World Journal of *Clinical Cases*

World J Clin Cases 2021 July 16; 9(20): 5352-5753

Published by Baishideng Publishing Group Inc

W J C C World Journal of Clinical Cases

Contents

Thrice Monthly Volume 9 Number 20 July 16, 2021

EDITORIAL

5352 COVID-19: Considerations about immune suppression and biologicals at the time of SARS-CoV-2 pandemic

Costanzo G, Cordeddu W, Chessa L, Del Giacco S, Firinu D

REVIEW

Obesity in people with diabetes in COVID-19 times: Important considerations and precautions to be taken 5358

Alberti A, Schuelter-Trevisol F, Iser Betine PM, Traebert E, Freiberger V, Ventura L, Rezin GT, da Silva BB, Meneghetti Dallacosta F, Grigollo L, Dias P, Fin G, De Jesus JA, Pertille F, Rossoni C, Hur Soares B, Nodari Júnior RJ, Comim CM

5372 Revisiting delayed appendectomy in patients with acute appendicitis

Li J

MINIREVIEWS

5391 Detection of short stature homeobox 2 and RAS-associated domain family 1 subtype A DNA methylation in interventional pulmonology

Wu J, Li P

- 5398 Borderline resectable pancreatic cancer and vascular resections in the era of neoadjuvant therapy Mikulic D, Mrzljak A
- 5408 Esophageal manifestation in patients with scleroderma

Voulgaris TA, Karamanolis GP

5420 Exploration of transmission chain and prevention of the recurrence of coronavirus disease 2019 in Heilongjiang Province due to in-hospital transmission

Chen Q, Gao Y, Wang CS, Kang K, Yu H, Zhao MY, Yu KJ

5427 Role of gastrointestinal system on transmission and pathogenesis of SARS-CoV-2 Simsek C, Erul E, Balaban HY

ORIGINAL ARTICLE

Case Control Study

5435 Effects of nursing care in fast-track surgery on postoperative pain, psychological state, and patient satisfaction with nursing for glioma

Deng YH, Yang YM, Ruan J, Mu L, Wang SQ

Retrospective Study

5442 Risk factors related to postoperative recurrence of dermatofibrosarcoma protuberans: A retrospective study and literature review

Xiong JX, Cai T, Hu L, Chen XL, Huang K, Chen AJ, Wang P

Contents

World Journal of Clinical Cases

- Thrice Monthly Volume 9 Number 20 July 16, 2021
- 5453 Prediction of presence and severity of coronary artery disease using prediction for atherosclerotic cardiovascular disease risk in China scoring system

Hong XL, Chen H, Li Y, Teeroovengadum HD, Fu GS, Zhang WB

- 5462 Effects of angiotensin receptor blockers and angiotensin-converting enzyme inhibitors on COVID-19 Li XL, Li T, Du QC, Yang L, He KL
- 5470 Prognostic factors and its predictive value in patients with metastatic spinal cancer Gao OP, Yang DZ, Yuan ZB, Guo YX

Clinical Trials Study

5479 Prospective, randomized comparison of two supplemental oxygen methods during gastro-scopy with propofol mono-sedation in obese patients

Shao LJZ, Hong FX, Liu FK, Wan L, Xue FS

SYSTEMATIC REVIEWS

5490 Herb-induced liver injury: Systematic review and meta-analysis Ballotin VR, Bigarella LG, Brandão ABM, Balbinot RA, Balbinot SS, Soldera J

META-ANALYSIS

5514 Type 2 diabetes mellitus increases liver transplant-free mortality in patients with cirrhosis: A systematic review and meta-analysis Liu ZJ, Yan YJ, Weng HL, Ding HG

CASE REPORT

- 5526 Duplication of 19q (13.2-13.31) associated with comitant esotropia: A case report Feng YL, Li ND
- 5535 Multiple left ventricular myxomas combined with severe rheumatic valvular lesions: A case report Liu SZ, Hong Y, Huang KL, Li XP
- 5540 Complete pathological response in locally advanced non-small-cell lung cancer patient: A case report Parisi E, Arpa D, Ghigi G, Micheletti S, Neri E, Tontini L, Pieri M, Romeo A
- 5547 Successful reversal of ostomy 13 years after Hartmann procedure in a patient with colon cancer: A case report Huang W, Chen ZZ, Wei ZQ
- Delayed papillary muscle rupture after radiofrequency catheter ablation: A case report 5556 Sun ZW, Wu BF, Ying X, Zhang BQ, Yao L, Zheng LR
- Temporary coronary sinus pacing to improve ventricular dyssynchrony with cardiogenic shock: A case 5562 report Ju TR, Tseng H, Lin HT, Wang AL, Lee CC, Lai YC

World Journal of Clinical Ca				
Conte	Thrice Monthly Volume 9 Number 20 July 16, 2021			
5568	Hemoglobin Fukuoka caused unexpected hemoglobin A_{1c} results: A case report			
	Lin XP, Yuan QR, Niu SQ, Jiang X, Wu ZK, Luo ZF			
5575	Giant androgen-producing adrenocortical carcinoma with atrial flutter: A case report and review of the literature			
	Costache MF, Arhirii RE, Mogos SJ, Lupascu-Ursulescu C, Litcanu CI, Ciumanghel AI, Cucu C, Ghiciuc CM, Petris AO, Danila N			
5588	Can kissing cause paraquat poisoning: A case report and review of literature			
	Lv B, Han DF, Chen J, Zhao HB, Liu XL			
5594	Spinal dural arteriovenous fistula 8 years after lumbar discectomy surgery: A case report and review of literature			
	Ouyang Y, Qu Y, Dong RP, Kang MY, Yu T, Cheng XL, Zhao JW			
5605	Perianal superficial CD34-positive fibroblastic tumor: A case report			
	Long CY, Wang TL			
5611	Low-dose clozapine-related seizure: A case report and literature review			
	Le DS, Su H, Liao ZL, Yu EY			
5621	Rapid diagnosis of disseminated <i>Mycobacterium mucogenicum</i> infection in formalin-fixed, paraffin- embedded specimen using next-generation sequencing: A case report			
	Liu J, Lei ZY, Pang YH, Huang YX, Xu LJ, Zhu JY, Zheng JX, Yang XH, Lin BL, Gao ZL, Zhuo C			
5631	Cytomegalovirus colitis induced segmental colonic hypoganglionosis in an immunocompetent patient: A case report			
	Kim BS, Park SY, Kim DH, Kim NI, Yoon JH, Ju JK, Park CH, Kim HS, Choi SK			
5637	Primary extra-pancreatic pancreatic-type acinar cell carcinoma in the right perinephric space: A case report and review of literature			
	Wei YY, Li Y, Shi YJ, Li XT, Sun YS			
5647	Muscular atrophy and weakness in the lower extremities in Behçet's disease: A case report and review of literature			
	Kim KW, Cho JH			
5655	Novel technique of extracorporeal intrauterine morcellation after total laparoscopic hysterectomy: Three emblematic case reports			
	Macciò A, Sanna E, Lavra F, Calò P, Madeddu C			
5661	Rare isolated extra-hepatic bile duct injury: A case report			
	Zhao J, Dang YL, Lin JM, Hu CH, Yu ZY			
5668	Gelfoam embolization for distal, medium vessel injury during mechanical thrombectomy in acute stroke: A case report			
	Kang JY, Yi KS, Cha SH, Choi CH, Kim Y, Lee J, Cho BS			

