World J Clin Cases 2021 July 26; 9(21): 5754-6177

Contents

Thrice Monthly Volume 9 Number 21 July 26, 2021

REVIEW

5754 Treatment strategies for hepatocellular carcinoma with extrahepatic metastasis Long HY, Huang TY, Xie XY, Long JT, Liu BX

MINIREVIEWS

- 5769 Prevention of hepatitis B reactivation in patients requiring chemotherapy and immunosuppressive therapy
- 5782 Research status on immunotherapy trials of gastric cancer Liang C, Wu HM, Yu WM, Chen W
- 5794 Therapeutic plasma exchange for hyperlipidemic pancreatitis: Current evidence and unmet needs Zheng CB, Zheng ZH, Zheng YP
- 5804 Essentials of thoracic outlet syndrome: A narrative review Chang MC, Kim DH

ORIGINAL ARTICLE

Case Control Study

5812 Soluble programmed death-1 is predictive of hepatitis B surface antigen loss in chronic hepatitis B patients after antiviral treatment

Tan N, Luo H, Kang Q, Pan JL, Cheng R, Xi HL, Chen HY, Han YF, yang YP, Xu XY

Retrospective Cohort Study

5822 Tunneled biopsy is an underutilised, simple, safe and efficient method for tissue acquisition from subepithelial tumours

Koutsoumpas A, Perera R, Melton A, Kuker J, Ghosh T, Braden B

Retrospective Study

- 5830 Macular ganglion cell complex injury in different stages of anterior ischemic optic neuropathy Zhang W, Sun XQ, Peng XY
- 5840 Value of refined care in patients with acute exacerbation of chronic obstructive pulmonary disease Na N, Guo SL, Zhang YY, Ye M, Zhang N, Wu GX, Ma LW
- 5850 Facilitators and barriers to colorectal cancer screening in an outpatient setting Samuel G, Kratzer M, Asagbra O, Kinderwater J, Poola S, Udom J, Lambert K, Mian M, Ali E
- 5860 Development and validation of a prognostic nomogram for colorectal cancer after surgery Li BW, Ma XY, Lai S, Sun X, Sun MJ, Chang B

Contents

Thrice Monthly Volume 9 Number 21 July 26, 2021

Observational Study

5873 Potential protein-phenotype correlation in three lipopolysaccharide-responsive beige-like anchor proteindeficient patients

Tang WJ, Hu WH, Huang Y, Wu BB, Peng XM, Zhai XW, Qian XW, Ye ZQ, Xia HJ, Wu J, Shi JR

5889 Quantification analysis of pleural line movement for the diagnosis of pneumothorax

Xiao R, Shao Q, Zhao N, Liu F, Qian KJ

Prospective Study

5900 Preprocedure ultrasound imaging combined with palpation technique in epidural labor analgesia Wu JP, Tang YZ, He LL, Zhao WX, An JX, Ni JX

Randomized Controlled Trial

Effects of perioperative rosuvastatin on postoperative delirium in elderly patients: A randomized, double-5909 blind, and placebo-controlled trial

Xu XQ, Luo JZ, Li XY, Tang HQ, Lu WH

SYSTEMATIC REVIEWS

5921 Pain assessment and management in the newborn: A systematized review

Garcia-Rodriguez MT, Bujan-Bravo S, Seijo-Bestilleiro R, Gonzalez-Martin C

META-ANALYSIS

5932 Fatigue prevalence in men treated for prostate cancer: A systematic review and meta-analysis Luo YH, Yang YW, Wu CF, Wang C, Li WJ, Zhang HC

CASE REPORT

- 5943 Diagnostic discrepancy between colposcopy and vaginoscopy: A case report Li Q, Zhang HW, Sui L, Hua KQ
- 5948 Contrast enhanced ultrasound in diagnosing liver lesion that spontaneously disappeared: A case report Wang ZD, Haitham S, Gong JP, Pen ZL
- 5955 COVID-19 patient with an incubation period of 27 d: A case report

Du X, Gao Y, Kang K, Chong Y, Zhang ML, Yang W, Wang CS, Meng XL, Fei DS, Dai QQ, Zhao MY

5963 Awake extracorporeal membrane oxygenation support for a critically ill COVID-19 patient: A case report Zhang JC, Li T

