4 °C > 38 °C), changes in vital signs (respiratory rate: 36/min > 30/min; heart rate: 120 bpm), and some laboratory tests combined with pulmonary CT findings. Nonetheless, there is no benchmark diagnostic test for FES. Many imaging modalities can facilitate the diagnosis of FES, but none of the findings are specific. Chest radiographic findings may show diffuse bilateral patchy infiltrates, consistent with acute ARDS, although this must be differentiated from pulmonary hemorrhage or pulmonary edema. Computed tomography angiography of the chest can demonstrate diffuse interlobular septal thickening with a superimposed ground-glass abnormality as well as numerous discrete small nodules, which are consistent with **FFS**

The most important treatment for FES is supportive care for the lung and cardiovascular system to correct hypoxia and maintain hemodynamic stability. Unnecessary transfers between wards and movement should be avoided to reduce the risk of the embolus breaking off and causing cardiopulmonary collapse. If patients exhibit neurologic involvement, frequent neurological examinations and intracranial pressure monitoring should be considered. The use of corticosteroids and heparin has been suggested as a possible treatment but remains controversial and has not been shown to reduce morbidity or mortality[17].

CONCLUSION

Concomitant FES, PE, and tympanic membrane perforation are very rare but represent potentially fatal complications of trauma or orthopedic surgery and present with predominantly pulmonary symptoms. This case reminds us to carefully consider and examine similar patients who are encountered in clinical practice. Early diagnosis and treatment can reduce the mortality of FES, and prevention is better than a cure.

REFERENCES

- Mellor A, Soni N. Fat embolism. Anaesthesia 2001; 56: 145-154 [PMID: 11167474 DOI: 10.1046/j.1365-2044.2001.01724.x]
- Stein PD, Yaekoub AY, Matta F, Kleerekoper M. Fat embolism syndrome. Am J Med Sci 2008; 336: 472-477 [PMID: 19092320 DOI: 10.1097/MAJ.0b013e318172f5d2]
- 3 Milroy CM, Parai JL. Fat Embolism, Fat Embolism Syndrome and the Autopsy. Acad Forensic Pathol 2019; 9: 136-154 [PMID: 32110249 DOI: 10.1177/1925362119896351]
- 4 Cvetković D, Živković V, Nikolić S. An unusual case of pulmonary fat embolism following blunt trauma. Forensic Sci Med Pathol 2019; 15: 292-295 [PMID: 30535906 DOI: 10.1007/s12024-018-0053-01
- 5 Li S, Zou D, Qin Z, Liu N, Zhang J, Li Z, Shao Y, Deng K, Chen Y, Huang P. Nonfracture-associated pulmonary fat embolism after blunt force fatality: case report and review of the literature. Am J Forensic Med Pathol 2015; **36**: 61-65 [PMID: 25651164 DOI: 10.1097/PAF.000000000000142]
- Takada M, Chiba S, Nagai T, Takeshita H, Kanno S, Ikawa T, Sakamoto K, Sagi M, Ichiba K, Mukai T. Inflammatory responses to neutral fat and fatty acids in multiple organs in a rat model of fat embolism syndrome. Forensic Sci Int 2015; 254: 126-132 [PMID: 26218407 DOI: 10.1016/j.forsciint.2015.07.011]
- Newbigin K, Souza CA, Torres C, Marchiori E, Gupta A, Inacio J, Armstrong M, Peña E. Fat embolism syndrome: State-of-the-art review focused on pulmonary imaging findings. Respir Med 2016; 113: 93-100 [PMID: 26895808 DOI: 10.1016/j.rmed.2016.01.018]
- Porpodis K, Karanikas M, Zarogoulidis P, Konoglou M, Domvri K, Mitrakas A, Boglou P, Bakali S, Iordanidis A, Zervas V, Courcoutsakis N, Katsikogiannis N, Zarogoulidis K. Fat embolism due to bilateral femoral fracture: a case report. Int J Gen Med 2012; 5: 59-63 [PMID: 22287848 DOI: 10.2147/IJGM.S284551
- Rothberg DL, Makarewich CA. Fat Embolism and Fat Embolism Syndrome. J Am Acad Orthop Surg 2019; 27: e346-e355 [PMID: 30958807 DOI: 10.5435/JAAOS-D-17-00571]
- Blokhuis TJ, Pape HC, Frolke JP. Timing of definitive fixation of major long bone fractures: Can fat embolism syndrome be prevented. *Injury* 2017; **48**: Suppl 1: S3-S6 [PMID: 28449860 DOI: 10.1016/j.injury.2017.04.015]
- Dunn RH, Jackson T, Burlew CC, Pieracci FM, Fox C, Cohen M, Campion EM, Lawless R, Mauffrey C. Fat emboli syndrome and the orthopaedic trauma surgeon: lessons learned and clinical recommendations. Int Orthop 2017; 41: 1729-1734 [PMID: 28555248 DOI: 10.1007/s00264-017-3507-1]
- 12 Paredes JC, Syquia JF, Chang AM, Zamuco JT. Fat embolism syndrome after shoulder hemiarthroplasty. J Shoulder Elbow Surg 2011; 20: e1-e5 [PMID: 21393020 DOI: 10.1016/j.jse.2010.11.027]
- Powers KA, Talbot LA. Fat embolism syndrome after femur fracture with intramedullary nailing: case report. Am J Crit Care 2011; 20: 267, 264-266 [PMID: 21532048 DOI: 10.4037/ajcc2011694]
- Morales-Vidal SG. Neurologic Complications of Fat Embolism Syndrome. Curr Neurol Neurosci Rep 2019; 19: 14 [PMID: 30788612 DOI: 10.1007/s11910-019-0928-9]
- Citerio G, Bianchini E, Beretta L. Magnetic resonance imaging of cerebral fat embolism: a case report. Intensive Care Med 1995; 21: 679-681 [PMID: 8522674 DOI: 10.1007/BF01711549]
- 16 Huang CK, Huang CY, Li CL, Yang JM, Wu CH, Chen CH, Wu PT. Isolated and early-onset cerebral fat embolism syndrome in a multiply injured patient: a rare case. BMC Musculoskelet Disord 2019; **20**: 377 [PMID: 31421672 DOI: 10.1186/s12891-019-2736-4]
- Habashi NM, Andrews PL, Scalea TM. Therapeutic aspects of fat embolism syndrome. *Injury* 2006; **37** Suppl 4: S68-S73 [PMID: 16990063 DOI: 10.1016/j.injury.2006.08.042]

Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

Telephone: +1-925-3991568

E-mail: bpgoffice@wjgnet.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