World Journal of Clinical C					
Conter					
5675	Oncocytic adrenocortical tumor with uncertain malignant potential in pediatric population: A case report and review of literature				
	Chen XC, Tang YM, Mao Y, Qin DR				
5683	Submucosal hematoma with a wide range of lesions, severe condition and atypical clinical symptoms: A case report				
	Liu L, Shen XJ, Xue LJ, Yao SK, Zhu JY				
5689	Chorioamnionitis caused by Serratia marcescens in a healthcare worker: A case report				
	Park SY, Kim MJ, Park S, Kim NI, Oh HH, Kim J				
5695	Endoscopic management of biliary ascariasis: A case report				
	Wang X, Lv YL, Cui SN, Zhu CH, Li Y, Pan YZ				
5701	Role of ranulas in early diagnosis of Sjögren's syndrome: A case report				
	Chen N, Zeng DS, Su YT				
5709	Sacral chondroblastoma – a rare location, a rare pathology: A case report and review of literature				
	Zheng BW, Niu HQ, Wang XB, Li J				
5717	Primary liver actinomycosis in a pediatric patient: A case report and literature review				
	Liang ZJ, Liang JK, Chen YP, Chen Z, Wang Y				
5724	Splenosis masquerading as gastric stromal tumor: A case report				
	Zheng HD, Xu JH, Sun YF				
5730	Hemorrhagic transformation of ischemic cerebral proliferative angiopathy: A case report				
0.00	Xia Y, Yu XF, Ma ZJ, Sun ZW				
5737	Multidisciplinary team therapy for left giant adrenocortical carcinoma: A case report				
5151	Zhou Z, Luo HM, Tang J, Xu WJ, Wang BH, Peng XH, Tan H, Liu L, Long XY, Hong YD, Wu XB, Wang JP, Wang BQ, Xie				
	HH, Fang Y, Luo Y, Li R, Wang Y				
5744	Histopathology and immunophenotyping of late onset cutaneous manifestations of COVID-19 in elderly patients: Three case reports				
	Mazzitelli M, Dastoli S, Mignogna C, Bennardo L, Lio E, Pelle MC, Trecarichi EM, Pereira BI, Nisticò SP, Torti C				
	CORRECTION				
5752	Corrigendum to "Probiotic mixture VSL#3: An overview of basic and clinical studies in chronic diseases"				
-					

Sang LX

Contents

Thrice Monthly Volume 9 Number 20 July 16, 2021

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Fan-Zheng Meng, MD, PhD, Director, Professor, Department of Pediatrics, The First hospital of Jilin University, Changchun 130021, Jilin Province, China. mengfanzheng1972@163.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Jia-Hui Li; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS		
World Journal of Clinical Cases	https://www.wjgnet.com/bpg/gerinfo/204		
ISSN	GUIDELINES FOR ETHICS DOCUMENTS		
ISSN 2307-8960 (online)	https://www.wjgnet.com/bpg/GerInfo/287		
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH		
April 16, 2013	https://www.wjgnet.com/bpg/gerinfo/240		
FREQUENCY	PUBLICATION ETHICS		
Thrice Monthly	https://www.wjgnet.com/bpg/GerInfo/288		
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT		
Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng	https://www.wjgnet.com/bpg/gerinfo/208		
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE		
https://www.wjgnet.com/2307-8960/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242		
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS		
July 16, 2021	https://www.wjgnet.com/bpg/GerInfo/239		
COPYRIGHT	ONLINE SUBMISSION		
© 2021 Baishideng Publishing Group Inc	https://www.f6publishing.com		

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

W J C C World Journal of Clinical Cases

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2021 July 16; 9(20): 5408-5419

DOI: 10.12998/wjcc.v9.i20.5408

ISSN 2307-8960 (online)

MINIREVIEWS

Esophageal manifestation in patients with scleroderma

Theodoros A Voulgaris, Georgios P Karamanolis

ORCID number: Theodoros A Voulgaris 0000-0002-8383-825X; Georgios P Karamanolis 0000-0001-9872-1276.

Author contributions: Voulgaris TA wrote the article; Karamanolis GP was responsible for conception and design of the article, the drafting of the article, making critical revisions and final approval of the article.

Conflict-of-interest statement:

There is no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Medicine, research and experimental

Country/Territory of origin: Greece

Peer-review report's scientific quality classification

Theodoros A Voulgaris, Georgios P Karamanolis, Department of Gastroenterology and Hepatology, Laiko General Hospital, National and Kapodistian University of Athens, Athens 11527, Greece

Corresponding author: Georgios P Karamanolis, MD, PhD, Assistant Professor, Department of Gastroenterology and Hepatology, Laiko General Hospital, National and Kapodistian University of Athens, Michalakopoulou 176, Athens 11527, Greece. georgekaramanolis@yahoo.co.uk

Abstract

The esophagus is the most commonly affected part of the gastrointestinal system in patients with systemic sclerosis (SSc). Esophageal involvement may lead to a significant reduction in patient quality of life. The exact pathophysiology is complex and not yet fully elucidated. Ultimately, esophageal smooth muscle becomes atrophied and replaced by fibrous tissue leading to severe motility disturbance of the distal esophagus. Symptoms are mainly attributed to gastroesophageal reflux disease and to esophageal dysmotility. Compelling evidence has correlated esophageal involvement to the severity of pulmonary disease. No formed guidelines exist about the diagnostic modalities used to assess esophageal disease in patients with SSc, though upper gastrointestinal endoscopy is the first and most important modality used as it can reveal alterations commonly observed in patients with SSc. Further exploration can be made by high resolution manometry and pH-impedance study. Proton pump inhibitors remain the mainstay of treatment, while prokinetic agents are commonly used as add-on therapy in patients with symptoms attributed to gastroesophageal reflux disease not responding to standard therapy as well as to motility disturbances. Gastroesophageal reflux disease symptoms in patients with SSc are frequently difficult to manage, and new therapeutic modalities are emerging. The role of surgical treatment is restricted and should only be preserved for resistant cases.

Key Words: Systemic sclerosis; Esophagus; Gastroesophageal reflux disease; Esophageal dysmotility; Proton pump inhibitors

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastrointestinal manifestations of systemic sclerosis, a rare autoimmune disease, are the most commonly encountered complications of the disease affecting

WJCC | https://www.wjgnet.com

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

Received: February 28, 2021 Peer-review started: February 28, 2021 First decision: April 18, 2021 Revised: April 22, 2021 Accepted: May 10, 2021 Article in press: May 10, 2021 Published online: July 16, 2021

P-Reviewer: Dantas RO S-Editor: Fan JR L-Editor: Filipodia P-Editor: Li JH

nearly 90% of the systemic sclerosis population. Among the gastrointestinal tract, the esophagus is the most commonly affected. In this review, we will present the current understanding of the pathophysiologic mechanisms of systemic sclerosis, the clinical presentation and diagnosis of esophageal involvement. Finally, we highlight the latest developments in the management of this disease.

Citation: Voulgaris TA, Karamanolis GP. Esophageal manifestation in patients with scleroderma. World J Clin Cases 2021; 9(20): 5408-5419 URL: https://www.wjgnet.com/2307-8960/full/v9/i20/5408.htm DOI: https://dx.doi.org/10.12998/wjcc.v9.i20.5408

INTRODUCTION

Systemic sclerosis (SSc) is an uncommon immune-mediated multisystemic disease that leads to a significant reduction in patient quality of life and has a high mortality rate [1]. Its global prevalence is estimated to be around 1 in 10000 people, whereas the estimated annual incidence is of less than 10 per 100000 individuals, both in Europe and in the United States. SSc is found to be four times higher in women compared to men[2-4].

Five-year survival in SSc largely depends on the subtype of the disease and is reported to be 80% in diffuse and 90% in limited phenotypes. Almost 9 out of 10 patients with SSc will develop at some point during the course of their disease a gastrointestinal (GI) manifestation, though severe involvement leading to increased morbidity and mortality will arise in only 8%. The reported survival of SSc patients with GI involvement is calculated to be 15% at 9 years[5].

SSc can affect any segment of the GI tract from mouth to anus, though the esophagus is the most commonly involved portion of the GI tract followed by the anorectum and the small bowel[6]. Up to 90% of patient will manifest esophageal symptoms and dysfunction [7,8]. Symptoms of esophageal dysfunction may not occur in up to half of the affected patients up until severe tissue damage takes place[9,10].

PATHOPHYSIOLOGY OF ESOPHAGEAL DISEASE IN SSC

SSc is temporarily considered as an orphan disease, and its origin has not been yet fully elucidated. It is assumed that a combination of environmental factors alongside genetic susceptibility as well as other factors, such as epigenetics, leads to a deregulation of the repairing mechanism of connective tissue in response to injury[11].

Originally a tripartite pathogenesis (vascular injury, autoimmunity and inflammation, fibrosis) has been hypothesized to be the basis of SSc development. However, current data point out that the epithelium, blood-derived cells and disturbances in the wound healing process also possess a critical role in the pathogenesis of SSc[12]. An initial trigger leads to vascular injury due to autoimmunity and/or environmental influences that due to the existence of altered endothelial cells and pericytes/vascular smooth muscle cells steers to impaired vascular remodeling[13,14]. The initially observed disturbed peripheral circulation and activation of endothelial cells, pericytes/vascular smooth muscle cells and fibroblasts induces the production of cytokines, growth factors and chemokines, which in turn promotes in the affected organ the accumulation and activation of different immune cells such as macrophages, mast cells, B and T cells and plasmacytoid dendritic cells.