II

- 5972 Meigs syndrome with pleural effusion as initial manifestation: A case report Hou YY, Peng L, Zhou M
- 5980 Giant hemangioma of the caudate lobe of the liver with surgical treatment: A case report Wang XX, Dong BL, Wu B, Chen SY, He Y, Yang XJ

Contents

Thrice Monthly Volume 9 Number 21 July 26, 2021

5988 Anti-programmed cell death ligand 1-based immunotherapy in recurrent hepatocellular carcinoma with inferior vena cava tumor thrombus and metastasis: Three case reports

Liu SR, Yan Q, Lin HM, Shi GZ, Cao Y, Zeng H, Liu C, Zhang R

5999 Minimal deviation adenocarcinoma with elevated CA19-9: A case report

Dong Y, Lv Y, Guo J, Sun L

6005 Isolated fungus ball in a single cell of the left ethmoid roof: A case report

Zhou LQ, Li M, Li YQ, Wang YJ

6009 Rare case of brucellosis misdiagnosed as prostate carcinoma with lumbar vertebra metastasis: A case report

Yan JF, Zhou HY, Luo SF, Wang X, Yu JD

6017 Myeloid sarcoma of the colon as initial presentation in acute promyelocytic leukemia: A case report and review of the literature

Wang L, Cai DL, Lin N

6026 Primary follicular lymphoma in the renal pelvis: A rare case report

Shen XZ, Lin C, Liu F

6032 Rosai-Dorfman disease in the spleen of a pediatric patient: A case report

Ryu H, Hwang JY, Kim YW, Kim TU, Jang JY, Park SE, Yang EJ, Shin DH

6041 Relapsed/refractory classical Hodgkin lymphoma effectively treated with low-dose decitabine plus tislelizumab: A case report

Ding XS, Mi L, Song YQ, Liu WP, Yu H, Lin NJ, Zhu J

6049 Disseminated Fusarium bloodstream infection in a child with acute myeloid leukemia: A case report

Ning JJ, Li XM, Li SQ

Familial hemophagocytic lymphohistiocytosis type 2 in a female Chinese neonate: A case report and 6056

review of the literature

Bi SH, Jiang LL, Dai LY, Wang LL, Liu GH, Teng RJ

6067 Usefulness of metagenomic next-generation sequencing in adenovirus 7-induced acute respiratory distress

syndrome: A case report

Zhang XJ, Zheng JY, Li X, Liang YJ, Zhang ZD

6073 Neurogenic orthostatic hypotension with Parkinson's disease as a cause of syncope: A case report

Li Y, Wang M, Liu XL, Ren YF, Zhang WB

6081 SATB2-associated syndrome caused by a novel SATB2 mutation in a Chinese boy: A case report and

literature review

Zhu YY, Sun GL, Yang ZL

6091 Diagnosis and treatment discussion of congenital factor VII deficiency in pregnancy: A case report

Ш

Yang Y, Zeng YC, Rumende P, Wang CG, Chen Y

Contents

Thrice Monthly Volume 9 Number 21 July 26, 2021

Unusual immunohistochemical "null" pattern of four mismatch repair proteins in gastric cancer: A case 6102 report

Yue M, Liu JY, Liu YP

6110 Generalized periodontitis treated with periodontal, orthodontic, and prosthodontic therapy: A case report Kaku M, Matsuda S, Kubo T, Shimoe S, Tsuga K, Kurihara H, Tanimoto K

6125 Ligamentum flavum hematoma following a traffic accident: A case report

Yu D, Lee W, Chang MC

6130 Oral cyclophosphamide-induced posterior reversible encephalopathy syndrome in a patient with ANCAassociated vasculitis: A case report

Kim Y, Kwak J, Jung S, Lee S, Jang HN, Cho HS, Chang SH, Kim HJ

6138 Encapsulating peritoneal sclerosis in an AMA-M2 positive patient: A case report

Yin MY, Qian LJ, Xi LT, Yu YX, Shi YQ, Liu L, Xu CF

6145 Multidisciplinary diagnostic dilemma in differentiating Madelung's disease - the value of superb microvascular imaging technique: A case report

Seskute G, Dapkute A, Kausaite D, Strainiene S, Talijunas A, Butrimiene I

6155 Complicated course of biliary inflammatory myofibroblastic tumor mimicking hilar cholangiocarcinoma: A case report and literature review

Strainiene S, Sedleckaite K, Jarasunas J, Savlan I, Stanaitis J, Stundiene I, Strainys T, Liakina V, Valantinas J

6170 Fruquintinib beneficial in elderly patient with neoplastic pericardial effusion from rectal cancer: A case

ΙX

Zhang Y, Zou JY, Xu YY, He JN

Contents

Thrice Monthly Volume 9 Number 21 July 26, 2021

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Jae Gil Lee, MD, PhD, Professor, Surgeon, Department of Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea. jakii@yuhs.ac

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ji-Hong Liu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS

https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

July 26, 2021

COPYRIGHT

© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wignet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2021 July 26; 9(21): 6049-6055

DOI: 10.12998/wjcc.v9.i21.6049

ISSN 2307-8960 (online)

CASE REPORT

Disseminated Fusarium bloodstream infection in a child with acute myeloid leukemia: A case report

Jun-Jie Ning, Xue-Mei Li, Sheng-Qiu Li

ORCID number: Jun-Jie Ning 0000-0002-8555-5480; Xue-Mei Li 0000-0002-5994-903X; Sheng-Qiu Li 0000-0001-5333-9276.

Author contributions: Ning JJ was the patient's doctor, reviewed the literature, and contributed to drafting the manuscript; Li XM provided the plans for the treatment; Li SQ was the nurse in charge of the child and provided skin pictures of various periods; all authors issued final approval of the version to be submitted.

Informed consent statement:

Written informed consent was obtained from the patient for publication of this manuscript and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest to report.

CARE Checklist (2016) statement:

The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution

Jun-Jie Ning, Xue-Mei Li, Sheng-Qiu Li, Department of PICU, First People's Hospital of Zigong City, Zigong 643000, Sichuan Province, China

Corresponding author: Jun-Jie Ning, MD, Doctor, Department of PICU, First People's Hospital of Zigong City, No. 42 Yizhi Road, Shangyihao, Zigong 643000, Sichuan Province, China. nestlord@foxmail.com

Abstract

BACKGROUND

Disseminated Fusarium is rare in healthy children. Children with hematological tumors may have secondary fungal infections, including Fusarium infections, which are due to tumor bone marrow infiltration or prolonged bone marrow suppression after chemotherapy. Because of the lack of typical clinical manifestations and effective antifungal drugs, early diagnosis and treatment of the disease are difficult, and the prognosis is poor.

CASE SUMMARY

The patient in this case was a 13-year-old female child with rash and fever as the first symptoms. She had the characteristics of the four stages of skin that are typical of Fusarium infection. She was diagnosed with disseminated Fusarium infection through skin biopsy and blood culture and diagnosed with Fusarium solani infection based on the morphological characteristics of the blood culture. After treatment with liposome amphotericin B combined with voriconazole, the child recovered.

CONCLUSION

This case highlights that for children with secondary agranulocytosis after receiving chemotherapy for hematological malignancies, once typical abnormal skin damage is found, the possibility of Fusarium infection should be considered, and voriconazole alone or in combination with polyenes may be the most effective anti-Fusarium drugs. Amphotericin B, the traditional drug of disseminated Fusarium disease, has a high mortality rate, and it is not recommended to use it alone. Adequate neutrophil counts are essential for the treatment of disseminated Fusarium bloodstream infection.

Key Words: Fusarium; Liposomal amphotericin B; Voriconazole; Acute myeloid leukemia; Agranulocytosis; Case report

WJCC https://www.wjgnet.com

NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Unsolicited

manuscript

Specialty type: Medicine, research

and experimental

Country/Territory of origin: China

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

Received: February 22, 2021 Peer-review started: March 2, 2021 First decision: March 25, 2021 Revised: April 6, 2021 Accepted: May 25, 2021 Article in press: May 25, 2021 Published online: July 26, 2021

P-Reviewer: Niu J S-Editor: Gao CC L-Editor: Wang TQ P-Editor: Xing YX

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We present herein the case of a *Fusarium* infection female child with rash and fever as the first symptoms. She had the characteristics of the four stages of skin typical of Fusarium infection. She was diagnosed with disseminated Fusarium infection through blood culture. For children with secondary agranulocytosis after receiving chemotherapy for hematological malignancies, once typical abnormal skin damage is found, the possibility of Fusarium infection should be considered, and the key to treatment is early diagnosis, the reversal of immunosuppression, and the provision of the correct antifungal treatment as soon as possible.