According to recent data, esophageal inflammation and fibrosis is in a significant manner mediated by Th17 cells. In a recent study focusing on cytokine analysis presenting in the gastric juice from patients with esophageal dysmobility, profibrotic endothelin-1 and the proinflammatory cytokines interleukin (IL)-17, IL-6, IL-1 β , IL-9 and IL-2 were significantly increased in patients with esophageal dysmotility, which is known to be associated with atrophy and fibrosis of the smooth muscle layer. These data and especially the increased levels of IL-17 led the researchers to the conclusion that Th17 cells possess a crucial role in the pathogenesis of esophageal fibrosis, a finding compatible with previous studies in SSc patients with skin and lung disease [15]. The end product of this not fully elucidated cascade is the overproduction of

extracellular matrix (ECM) by interstitial fibroblasts of different origin, transited to myofibroblasts due to the abovementioned vascular and inflammatory reactions. ECM accumulation in tissues affected by scleroderma is derived grossly by transforming growth factor (TGF)- β , connective tissue growth factor, plasminogen activator inhibitor-1, fibronectin 1 and other cytokines, though the principal mediator of tissue fibrosis in SSc is thought to be TGF- β [16,17].

A new insight in our understanding of the role of TGF- β in excessive production and collagen deposition in patients with SSc has been recently revealed. TGF- β acts through binding to its receptors and phosphorylation of SMAD2 and SMAD3 proteins. TGF- β action is facilitated by its connection to TGF- β -binding proteins. TGF- β -binding proteins are structural components of the ECM and are involved in the deposition of TGF- β in the ECM and are implicated in TGF- β secretion and regulation of TGF- β activation[18,19].

A recent study has postulated the fact that patients with SSc and esophageal involvement overexpress TGF- β -binding protein-4 in parallel to the observed TGF- β increase[20]. It seems that the above complex mechanism affecting esophageal smooth muscle, nerves and connective tissues contributes to fibrosis and ultimately to esophageal dysfunction[21-23]. Progressively the esophageal smooth muscle becomes atrophied and replaced by fibrous tissue leading to severe motility disturbance of the distal esophagus[24,25].

CLINICAL PRESENTATION

SSc can manifest with various clinical presentations. Symptoms originate from both structural and functional changes such as a reduced lower esophageal sphincter (LES) pressure, low or absent peristalsis and sicca syndrome. Symptoms such as heartburn, regurgitation, chronic cough and hoarseness are attributed to gastroesophageal reflux disease (GERD) or to esophageal dysmotility when symptoms such as dysphagia, odynophagia and chest pain are present[26,27]. Symptoms related to GERD are the most common in patients with SSc with a prevalence of around 35%, whereas dysphagia occurs rarer in about 4% of patients[21].

The presence of Barrett's esophagus (BE) and adenocarcinoma has also been reported to be increased in patients with SSc, though screening patients with SSc and esophageal disease for esophageal adenocarcinoma (EAC) does not seem to be cost effective[26-29].

Esophageal disease may remain asymptomatic for a long period of time. Even in the absence of symptoms, up to three quarters of patients may show esophageal dilatation on chest tomography and esophageal abnormalities on endoscopy [24,30,31]. This is of special interest due to the fact that recent data point out that esophageal disease in SSc, even among asymptomatic patients, is linked to the development of interstitial lung disease, and patients with more active reflux disease ultimately develop more advanced interstitial lung disease[32]. Even if no causative association between esophageal involvement and pulmonary disease is proven, it is hypothesized that in the setting of unopposed acid reflux in patients with SSc the tracheobronchial aspiration of gastric secretions over time leads to pulmonary fibrosis[24,32-35]. This hypothesis is also based in experimental data coming from a study in a rodent model. According to the researchers, when recurrent gastric fluids were added to rodent lungs, inflammatory cells and cytokines in the lungs were observed, suggesting that GERD and aspiration triggers an inflammatory response, which ultimately may lead to pulmonary fibrosis[36]. Additionally, it has been postulated that the wider the esophagus caliber becomes the greater the diffusing capacity for carbon monoxide and forced vital capacity are[37].

DIAGNOSIS

There is no gold standard examination for the detection and the assessment of esophageal involvement in patients with SSc. Due to the various esophageal symptoms, usually the first examination undertaken is an upper GI endoscopy. When patient presents with symptoms referring to a motility disorder then additional information can be obtained by high resolution manometry. When the primary complaint of the patient is attributed to GERD, an esophageal pH monitoring with or without impedance may be undertaken.

Endoscopy

There are no specific guidelines suggesting a mandatory baseline upper GI endoscopy for patients with SSc[38]. Furthermore, there are no specific endoscopic findings for diagnosing SSc, though gastroscopy is a very useful tool in assessing patients' symptoms such as dysphagia or heartburn. The most common endoscopic finding among patients with SSc is erosive esophagitis, which is revealed in one out of two patients[34,39,40]. It must be stated that endoscopic findings of esophagitis may be present in an even larger portion of asymptomatic patients. Thonhofer *et al*[31] revealed findings of erosive esophagitis in 77% of asymptomatic patients with SSc[31]. Moreover, endoscopy can show GERD complications such as benign peptic stenosis, BE and EAC. Patients with SSc tend to have an increased incidence of BE, which can be up to 10.1% [32,34,40]. The increased incidence of BE in patients with SSc is not accompanied with an increase in the incidence of EAC in patients with SSc and BE. A study that followed patients with SSc and BE for up to 3 years reported a yearly rate of EAC in patients with high dysplasia rating up to 4%, which is comparable to the yearly rate of progression to EAC among patients with BE and high grade dysplasia without SSc[41].

HRM

After its development HRM has substituted conventional manometry as the ideal study for assessing esophageal motility disorders. Although there are no specific recommendations for the role of HRM in clinical practice, it may add substantially significant information about esophageal involvement in SSc[42]. SSc typical manometric presentation consists of a reduced LES resting pressure in combination with diminished amplitude or aperistalsis [27,43,44]. It should be underlined that data regarding the prevalence of the typical manometric presentation, as it is assessed by HRM, are still inconsistent ranging from one out of three patients to one out of two patients[45-47].

An interesting finding in SSc patients with esophageal motility abnormality is the phenomenon of abnormal peristaltic reserve, defined as the absence of contraction and abnormal peristaltic augmentation after multiple rapid swallows[45]. Moreover, Roman et al[47] concluded that in the initial phase of esophageal involvement, the middle and not the distal esophagus is first involved, as the mean amplitude of middle esophageal body contractions (but not distal contractions) was significantly decreased in patients with hypotensive peristalsis compared to patients classified with normal peristalsis[47].

However, it should be stressed that there is a discordance regarding the correlation between manometric findings and patient symptoms. Multiple studies have failed to prove such a correlation[48-50], whereas studies using well defined and validated questionnaires, such as the University of California Scleroderma Clinical Trial Consortium Gastrointestinal Tract 2.0 (UCLA SCTC GIT 2.0) or Gastrointestinal Symptoms Severity Index Scores, support the idea of a correlation between patient symptoms and manometric findings of esophageal involvement[45,51,52].

In any case, we should keep in mind that asymptomatic patients tend to show a great proportion of manometric abnormalities that are compatible with esophageal involvement in HRM. Indeed, Vettori et al [53] found that almost 84% of asymptomatic SSc patients had esophageal motility abnormalities in an HRM study. They also concluded that baseline impaired esophageal motility was an independent risk factor of progression to symptomatic upper GI involvement, and therefore HRM may have a role as a predicting tool for early diagnosis of esophageal involvement among patients with SSc[53].

Esophageal pH monitoring, with or without impedance

As stated above, GERD is the most common clinical presentation of esophageal involvement in SSc patients. The utility of performing an esophageal pH monitoring is graded for patients with typical GERD symptoms that did not respond to proton pump inhibitor (PPI) therapy. Thus, a 24 h pH monitoring combined with impedance is the preferred test in order to confirm the presence of persistent abnormal acid exposure of the esophagus and/or presence of weak acid reflux.

In a large recent study including SSc patients with GERD, PPI partial response was observed in 53.9% [54]. These nonresponders to PPI SSc patients showed on pHmonitoring higher acid exposure times (AETs) than non-SSc patients matched for PPI formulation and dose GERD (61% vs 18%, respectively), significantly longer AETs, longer median bolus clearance, lower nocturnal impedance values but lack of increased reflux episodes[55].

Previous studies have shown that abnormal pH monitoring is seen in up to 85% of SSc patients without treatment [48,56,57]. Moreover, a study including GERD patients with or without SSc, revealed that SSc patients tend to have worse GERD symptoms and more severe reflux esophagitis [58].

Computed tomography scan

Thoracic computed tomography scan can access the existence of pulmonary involvement. It is of special interest that critical information about esophageal involvement could also be drained. It is known that esophageal dilation in computed tomography will be associated to symptomatic esophageal disease in patients with SSc [59]. A study evaluating esophageal abnormalities in SSc patients found that in highresolution computed tomography with radionuclide transit $a \ge 9$ mm threshold for esophageal dilation could accurately predict esophageal dysmotility with a sensitivity of 83.1% and a specificity of 94.1%[60].

MANAGEMENT

General principles

Treatment of esophageal involvement in SSc is supportive as no disease specific therapy is available. Treatment focuses on alleviation of each patient's specific symptoms.

Medical treatment

The management of GERD includes, at the first stage of the disease, dietary and lifestyle interventions such as avoidance of aggravating foods, having meals within three hours before bedtime, head of bed elevation, weight reduction, smoking cessation, alcohol drinking reduction and small and frequent meal consumption. However, the mainstream treatment option includes drug administration, mainly PPIs [61,62]. PPIs should be administered 30-60 min before a meal, beginning initially once daily before breakfast. Even though studies using once daily PPIs dosage in patients with SSc showed symptom alleviation and healing of esophagitis in a percentage of patients, a substantial number of patients were characterized as partial or nonresponders[63-66]. Thus, in such patients, adjustment to twice daily dosing should be considered. According to recent data, the response rate of GERD treatment among SSc patients was less than 50% after taking omeprazole 20 mg twice daily for 4 wk, a percentage significantly lower than that reported for patients without SSc[54,55,67-69]. Authors found that the presence of dysphagia was the only predictor of PPI-partial response GERD in those patients[54].

In another study among patients with SSc and GERD treated with high PPI dose, 60% of those still had a total AET \geq 4.5%, and 55% had an AET > 6% when evaluated with pH-impedance study[55]. However, the accurate strategy for the treatment of partial or nonresponders to PPIs is not fully elucidated. Vonoprazan is a first-in-class PPI that unlike conventional PPIs functions in the absence of an acidic environment and leads to a more consistent acid suppression compared to other PPIs. Thus, it could be an alternative therapeutic option as it has been proven efficient in the treatment of GERD refractory to traditional PPIs[70,71]. Indeed, a recent study stated that Vonoprazan was efficient in patients with SSc and refractory GERD. Vonoprazan was given to 15 patients among whom 14/15 suffered from PPI-refractory GERD, and the authors found that vonoprazan in the dose of 20 mg offered symptom relief in 83.4% of patients and achieved long term symptom control (≥ 2 years)[72].

PPIs act as an acid suppressor, but it has no effect on esophageal motility and/or LES pressure, which could be a putative GERD mechanism in SSc. So, esophageal dysmotility might explain the fact of the higher prevalence of PPI-partial response GERD in SSc compared to non-SSc patients. Prokinetic agents have a mechanism of action on the esophageal motility by facilitating esophageal motility and increasing LES pressure [73,74]. Therefore, it is rational to hypothesize that they can improve reflux control in patients who have failed PPI treatment. Foocharoen et al[67] investigated the role of add-on therapy with either domperidone or algycon in SSc patients. The authors enrolled SSc patients, 59.4% of whom had a partial response after an initial 4 wk trial of omeprazole 20 mg twice a day. Then they were randomly assigned to take omeprazole plus either domperidone or algycon for 4 wk. Only 13% of patients in the domperidone group and 22% of patients in the algycon groups did not respond to the additional therapy. Moreover, quality of life was improved in SSc patients treated with domperidone or aglycone^[67]. Therefore, the authors suggested that in

WJCC | https://www.wjgnet.com

Table 1 Studies assessing per os pharmacotherapy in patients with systemic sclerosis and esophageal involvement

Ref.	Patients (<i>n</i>)	Treatment	Treatment duration	Response to treatment
Hendel <i>et al</i> [63], 1992	25	Omeprazole 20-80 mg (adjustments of the maintenance dose of omeprazole	Mean time of 40 mo	Healing of esophagitis in almost 50% patients
Marie <i>et al</i> [<mark>34</mark>], 2006	133	Omeprazole 20-40 mg	Mean duration of 6 yr from treatment	Heartburn (<i>n</i> = 103; 77.4%), dysphagia (<i>n</i> = 19; 14.3%)
			initiation	Improvement of heartburn: (77.4%)
				Improvement of dysphagia: (14.3%)
				Esophagitis healing: 32.3%
Pakozdi <i>et al</i> [<mark>64</mark>], 2009	21	Lansoprazole 30 mg	12 mo	Short-term (6 mo) efficacy in decreasing frequency of symptoms in
				No long-term benefit
Muro <i>et al</i> [<mark>65</mark>], 2009	84	Rabeprazole 10 mg	8 wk	Effective for the symptom control
Foocharoen <i>et al</i>	148	Omeprazole 20 bid	4 wk	40.1% responded to omeprazole
[67], 2017	88	Omeprazole + domperidone (<i>n</i> = 38)/aglycon (<i>n</i> = 37)		Domperidone and algycon are equally effective treatments when used in combination with omeprazole
				17% of patients were nonresponsive
Stern <i>et al</i> [55],	55], 38	Twice daily different PPIs (rabeprazole, dexlansoprazole, esomeprazole, omeprazole, lansoprazole, pantoprazole)-variable dosing schedules	Treatment duration not given	Despite PPIs high-dose:
2018				61% of SSc patients had an AET $\geq4.5\%$
				55% of SSc patients had an AET > 6%
Foocharoen <i>et al</i> [54], 2020	243	Omeprazole 20 mg bid	4 wk	PPI-partial response: 53.9%
Tabuchi <i>et al</i>	15 (14/15 with	Vonoprazan 10-20 mg	> 2 yr	Symptom relief in 83.4%
[<mark>72</mark>], 2021	PPI-partial response)			Long-term symptom control in 87%
Johnson <i>et al</i> [77], 1987	12	Metoclopramide 10 mg X 2	1 wk from treatment initiation	Significant reduction of reflux events: in 91.6%
				All but 2 patients attained LES pressure values that fell in the normal range after metoclopramide treatment
Karamanolis <i>et</i> al[<mark>84]</mark> , 2016	22	Buspirone 20 mg	4 wk	Improvement in the severity of heartburn: 70%
				Improvement in the severity of regurgitation in 58%
				Improvement in dysphagia in 50% and in chest pain in 25%

AET: Acid exposure times; bid: Twice a day; LES: Lower esophageal sphincter; PPIs: Proton pump inhibitors; SSc: Systemic sclerosis.

PPI-partial responder patients, a trial of adding domperidone to PPIs can be administered, whereas in patients suffering from side effects due to prokinetic administration, algycon in combination with PPI can be a favorable therapeutic option.

Besides domperidone, other prokinetic drugs, such as metoclopramide, erythromycin and cisapride, have also been evaluated among SSc patients. It is thought that they could contribute to GERD control through increasing LES tone and gastric emptying, and they might also improve symptoms originating from esophageal motility disturbance such as dysphagia[33,75-77]. Unfortunately, there are scarce data about their use in SSc patients even if they are frequently used in clinical practice[78]. Moreover, their chronic use is withheld due to additional toxicities[79] (Table 1).

In patients with SSc, stricture formation, due to GERD, may occur in up to 29% of them[25], and in such cases esophageal balloon dilatation is advised[80]. It is of special note for the clinician to keep in mind that dysphagia in patients with SSc may also be due to candida esophagitis, as fungal cultures from the esophagus of patients with SSc

WJCC | https://www.wjgnet.com

were positive in 38%[26]. In cases of esophageal candidiasis, systemic antifungal therapy is always required. The recommended treatment in patients who can tolerate oral therapy is oral fluconazole 200-400 mg (3-6 mg/kg) daily or intravenous fluconazole 400 mg (6 mg/kg) daily in patients who cannot tolerate oral treatment for 14-21 d[81].