Citation: Ning JJ, Li XM, Li SQ. Disseminated Fusarium bloodstream infection in a child with acute myeloid leukemia: A case report. World J Clin Cases 2021; 9(21): 6049-6055

URL: https://www.wjgnet.com/2307-8960/full/v9/i21/6049.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i21.6049

INTRODUCTION

Fusarium was discovered in 1958 and is a common soil mold. It was once considered to be pathogenic only in plants and to be able to cause devastating diseases in plants and crops[1]. However, Cho et al[2] first reported a case of disseminated Fusarium bloodstream infection in a child with acute myeloid leukemia in 1973 and found that Fusarium could also infect humans. With the increasing number of patients with low immune function, Fusarium is considered to be the second most common filamentous fungus that causes opportunistic infections after Aspergillus, and Fusarium infections are reported every year[3]. In this study, the clinical manifestations, diagnosis, and treatment of a case of disseminated Fusarium bloodstream infection in a child with acute myeloid leukemia are reported to provide a reference for future clinical treatment.

CASE PRESENTATION

Chief complaints

The patient, a 13-year-old Chinese girl, came to our hospital because she had a pale complexion for 1 mo.

History of present illness

One month prior to presentation, the child appeared pale, which gradually worsened. Laboratory examination indicated the following: White blood cell count (WBC) 1.54 × $10^{\circ}/L$, N% 7.9%, hemoglobin (Hb) 47 g/L, and platelets (PLT) $64 \times 10^{\circ}/L$. The results of bone marrow cell morphology, immunology, and cellular and molecular genetics (MICM typing) confirmed acute myeloid leukemia (type M1). Then, the patient received induction DA chemotherapy (daunorubicin for 3 d and cytarabine for 7 d).

History of past illness

The patient had an unremarkable previous medical history.

Personal and family history

The patient's personal and family history was nothing special.

6050

Physical examination

On the third day after induction chemotherapy, the child developed a high fever. Physical examination revealed maculopapules on the face, trunk, and extremities (Figure 1A). The rash was further aggravated, mainly on the trunk, with obvious tenderness, part of the rash showed central necrosis and obvious peripheral swelling (Figure 1B), and part of the rash manifested vesicular formations (Figure 1C). Subsequently, the rash further changed, and the vesicular lesions ruptured to form

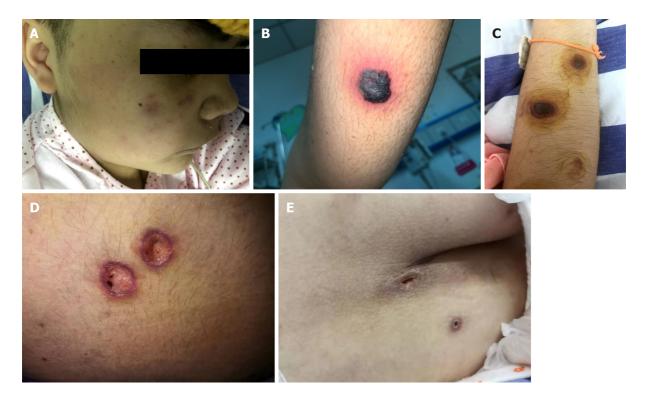


Figure 1 Skin lesions. A: The cheeks, limbs, and trunk began to show purple macules with mild itching; B: Papules protruded from the body surface, with black necrotic tissue visible in the center, peripheral redness and swelling, and accompanying pain; C: Herpes-like lesions with pus were seen in the center of the rash; D: Once the scabs fell off, the affected areas developed into deep ulcers; E: The ulcers gradually healed, leaving scars.

crater-like ulcers (Figure 1D).

Laboratory examinations

Myelosuppression occurred during chemotherapy, repeated full blood examination demonstrated persistent neutropenia (WBC 0.12 × 10°/L and absolute neutrophil count 0.01 × 109/L), and C-reactive protein was 296.5 mg/L. Two repeated fungal antigen tests [galactomannan (GM) and β-D-glucan] were negative.

Imaging examinations

Computed tomography (CT) examination of the chest and abdomen showed no involvement of deep organs.