Novel therapies

Studies in healthy volunteers evaluating the effect of buspirone, an orally available 5hydroxytryptamine receptor agonist, in LES have proven its ability to increase LES residual pressure and increase esophageal motility[82]. This beneficial effect has been evaluated in a pioneer study in patients with SSc and esophageal involvement[83]. According to the study findings, a single 10 mg buspirone dose led to a significant increase in the LES resting pressure in up to 80% of SSc patients and showed a trend to increase the amplitude of esophageal body motility. Based on these findings, a 4 wk open-label trial of 20 mg of oral buspirone in 22 SSc patients with esophageal involvement indeed verified the beneficial effect of buspirone in increasing the LES resting pressure. This effect was translated to an improvement in patient symptom severity of heartburn and regurgitation, though no improvement in chest pain or dysphagia was observed[84].

Surgery

Generally, in patients with well documented long-standing GERD, antireflux surgery is an option[61]. Unfortunately, Nissen fundoplication results were suboptimal in SSc patients, possibly due to concomitant esophageal dysmotility. Even though amelioration in the severity of reflux symptoms was observed, postoperative dysphagia was observed in up to 71% of patients[85-87]. However, a recent study including SSc patients showed improved long-term (mean follow-up of 36 wk) postoperative results after minimally invasive fundoplication, such as Toupet and Dor. The authors reported that 41% of patients had no symptoms, 56% had reduced symptoms, and persistent dysphagia was noted in only 11.7% of patients[88].

Besides fundoplication, Roux-en-Y gastric bypass (RYGBP) has also been evaluated as a viable surgical alternative for GERD patients with complete aperistalsis. It is thought that the small gastric pouch has minimal acid content, as the acid-producing mucosa of the fundus is excluded, and the roux limb prevents biliary reflux into the pouch and the esophagus. In an interesting study comparing RYGBP vs fundoplication, the authors found a statistically lower incidence and severity of postoperative dysphagia in the RYGBP group as well as an improved reflux control[89]. Adding to this study, Yan et al[90] showed GERD symptom resolution or improvement in all patients with RYGBP, while only 50% of the fundoplication group reported partial improvement[90]. It should be mentioned that RYGBP predisposes to bacterial overgrowth, which especially in patients with SSc and possible impaired intestinal motility may further deteriorate a patient's clinical status. Other surgical alternatives tested in patients with SSc include biliary/duodenal diversion and esophagectomy with either gastric or colon with variable success and increased mortality[91].

CONCLUSION

Esophageal involvement is very common among patients with SSc, grossly affecting patient quality of life. Upper GI endoscopy is the primary and most often used diagnostic modality evaluating patient symptoms and possible complications, while useful information can be drawn by esophageal HRM and/or pH impedance study, depending on patient symptoms. PPIs remain the cornerstone in esophageal involvement treatment, even if a significant percentage of patients partially or not fully respond to them. In such cases, a trial of prokinetic agents may alleviate patient symptoms, while promising data have arisen using buspirone, an orally available 5hydroxytryptamine 1A receptor agonist. Surgical treatments should be preserved for well documented, poorly responding to pharmacological modalities cases due to suboptimal results.

REFERENCES

1 McFarlane IM, Bhamra MS, Kreps A, Iqbal S, Al-Ani F, Saladini-Aponte C, Grant C, Singh S,

Awwal K, Koci K, Saperstein Y, Arroyo-Mercado FM, Laskar DB, Atluri P. Gastrointestinal Manifestations of Systemic Sclerosis. Rheumatology (Sunnyvale) 2018; 8 [PMID: 30057856 DOI: 10.4172/2161-1149.1000235

- 2 Barnes J, Mayes MD. Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers. Curr Opin Rheumatol 2012; 24: 165-170 [PMID: 22269658 DOI: 10.1097/BOR.0b013e32834ff2e8]
- Chifflot H, Fautrel B, Sordet C, Chatelus E, Sibilia J. Incidence and prevalence of systemic sclerosis: 3 a systematic literature review. Semin Arthritis Rheum 2008; 37: 223-235 [PMID: 17692364 DOI: 10.1016/j.semarthrit.2007.05.003]
- 4 Bergamasco A, Hartmann N, Wallace L, Verpillat P. Epidemiology of systemic sclerosis and systemic sclerosis-associated interstitial lung disease. Clin Epidemiol 2019; 11: 257-273 [PMID: 31114386 DOI: 10.2147/CLEP.S191418]
- 5 Ponge T, Bruley des Varannes S. [Digestive involvement of scleroderma]. Rev Prat 2002; 52: 1896-1900 [PMID: 12532866]
- Sjogren RW. Gastrointestinal motility disorders in scleroderma. Arthritis Rheum 1994; 37: 1265-6 1282 [PMID: 7945489 DOI: 10.1002/art.1780370902]
- 7 Ntoumazios SK, Voulgari PV, Potsis K, Koutis E, Tsifetaki N, Assimakopoulos DA. Esophageal involvement in scleroderma: gastroesophageal reflux, the common problem. Semin Arthritis Rheum 2006; 36: 173-181 [PMID: 17045629 DOI: 10.1016/j.semarthrit.2006.08.002]
- Carlson DA, Hinchcliff M, Pandolfino JE. Advances in the evaluation and management of 8 esophageal disease of systemic sclerosis. Curr Rheumatol Rep 2015; 17: 475 [PMID: 25475597 DOI: 10.1007/s11926-014-0475-v]
- Savarino E, Bazzica M, Zentilin P, Pohl D, Parodi A, Cittadini G, Negrini S, Indiveri F, Tutuian R, Savarino V, Ghio M. Gastroesophageal reflux and pulmonary fibrosis in scleroderma: a study using pH-impedance monitoring. Am J Respir Crit Care Med 2009; 179: 408-413 [PMID: 19096004 DOI: 10.1164/rccm.200808-1359OC
- 10 Lock G, Holstege A, Lang B, Schølmerich J. Gastrointestinal manifestations of progressive systemic sclerosis. Am J Gastroenterol 1997; 92: 763-771 [PMID: 9149182]
- 11 Denton CP, Khanna D. Systemic sclerosis. Lancet 2017; 390: 1685-1699 [PMID: 28413064 DOI: 10.1016/S0140-6736(17)30933-91
- Tutreault MP, Kahrilas P. GI Manifestations With a Focus on the Esophagus: Recent Progress in 12 Understanding Pathogenesis. Curr Rheumatol Rep 2019; 21: 42 [PMID: 31270707 DOI: 10.1007/s11926-019-0841-x]
- 13 Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G. Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum 2000; 43: 2550-2562 [PMID: 11083280 DOI: 10.1002/1529-0131(200011)43:11<2550::AID-ANR24>3.0.CO;2-H]
- 14 Kahaleh MB, Fan PS, Otsuka T. Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro. Clin Immunol 1999; 91: 188-195 [PMID: 10227811 DOI: 10.1006/clim.1999.4694]
- Nicola S, Rolla G, Bucca C, Geronazzo G, Ridolfi I, Ferraris A, Fusaro E, Peroni CL, Dughera L, 15 Brussino L. Gastric Juice Expression of Th-17 and T-Reg Related Cytokines in Scleroderma Esophageal Involvement. Cells 2020; 9 [PMID: 32947843 DOI: 10.3390/cells9092106]
- Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Schnyder B, Akira S, 16 Quesniaux VF, Lagente V, Ryffel B, Couillin I. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 2007; 117: 3786-3799 [PMID: 17992263 DOI: 10.1172/JCI32285]
- 17 Akgedik R, Akgedik S, Karamanlú H, Uysal S, Bozkurt B, Ozol D, Armutcu F, Yúldúrúm Z. Effect of resveratrol on treatment of bleomycin-induced pulmonary fibrosis in rats. Inflammation 2012; 35: 1732-1741 [PMID: 22707284 DOI: 10.1007/s10753-012-9491-0]
- Kantola AK, Ryynônen MJ, Lhota F, Keski-Oja J, Koli K. Independent regulation of short and long 18 forms of latent TGF-beta binding protein (LTBP)-4 in cultured fibroblasts and human tissues. J Cell *Physiol* 2010; **223**: 727-736 [PMID: 20175115 DOI: 10.1002/jcp.22082]
- Zilberberg L, Todorovic V, Dabovic B, Horiguchi M, Couroussi T, Sakai LY, Rifkin DB. Specificity 19 of latent TGF- β binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J Cell Physiol 2012; 227: 3828-3836 [PMID: 22495824 DOI: 10.1002/jcp.24094]
- 20 Lu J, Liu Q, Wang L, Tu W, Chu H, Ding W, Jiang S, Ma Y, Shi X, Pu W, Zhou X, Jin L, Wang J, Wu W. Increased expression of latent TGF-\beta-binding protein 4 affects the fibrotic process in scleroderma by TGF-β/SMAD signaling. Labor Investigat 2017; 97: 591-601 [DOI: 10.1038/Labinvest.2017.20]
- 21 Alastal Y, Hammad TA, Renno A, Khalil B, Pierre J, Kwaah B, Khuder SA, Nawras A. Gastrointestinal manifestations associated with systemic sclerosis: results from the nationwide inpatient sample. Ann Gastroenterol 2017; 30: 498-503 [PMID: 28845104 DOI: 10.20524/aog.2017.0171]
- 22 Braun-Moscovici Y, Brun R, Braun M. Systemic Sclerosis and the Gastrointestinal Tract-Clinical Approach. Rambam Maimonides Med J 2016; 7 [PMID: 27824553 DOI: 10.5041/RMMJ.10258]
- 23 Gyger G, Baron M. Systemic Sclerosis: Gastrointestinal Disease and Its Management. Rheum Dis Clin North Am 2015; 41: 459-473 [PMID: 26210129 DOI: 10.1016/j.rdc.2015.04.007]
- Lock G, Pfeifer M, Straub RH, Zeuner M, Lang B, Schølmerich J, Holstege A. Association of 24

esophageal dysfunction and pulmonary function impairment in systemic sclerosis. Am J Gastroenterol 1998; 93: 341-345 [PMID: 9517636 DOI: 10.1111/j.1572-0241.1998.00341.x]

- 25 Orringer MB, Dabich L, Zarafonetis CJ, Sloan H. Gastroesophageal reflux in esophageal scleroderma: diagnosis and implications. Ann Thorac Surg 1976; 22: 120-130 [PMID: 9916 DOI: 10.1016/s0003-4975(10)63972-0]
- Zamost BJ, Hirschberg J, Ippoliti AF, Furst DE, Clements PJ, Weinstein WM. Esophagitis in 26 scleroderma. Prevalence and risk factors. Gastroenterology 1987; 92: 421-428 [PMID: 3491774 DOI: 10.1016/0016-5085(87)90137-5]
- 27 Weston S, Thumshirn M, Wiste J, Camilleri M. Clinical and upper gastrointestinal motility features in systemic sclerosis and related disorders. Am J Gastroenterol 1998; 93: 1085-1089 [PMID: 9672335 DOI: 10.1111/j.1572-0241.1998.00334.x]
- Katzka DA, Reynolds JC, Saul SH, Plotkin A, Lang CA, Ouyang A, Jimenez S, Cohen S. Barrett's 28 metaplasia and adenocarcinoma of the esophagus in scleroderma. Am J Med 1987; 82: 46-52 [PMID: 3799692 DOI: 10.1016/0002-9343(87)90376-7]
- Segel MC, Campbell WL, Medsger TA Jr, Roumm AD. Systemic sclerosis (scleroderma) and 29 esophageal adenocarcinoma: Is increased patient screening necessary? Gastroenterology 1985; 89: 485-488 [PMID: 3926590 DOI: 10.1016/0016-5085(85)90440-8]
- 30 Bhalla M, Silver RM, Shepard JA, McLoud TC. Chest CT in patients with scleroderma: prevalence of asymptomatic esophageal dilatation and mediastinal lymphadenopathy. AJR Am J Roentgenol 1993; 161: 269-272 [PMID: 8333359 DOI: 10.2214/ajr.161.2.8333359]
- Thonhofer R, Siegel C, Trummer M, Graninger W. Early endoscopy in systemic sclerosis without gastrointestinal symptoms. Rheumatol Int 2012; 32: 165-168 [PMID: 20711592 DOI: 10.1007/s00296-010-1595-y]
- 32 Marie I, Dominique S, Levesque H, Ducrotti P, Denis P, Hellot MF, Courtois H. Esophageal involvement and pulmonary manifestations in systemic sclerosis. Arthritis Rheum 2001; 45: 346-354 [PMID: 11501722 DOI: 10.1002/1529-0131(200108)45:4<346::AID-ART347>3.0.CO;2-L]
- Johnson DA, Drane WE, Curran J, Cattau EL Jr, Ciarleglio C, Khan A, Cotelingam J, Benjamin SB. 33 Pulmonary disease in progressive systemic sclerosis. A complication of gastroesophageal reflux and occult aspiration? Arch Intern Med 1989; 149: 589-593 [PMID: 2919934]
- 34 Marie I, Ducrotte P, Denis P, Hellot MF, Levesque H. Oesophageal mucosal involvement in patients with systemic sclerosis receiving proton pump inhibitor therapy. Aliment Pharmacol Ther 2006; 24: 1593-1601 [PMID: 17206947 DOI: 10.1111/j.1365-2036.2006.03180.x]
- 35 Ebert EC. Esophageal disease in scleroderma. J Clin Gastroenterol 2006; 40: 769-775 [PMID: 17016130 DOI: 10.1097/01.mcg.0000225549.19127.90]
- Appel JZ 3rd, Lee SM, Hartwig MG, Li B, Hsieh CC, Cantu E 3rd, Yoon Y, Lin SS, Parker W, 36 Davis RD. Characterization of the innate immune response to chronic aspiration in a novel rodent model. Respir Res 2007; 8: 87 [PMID: 18042282 DOI: 10.1186/1465-9921-8-87]
- Richardson C, Agrawal R, Lee J, Almagor O, Nelson R, Varga J, Cuttica MJ, Dematte JD, Chang 37 RW, Hinchcliff ME. Esophageal dilatation and interstitial lung disease in systemic sclerosis: A crosssectional study. Semin Arthritis Rheum 2016; 46: 109-114 [PMID: 27033049 DOI: 10.1016/j.semarthrit.2016.02.004]
- Smith V, Scir0 CA, Talarico R, Airo P, Alexander T, Allanore Y, Bruni C, Codullo V, Dalm V, De Vries-Bouwstra J, Della Rossa A, Distler O, Galetti I, Launay D, Lepri G, Mathian A, Mouthon L, Ruaro B, Sulli A, Tincani A, Vandecasteele E, Vanhaecke A, Vanthuyne M, Van den Hoogen F, Van Vollenhoven R, Voskuvl AE, Zanatta E, Bombardieri S, Burmester G, Eurico FJ, Frank C, Hachulla E, Houssiau F, Mueller-Ladner U, Schneider M, van Laar JM, Vieira A, Cutolo M, Mosca M, Matucci-Cerinic M. Systemic sclerosis: state of the art on clinical practice guidelines. RMD Open 2018; 4: e000782 [PMID: 30402270 DOI: 10.1136/rmdopen-2018-000782]
- Lahcene M, Oumnia N, Matougui N, Boudjella M, Tebaibia A, Touchene B. Esophageal 39 involvement in scleroderma: clinical, endoscopic, and manometric features. ISRN Rheumatol 2011; 2011: 325826 [PMID: 22389793 DOI: 10.5402/2011/325826]
- 40 Petcu A, Ghib LJ, Grad SM, Popovici C, Rogojan L, Rednic NV, Rednic S. Upper gastrointestinal involvement in systemic sclerosis: Findings in a real-life setting. Exp Ther Med 2019; 18: 5095-5100 [PMID: 31798729 DOI: 10.3892/etm.2019.8125]
- Wipff J, Coriat R, Masciocchi M, Caramaschi P, Derk CT, Hachulla E, Riccieri V, Mouthon L, 41 Krasowska D, Ananyeva LP, Kahan A, Matucci-Cerinic M, Chaussade S, Allanore Y. Outcomes of Barrett's oesophagus related to systemic sclerosis: a 3-year EULAR Scleroderma Trials and Research prospective follow-up study. Rheumatology (Oxford) 2011; 50: 1440-1444 [PMID: 21415021 DOI: 10.1093/rheumatology/ker110]
- 42 Schutyser W, Cruyt L, Vulsteke JB, Lenaerts JL, De Langhe E. The role of high-resolution manometry in the assessment of upper gastrointestinal involvement in systemic sclerosis: a systematic review. Clin Rheumatol 2020; 39: 149-157 [PMID: 31709478 DOI: 10.1007/s10067-019-04794-w]
- Al-Amri SM. The pattern of esophageal manometry in progressive systemic sclerosis. Saudi Med J 43 2003; 24: 68-71 [PMID: 12590279]
- 44 Savarino E, Mei F, Parodi A, Ghio M, Furnari M, Gentile A, Berdini M, Di Sario A, Bendia E, Bonazzi P, Scarpellini E, Laterza L, Savarino V, Gasbarrini A. Gastrointestinal motility disorder assessment in systemic sclerosis. Rheumatology (Oxford) 2013; 52: 1095-1100 [PMID: 23382360 DOI: 10.1093/rheumatology/kes429]
- Crowell MD, Umar SB, Griffing WL, DiBaise JK, Lacy BE, Vela MF. Esophageal Motor 45