Microbiological identification of the causative agent

The blood culture grew a fungus, which was ultimately identified as Fusarium solani by morphological characteristics (Figure 2). Fungi were seen on the biopsy of the exfoliated scab (Figure 3).

FINAL DIAGNOSIS

The final diagnosis of the presented case was disseminated Fusarium bloodstream infection.

TREATMENT

This child had febrile neutropenia, combined with skin rash as the main clinical manifestation. On the basis of imipenem and cilastatin sodium anti-infection, vancomycin was added to cover Gram-positive microorganisms. Fluconazole was used to prevent fungal infection, and granulocyte colony-stimulating factor was used to promote the recovery of hematopoietic function. However, the rash was further aggravated, and the child still suffered from repeated high fever and altered conscious state and feeding. The antibacterial drugs imipenem and cilastatin sodium and

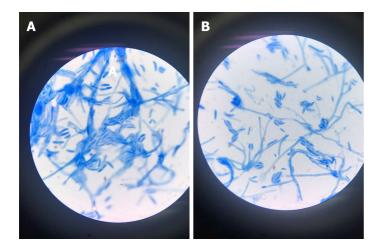


Figure 2 Microscopic images (1000 x) of Fusarium solani stained with lactophenol cotton blue. A: The macroconidia are stout and sickle-shaped; B: Septated hyphae with straight simple thin long phialide bearing oval microconidia in a "diphtheroidal" pattern.

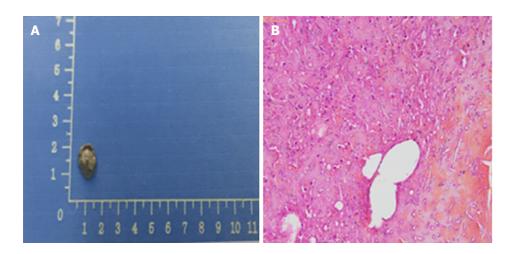


Figure 3 Fungi were seen on the biopsy of the exfoliated scab. A: Exfoliated scab examination; B: Fungi can be seen in the scab.

vancomycin continued to be given to treat infection. Considering the high drugresistance rate of Fusarium and the poor prognosis of patients with low immunity and disseminated Fusarium infection, fluconazole was changed to voriconazole and liposomal amphotericin B to ensure that at least one drug was effective (Figure 4). After the body temperature stabilized, the antibiotic regimen was downgraded to cefoperazone sodium and sulbactam sodium for continued prevention of infection, and the administration of liposomal amphotericin B combined with voriconazole antifungal treatment was continued for 4 wk.

OUTCOME AND FOLLOW-UP

The child had a fever for 14 d. After that, the body temperature was normal, and the necrotic rash gradually healed (Figure 1E). Routine blood re-examination showed the following: WBC 8.76 \times 109/L, neutrophil 7.26 \times 109/L, Hb 70 g/L, PLT 35 \times 109/L, and CRP 88.7 mg/L. However, before discharge, a 4 cm × 1.5 cm mass was palpable in the right calf of the child, and the tenderness was obvious. B-scan ultrasonography showed the formation of a local abscess, and CT examination of the chest and abdomen showed no involvement of deep organs. The discharge instructions were to continue posaconazole oral suspension combined with cefixime for anti-infection treatment for 2 wk. Eventually, the clinical symptoms of the child disappeared, the blood culture was negative on re-examination, and a clinical cure was achieved. There were no obvious adverse drug reactions during the treatment. However, the second cycle of chemotherapy was delayed because of the fungal infection. At present, the child is generally in good condition, and a second round of chemotherapy is planned.

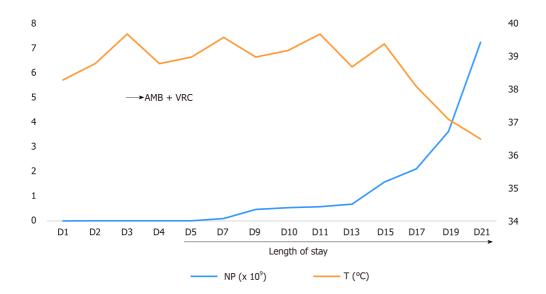


Figure 4 Changes in body temperature and neutrophils before and after medication (D5: The growth of Fusarium in blood culture). AMB: Amphotericin B; VRC: Voriconazole; NP: Neutrophil.