Abnormalities in Patients With Scleroderma: Heterogeneity, Risk Factors, and Effects on Quality of Life. Clin Gastroenterol Hepatol 2017; 15: 207-213. e1 [PMID: 27613260 DOI: 10.1016/j.cgh.2016.08.034]

- Ogliari C, Piazza O Sed N, Vecchi M. High Resolution Manometry in Scleroderma Patients. Clin 46 Gastroenterol Hepatol 2017; 15: 1640-1641 [PMID: 28552803 DOI: 10.1016/j.cgh.2017.05.030]
- Roman S, Hot A, Fabien N, Cordier JF, Miossec P, Ninet J, Mion F; Rıseau Schrodermie des 47 Hospices Civils de Lyon. Esophageal dysmotility associated with systemic sclerosis: a high-resolution manometry study. Dis Esophagus 2011; 24: 299-304 [PMID: 21166734 DOI: 10.1111/j.1442-2050.2010.01150.x]
- 48 Raja J, Ng CT, Sujau I, Chin KF, Sockalingam S. High-resolution oesophageal manometry and 24hour impedance-pH study in systemic sclerosis patients: association with clinical features, symptoms and severity. Clin Exp Rheumatol 2016; 34 Suppl 100: 115-121 [PMID: 26843456]
- Arana-Guajardo AC, Barrera-Torres G, Villarreal-Alarcon MA, Vega-Morales D, Esquivel-Valerio JA. Esophageal symptoms and their lack of association with high-resolution manometry in systemic sclerosis patients. Reumatol Clin 2019; 15: 165-169 [PMID: 29258795 DOI: 10.1016/j.reuma.2017.09.005]
- Kimmel JN, Carlson DA, Hinchcliff M, Carns MA, Aren KA, Lee J, Pandolfino JE. The association between systemic sclerosis disease manifestations and esophageal high-resolution manometry parameters. Neurogastroenterol Motil 2016; 28: 1157-1165 [PMID: 26921101 DOI: 10.1111/nmo.12813
- de Carlan M, Lescoat A, Brochard C, Coiffier G, Cazalets C, Ropert A, Jigo P. Association between 51 Clinical Manifestations of Systemic Sclerosis and Esophageal Dysmotility Assessed by High-Resolution Manometry. J Scler Rel Dis 2017; 2: 50-56 [DOI: 10.5301/jsrd.5000233]
- Abozaid HSM, Imam HMK, Abdelaziz MM, El-Hammady DH, Fathi NA, Furst DE. High-resolution 52 manometry compared with the University of California, Los Angeles Scleroderma Clinical Trials Consortium GIT 2.0 in Systemic Sclerosis. Semin Arthritis Rheum 2017; 47: 403-408 [PMID: 28624173 DOI: 10.1016/j.semarthrit.2017.05.005]
- 53 Vettori S, Tolone S, Capocotta D, Chieffo R, Giacco V, Valentini G, Docimo L. Esophageal highresolution impedance manometry alterations in asymptomatic patients with systemic sclerosis: prevalence, associations with disease features, and prognostic value. Clin Rheumatol 2018; 37: 1239-1247 [PMID: 29442260 DOI: 10.1007/s10067-018-4026-1]
- Foocharoen C, Chunlertrith K, Mairiang P, Mahakkanukrauh A, Suwannaroj S, Namvijit S, Wantha 54 O, Nanagara R. Prevalence and predictors of proton pump inhibitor partial response in gastroesophageal reflux disease in systemic sclerosis: a prospective study. Sci Rep 2020; 10: 769 [PMID: 31964957 DOI: 10.1038/s41598-020-57636-0]
- Stern EK, Carlson DA, Falmagne S, Hoffmann AD, Carns M, Pandolfino JE, Hinchcliff M, Brenner 55 DM. Abnormal esophageal acid exposure on high-dose proton pump inhibitor therapy is common in systemic sclerosis patients. Neurogastroenterol Motil 2018; 30 [PMID: 29110377 DOI: 10.1111/nmo.13247
- 56 Arif T, Masood Q, Singh J, Hassan I. Assessment of esophageal involvement in systemic sclerosis and morphea (localized scleroderma) by clinical, endoscopic, manometric and pH metric features: a prospective comparative hospital based study. BMC Gastroenterol 2015; 15: 24 [PMID: 25888470 DOI: 10.1186/s12876-015-0241-2]
- 57 Weber P, Ganser G, Frosch M, Roth J, Hólskamp G, Zimmer KP. Twenty-four hour intraesophageal pH monitoring in children and adolescents with scleroderma and mixed connective tissue disease. J Rheumatol 2000; 27: 2692-2695 [PMID: 11093455]
- Matsuda R, Yamamichi N, Shimamoto T, Sumida H, Takahashi Y, Minatsuki C, Kodashima S, Ono 58 S, Niimi K, Tsuji Y, Sakaguchi Y, Saito I, Kataoka Y, Asada-Hirayama I, Kakimoto H, Yakabi S, Takeuchi C, Matsumoto Y, Tamaki Z, Fujishiro M, Asano Y, Sato S, Koike K. Gastroesophageal Reflux Disease-Related Disorders of Systemic Sclerosis Based on the Analysis of 66 Patients. Digestion 2018; 98: 201-208 [PMID: 30045036 DOI: 10.1159/000489848]
- Karamanolis GP, Denaxas K, Panopoulos S, Bournia KV, Zorbala A, Kamberoglou D, Schizas D, 59 Ladas SD, Sfikakis PP. Severe oesophageal disease and its associations with systemic sclerosis. Clin Exp Rheumatol 2017; 35 Suppl 106: 82-85 [PMID: 28869413]
- Pitrez EH, Bredemeier M, Xavier RM, Capobianco KG, Restelli VG, Vieira MV, Ludwig DH, Brenol JC, Furtado AP, Fonseca LM, Gutfilen B. Oesophageal dysmotility in systemic sclerosis: comparison of HRCT and scintigraphy. Br J Radiol 2006; 79: 719-724 [PMID: 16885178 DOI: 10.1259/bir/170002051
- Katz PO, Gerson LB, Vela MF. Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol 2013; 108: 308-328; quiz 329 [PMID: 23419381 DOI: 10.1038/aig.2012.444]
- 62 Kahrilas PJ. Clinical practice. Gastroesophageal reflux disease. N Engl J Med 2008; 359: 1700-1707 [PMID: 18923172 DOI: 10.1056/NEJMcp0804684]
- Hendel L, Hage E, Hendel J, Stentoft P. Omeprazole in the long-term treatment of severe gastro-63 oesophageal reflux disease in patients with systemic sclerosis. Aliment Pharmacol Ther 1992; 6: 565-577 [PMID: 1420748 DOI: 10.1111/j.1365-2036.1992.tb00571.x]
- 64 Pakozdi A, Wilson H, Black CM, Denton CP. Does long term therapy with lansoprazole slow progression of oesophageal involvement in systemic sclerosis? Clin Exp Rheumatol 2009; 27: 5-8 [PMID: 19796554]