DISCUSSION

Fusarium is a saprophytic fungus with strong ecological adaptability. It is widely distributed in natural soils and plants and can even live in deserts and Arctic regions. It can be parasitic on animal and plant bodies or saprophytic in animal and plant debris. Some species can produce mycotoxins under certain circumstances and threaten the health of humans and animals[4]. A multicenter retrospective study indicated a significantly increased incidence of Fusarium infection in patients with immunosuppression and acute myeloid leukemia, and this type of infection ranks second only to Aspergillus infection[5]. For people with normal immunity, Fusarium is an opportunistic pathogen, mainly causing local infections [6], but for patients with hematological malignancies, aplastic anemia, and organ transplantation or undergoing chemotherapy, Fusarium can cause invasive fungal infections. Among these patients with low immune function, disseminated Fusarium disease accounts for 70% of Fusarium infections[7].

In immunocompromised hosts, the lack of a normal immune response can lead to vascular infiltration of Fusarium, leading to necrosis and diffuse infection, with skin involvement in 70% of cases of Fusarium infection[8]. The characteristic skin lesions may provide guidance for the early diagnosis of Fusarium infection. A typical Fusarium infection-induced rash can be divided into four periods: Stage I, red maculopapular rash; stage II, necrosis in the center of the rash; stage III, vesicular bullae changes secondary to necrosis; and stage IV, after the eruption, the vesicular lesions change to cratered lesions and eventually heal. Each period of skin change is 1-2 d apart[9]. The rash in this case showed typical four-stage manifestations. This study found that the four stages of Fusarium skin lesions can coexist, and in stage III, the vesicular lesions presented as thick-walled blisters with cloudy pus, and pain was obvious during the rash. Although the rash caused by Fusarium infection is specific, it still needs to be distinguished from the rash of patients with neutropenia, including leukemic deposits, viral infections, bacterial infections (ecthyma gangrenosum), and other fungi (Aspergillus, mucormycosis, and Candida) causing skin lesions.

Fusarium infection is difficult to cure and has a poor prognosis; the overall mortality is as high as 50%-70% [10], and there is no consensus on the management of invasive disseminated Fusarium infection in the case of neutropenia. At present, the key to successful treatment is early diagnosis, the reversal of immunosuppression, and the administration of the correct antifungal treatment as soon as possible; however, Fusarium has shown widespread resistance to antifungal drugs in vitro. In vitro studies suggest that fluconazole, itraconazole, and flucytosine are not effective against Fusarium, while ketoconazole, miconazole, terbinafine, and voriconazole have limited efficacy. Amphotericin B is considered to be the most effective anti-Fusarium drug in vitro. However, Nucci et al[7] showed that the mortality rate of amphotericin B in the treatment of disseminated Fusarium was as high as 70%. The current successful

6053

treatment often comes from cases of voriconazole, so voriconazole alone or in combination with polyenes has been increasingly used for Fusarium infections. Because of the high drug resistance rate of Fusarium, the use of a single drug for the treatment of drug-resistant fungi cannot achieve a satisfactory effect, but a major concern for combination therapy is the potential antagonistic effect between antifungal agents. Some studies have shown that liposomal amphotericin B combined with voriconazole has a synergistic effect in the treatment of drug-resistant fungi[11]. Ho et al[12] also pointed out that for patients with increased skin lesions or continuous positive blood culture in monotherapy, the combination of the two drugs for treatment could be considered.

Other studies have proposed that granulocyte recovery is the most important factor for successful treatment of invasive Fusarium infection. For patients with agranulocytosis, even if systemic antifungal drugs are given, the fatality rate is still close to 100% [13]. Therefore, colony-stimulating factor (G-CSF) and/or GM-CSF should be given to promote or maintain the recovery of hematopoietic function. Another finding suggests that surgical removal of focal lesions may result in better outcomes in patients with skin or disseminated infections[3].

CONCLUSION

For children with secondary agranulocytosis after receiving chemotherapy for hematological malignancies, once the typical abnormal skin damage is found, it should be alert to the possibility of Fusarium infection, and the key to treatment is early diagnosis, reversal of immunosuppression, and correct antifungal treatment as soon as possible. Voriconazole alone or in combination with polyenes may be the most effective anti-Fusarium drugs.

ACKNOWLEDGEMENTS

All authors thank all doctors and nurses of PICU.

REFERENCES

- Urbaniak C, Dadwal S, Bagramyan K, Venkateswaran K. Draft Genome Sequence of a Clinical Isolate of Fusarium fujikuroi Isolated from a Male Patient with Acute Myeloid Leukemia. Genome Announc 2018; 6 [PMID: 29930033 DOI: 10.1128/genomeA.00476-18]
- Cho CT, Vats TS, Lowman JT, Brandsberg JW, Tosh FE. Fusarium solani infection during treatment for acute leukemia. J Pediatr 1973; 83: 1028-1031 [PMID: 4518930 DOI: 10.1016/s0022-3476(73)80543-8]
- Muhammed M, Anagnostou T, Desalermos A, Kourkoumpetis TK, Carneiro HA, Glavis-Bloom J, Coleman JJ, Mylonakis E. Fusarium infection: report of 26 cases and review of 97 cases from the literature. Medicine (Baltimore) 2013; 92: 305-316 [PMID: 24145697 DOI: 10.1097/MD.000000000000000081
- Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li S, Haesebrouck F, Van Immerseel F, Croubels S. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins (Basel) 2014; 6: 430-452 [PMID: 24476707 DOI: 10.3390/toxins6020430]
- 5 Pagano L, Caira M, Candoni A, Offidani M, Fianchi L, Martino B, Pastore D, Picardi M, Bonini A, Chierichini A, Fanci R, Caramatti C, Invernizzi R, Mattei D, Mitra ME, Melillo L, Aversa F, Van Lint MT, Falcucci P, Valentini CG, Girmenia C, Nosari A. The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study. Haematologica 2006; 91: 1068-1075 [PMID: 16885047 DOI: 10.1016/j.exphem.2006.05.021]
- Musa MO, Al Eisa A, Halim M, Sahovic E, Gyger M, Chaudhri N, Al Mohareb F, Seth P, Aslam M, Aljurf M. The spectrum of Fusarium infection in immunocompromised patients with haematological malignancies and in non-immunocompromised patients: a single institution experience over 10 years. *Br J Haematol* 2000; **108**: 544-548 [PMID: 10759712 DOI: 10.1046/j.1365-2141.2000.01856.x]
- Nucci M, Marr KA, Queiroz-Telles F, Martins CA, Trabasso P, Costa S, Voltarelli JC, Colombo AL, Imhof A, Pasquini R, Maiolino A, Souza CA, Anaissie E. Fusarium infection in hematopoietic stem cell transplant recipients. Clin Infect Dis 2004; 38: 1237-1242 [PMID: 15127334 DOI: 10.1086/383319]
- Boutati EI, Anaissie EJ. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: ten years' experience at a cancer center and implications for management. Blood 1997; 90: 999-1008 [PMID: 9242529 DOI: 10.1016/S0951-8320(97)00023-9]

- Nucci M, Anaissie E. Cutaneous infection by Fusarium species in healthy and immunocompromised hosts: implications for diagnosis and management. Clin Infect Dis 2002; 35: 909-920 [PMID: 12355377 DOI: 10.1086/342328]
- 10 Nambiar P, Cober E, Johnson L, Brizendine KD. Fatal Fusarium infection manifesting as osteomyelitis following previous treatment with amphotericin B in a multi-visceral transplant: Case report and review of Fusarium infections in solid organ transplantation. Transpl Infect Dis 2018; 20: e12872 [PMID: 29512240 DOI: 10.1111/tid.12872]
- Martin-Vicente A, Guarro J, Capilla J. Does a triple combination have better activity than double combinations against multiresistant fungi? Experimental in vitro evaluation. 49: 422-426 [PMID: 28257903 DOI: 10.1016/j.ijantimicag.2016.12.015]
- Ho DY, Lee JD, Rosso F, Montoya JG. Treating disseminated fusariosis: amphotericin B, voriconazole or both? Mycoses 2007; 50: 227-231 [PMID: 17472622 DOI: 10.1111/j.1439-0507.2006.01346.x]
- 13 Nucci M, Anaissie E. Fusarium infections in immunocompromised patients. Clin Microbiol Rev 2007; **20**: 695-704 [PMID: 17934079 DOI: 10.1128/CMR.00014-07]

6055

Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

Telephone: +1-925-3991568

E-mail: bpgoffice@wjgnet.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