- Muro Y, Sugiura K, Nitta Y, Mitsuma T, Hoshino K, Usuda T, Hayashi K, Murase Y, Shimizu M, 65 Matsuo H. Scoring of reflux symptoms associated with scleroderma and the usefulness of rabeprazole. Clin Exp Rheumatol 2009; 27: 15-21 [PMID: 19796556]
- 66 Shreiner AB, Murray C, Denton C, Khanna D. Gastrointestinal Manifestations of Systemic Sclerosis. J Scleroderma Relat Disord 2016; 1: 247-256 [PMID: 28133631 DOI: 10.5301/jsrd.5000214]
- 67 Foocharoen C, Chunlertrith K, Mairiang P, Mahakkanukrauh A, Suwannaroj S, Namvijit S, Wantha O, Nanagara R. Effectiveness of add-on therapy with domperidone vs alginic acid in proton pump inhibitor partial response gastro-oesophageal reflux disease in systemic sclerosis: randomized placebo-controlled trial. Rheumatology (Oxford) 2017; 56: 214-222 [PMID: 27179107 DOI: 10.1093/rheumatology/kew216
- 68 Hussain ZH, Henderson EE, Maradey-Romerao C, George N, Fass R, Lacy BE. The Proton Pump Inhibitor Non-Responder: A Clinical Conundrum. Clin Transl Gastroenterol 2015; 6: e106 [PMID: 26270485 DOI: 10.1038/ctg.2015.321
- Kahrilas PJ, Howden CW, Hughes N. Response of regurgitation to proton pump inhibitor therapy in 69 clinical trials of gastroesophageal reflux disease. Am J Gastroenterol 2011; 106: 1419-1425; quiz 1426 [PMID: 21537361 DOI: 10.1038/ajg.2011.146]
- Hoshino S, Kawami N, Takenouchi N, Umezawa M, Hanada Y, Hoshikawa Y, Kawagoe T, Sano H, 70 Hoshihara Y, Nomura T, Iwakiri K. Efficacy of Vonoprazan for Proton Pump Inhibitor-Resistant Reflux Esophagitis. Digestion 2017; 95: 156-161 [PMID: 28190016 DOI: 10.1159/000456072]
- 71 Akazawa Y, Fukuda D, Fukuda Y. Vonoprazan-based therapy for Helicobacter pylori eradication: experience and clinical evidence. Therap Adv Gastroenterol 2016; 9: 845-852 [PMID: 27803739 DOI: 10.1177/1756283X16668093]
- Tabuchi M, Minami H, Akazawa Y, Ashida M, Hara T, Ichinose K, Kitayama M, Hashiguchi K, 72 Matsushima K, Yamaguchi N, Takeshima F, Kondo H, Kawakami A, Nakao K. Use of vonoprazan for management of systemic sclerosis-related gastroesophageal reflux disease. Biomed Rep 2021; 14: 25 [PMID: 33408859 DOI: 10.3892/br.2020.1401]
- 73 Ramirez-Mata M, Ibapez G, Alarcon-Segovia D. Stimulatory effect of metoclopramide on the esophagus and lower esophageal sphincter of patients of patients with PSS. Arthritis Rheum 1977; 20: 30-34 [PMID: 319806 DOI: 10.1002/art.1780200105]
- Di Martino N, Ingrosso M, Fei L, Maffettone V, Landolfi V, Del Genio A. [Behavior of the pressure 74 of the lower esophageal sphincter after intravenous administration of domperidone in normal subjects]. Minerva Med 1985; 76: 1411-1417 [PMID: 4022433]
- 75 Wehrmann T, Caspary WF. [Effect of cisapride on esophageal motility in healthy probands and patients with progressive systemic scleroderma]. Klin Wochenschr 1990; 68: 602-607 [PMID: 2198381 DOI: 10.1007/BF01660958]
- 76 Sallam H, McNearney TA, Chen JD. Systematic review: pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther 2006; 23: 691-712 [PMID: 16556171 DOI: 10.1111/j.1365-2036.2006.02804.x]
- 77 Johnson DA, Drane WE, Curran J, Benjamin SB, Chobanian SJ, Karvelis K, Cattau EL Jr. Metoclopramide response in patients with progressive systemic sclerosis. Effect on esophageal and gastric motility abnormalities. Arch Intern Med 1987; 147: 1597-1601 [PMID: 3632168]
- Nagaraja V, McMahan ZH, Getzug T, Khanna D. Management of gastrointestinal involvement in 78 scleroderma. Curr Treatm Opt Rheumatol 2015; 1: 82-105 [PMID: 26005632 DOI: 10.1007/s40674-014-0005-0
- 79 Tonini M, De Ponti F, Di Nucci A, Crema F. Review article: cardiac adverse effects of gastrointestinal prokinetics. Aliment Pharmacol Ther 1999; 13: 1585-1591 [PMID: 10594392 DOI: 10.1046/j.1365-2036.1999.00655.x
- 80 Hansi N, Thoua N, Carulli M, Chakravarty K, Lal S, Smyth A, Herrick A, Ogunbiyi O, Shaffer J, Mclaughlin J, Denton C, Ong V, Emmanuel AV, Murray CD. Consensus best practice pathway of the UK scleroderma study group: gastrointestinal manifestations of systemic sclerosis. Clin Exp Rheumatol 2014; 32: S-214 [PMID: 25372804]
- 81 Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62: e1-50 [PMID: 26679628 DOI: 10.1093/cid/civ933]
- 82 Blonski W, Vela MF, Freeman J, Sharma N, Castell DO. The effect of oral buspirone, pyridostigmine, and bethanechol on esophageal function evaluated with combined multichannel esophageal impedance-manometry in healthy volunteers. J Clin Gastroenterol 2009; 43: 253-260 [PMID: 18987553 DOI: 10.1097/MCG.0b013e318167b89d]
- 83 Karamanolis GP, Panopoulos S, Karlaftis A, Denaxas K, Kamberoglou D, Sfikakis PP, Ladas SD. Beneficial effect of the 5-HT1A receptor agonist buspirone on esophageal dysfunction associated with systemic sclerosis: A pilot study. United European Gastroenterol J 2015; 3: 266-271 [PMID: 26137301 DOI: 10.1177/2050640614560453]
- 84 Karamanolis GP, Panopoulos S, Denaxas K, Karlaftis A, Zorbala A, Kamberoglou D, Ladas SD, Sfikakis PP. The 5-HT1A receptor agonist buspirone improves esophageal motor function and symptoms in systemic sclerosis: a 4-week, open-label trial. Arthritis Res Ther 2016; 18: 195 [PMID: 27586891 DOI: 10.1186/s13075-016-1094-y]
- 85 Poirier NC, Taillefer R, Topart P, Duranceau A. Antireflux operations in patients with scleroderma. Ann Thorac Surg 1994; 58: 66-72; discussion 72 [PMID: 8037562 DOI:

10.1016/0003-4975(94)91073-1]

- Orringer MB, Orringer JS, Dabich L, Zarafonetis CJ. Combined Collis gastroplasty--fundoplication 86 operations for scleroderma reflux esophagitis. Surgery 1981; 90: 624-630 [PMID: 7281001]
- 87 Mansour KA, Malone CE. Surgery for scleroderma of the esophagus: a 12-year experience. Ann Thorac Surg 1988; 46: 513-514 [PMID: 3190323 DOI: 10.1016/s0003-4975(10)64687-5]
- Goldberg MB, Abbas AE, Smith MS, Parkman HP, Schey R, Dempsey DT. Minimally Invasive 88 Fundoplication Is Safe and Effective in Patients With Severe Esophageal Hypomotility. Innovations (Phila) 2016; 11: 396-399 [PMID: 27922988 DOI: 10.1097/IMI.00000000000318]
- 89 Kent MS, Luketich JD, Irshad K, Awais O, Alvelo-Rivera M, Churilla P, Fernando HC, Landreneau RJ. Comparison of surgical approaches to recalcitrant gastroesophageal reflux disease in the patient with scleroderma. Ann Thorac Surg 2007; 84: 1710-5; discussion 1715 [PMID: 17954091 DOI: 10.1016/j.athoracsur.2007.06.025]
- Yan J, Strong AT, Sharma G, Gabbard S, Thota P, Rodriguez J, Kroh M. Surgical management of 90 gastroesophageal reflux disease in patients with systemic sclerosis. Surg Endosc 2018; 32: 3855-3860 [PMID: 29435755 DOI: 10.1007/s00464-018-6115-2]
- Bakhos CT, Petrov RV, Parkman HP, Malik Z, Abbas AE. Role and safety of fundoplication in 91 esophageal disease and dysmotility syndromes. J Thorac Dis 2019; 11: S1610-S1617 [PMID: 31489228 DOI: 10.21037/jtd.2019.06.62]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

