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Abstract
Skin wound healing is a complex biological process. Mesenchymal stem cells 
(MSCs) play an important role in skin wound repair due to their multidirectional 
differentiation potential, hematopoietic support, promotion of stem cell 
implantation, self-replication, and immune regulation. Exosomes are vesicles with 
diameters of 40-100 nm that contain nucleic acids, proteins, and lipids and often 
act as mediators of cell-to-cell communication. Currently, many clinical scientists 
have carried out cell-free therapy for skin wounds, especially chronic wounds, 
using exosomes derived from MSCs. This review focuses on the latest research 
progress on the mechanisms of action associated with the treatment of wound 
healing with exosomes derived from different MSCs, the latest research progress 
on the combination of exosomes and other biological or nonbiological factors for 
the treatment of chronic skin wounds, and the new prospects and development 
goals of cell-free therapy.

Key Words: Mesenchymal stem cells; Exosomes; Mesenchymal stem cell-exosomes; 
Wound healing; Therapeutics
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Core Tip: We have mainly sorted out the reported mechanisms by which different 
mesenchymal stem cells (MSC)-derived exosomes play a promoting role in the 
hemostatic stage, inflammatory stage, proliferative stage, and remodeling stage of skin 
wound healing. The clinical prospect of MSC-exosomes as a cell-free therapy, such as 
the addition of carriers, combination of drugs, combined physical treatment, and 
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INTRODUCTION
Skin wound healing is a complex biological process that includes cell proliferation, 
differentiation, epithelization, migration, and matrix synthesis and deposition. 
Mesenchymal stem cells (MSCs) are important members of the stem cell family and 
come from many sources, such as adipose tissue, dental pulp, placenta, amniotic fluid, 
and umbilical cord blood[1]; these cells have the common characteristics of self-
replication and multidirectional differentiation. The mechanism of action of stem cell 
therapy has been demonstrated to primarily involve paracrine actions mediated by 
stem cell secretion factors[2,3]. It has been reported that exosomes play a major 
paracrine role among certain secretory bodies associated with stem cells[3-5]. The 
small vesicles formed by reverse budding are called exosomes after they are released 
from cells[6], and these vesicles contain nucleic acids, proteins, and lipids and often 
serve as mediators of communication between cells. Currently, many clinical scientists 
have carried out research on these small exosomes. The commercial use of cell-free 
therapy based on exosomes has already begun[7-9]. In fact, in various disease models, 
including cardiovascular disease, respiratory disease, liver disease, kidney disease, 
nerve disease, musculoskeletal disease, eye disease, skin diseases, and cancer, MSC-
derived exosomes have been used as cell-free substitutes for MSCs[4,10-13]. In the 
field of skin wound healing, researchers have attempted to explore the mechanism by 
which exosomes promote wound healing while developing cell-free therapy to 
promote the healing of normal skin wounds and chronic refractory wounds. 
Researchers have used different exosomes from MSCs to study the four stages of 
wound healing (hemostasis, inflammation, proliferation, and remodeling) from 
different angles and have made good progress.

BIOGENESIS AND BIOLOGICAL CHARACTERISTICS OF MSC-
EXOSOMES
MSCs are described as pluripotent nonhematopoietic adult stem cells that express the 
surface markers CD73, CD90, and CD105 but do not express CD14, CD34, or CD45[1]. 
MSCs were first discovered by Freeden Stein in the 1960s through studies of bone 
marrow[14]. MSCs can also be isolated from other adult tissues, such as adipose tissue, 
dental pulp, placenta, amniotic fluid, umbilical cord blood, Wharton’s jelly[1], and 
even the brain, spleen, liver, kidney, lung, thymus, and pancreas.

In 1983, the secretion of extracellular vesicles (EVs) was identified during the 
maturation of reticulocytes[15]. EVs are a general term that is currently used to refer to 
all secreted membrane vesicles. However, these vesicles are highly heterogeneous and 
are cell-derived membrane-bound structures secreted by various cell types, including 
T cells, B cells, dendritic cells, platelets, mast cells, epithelial cells, endothelial cells, 
neurons, cancer cells, oligodendrocytes, Schwann cells, embryonic cells, and MSCs[16].

EVs, including exosomes, microvesicles, and apoptotic bodies[17-19], can be found 
in physiological fluids such as normal urine, blood, bronchial lavage fluid, breast milk, 
saliva, cerebrospinal fluid, amniotic fluid, synovial fluid, and malignant ascites. 
Exosomes play a relatively major role among EVs[15,16].

Exosomes are 40-100 nm diameter membranous vesicles of endocytic origin that are 
released by a variety of cell types into the extracellular space[20]. Exosomes were first 
reported in 1983 by Johnstone and colleagues while culturing reticulocytes. Inward 
budding of endosomal membranes results in the progressive accumulation of 
intraluminal vesicles (ILVs) within large multivesicular bodies (MVBs). Transmem-
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brane proteins are incorporated into the invaginating membrane, while cytosolic 
components are engulfed within ILVs[21].

Part of the MVB is degraded after entering the lysosome; the remaining part sags 
inward again to form small granular vesicles by fusing with the plasma membrane 
and then releasing these vesicles into the extracellular environment. These vesicles that 
are released from the cell are called exosomes[6].

The biological characteristics of exosomes are mainly reflected in three aspects. First, 
exosomes function to transport material and transmit information. As a component of 
the intercellular microenvironment, exosomes regulate cell-to-cell communication by 
carrying a diverse array of signaling molecules, including lipids, proteins, and nucleic 
acids. Studies have shown that intercellular communication appeared during the early 
stage of evolution and could influence the behavior of target cells in many ways[22]. 
After the exosomes are absorbed by the target cells, the components such as lipids, 
proteins, mRNA, and microRNAs in the exosomes can affect the modification and 
positioning of proteins by changing the transcription and translation procedures, and 
ultimately regulate the cell phenotype and function of the receptor cells by regulating 
signal cascade pathways and key enzyme reactions to affect cell self-regulation, as well 
as directly participating in various physicochemical reactions in cells. Second, 
exosomes act as tools for transporting and removing components from cells. In 
addition, exosomes are also involved in immunoregulation. In vitro experiments have 
shown that exosomes can inhibit the proliferation and differentiation of T cells and 
reduce the release of IFN-γ from T cells[23].

PHYSIOLOGICAL AND PATHOLOGICAL PROCESSES OF WOUND 
HEALING
Normal cutaneous wound healing
The normal cutaneous wound healing process includes four stages: Hemostasis, 
inflammation, proliferation, and remodeling[24].

Hemostasis occurs immediately after an injury. Vasoconstriction and platelet 
aggregation proceed simultaneously. A blood clot covering the wound will form at the 
wound site. This clot not only reduces blood loss but also provides a scaffold-like 
structure for the migration of resident skin cells and immune cells[25]. Additionally, 
platelets in blood clots secrete or release various platelet-specific proteins; growth 
factors; adhesion molecules; fibrinogen and thrombin; pro- and antiangiogenic factors; 
and cytokines/chemokines such as NAP-2 and platelet-derived SDF-1α[26-28]. 
Subsequently, neutrophils, macrophages, fibroblasts, endothelial cells, smooth muscle 
cells, and circulating BMSCs can be induced by these secreted molecules to migrate to 
the wound site and become activated.

Inflammation is driven by secreted chemokines/cytokines, bacterial byproducts, 
and platelet-derived mediators. After vascular permeability increased, monocytes/ 
macrophages and neutrophils gradually infiltrated the wound surface. The cells not 
only kill bacteria but also remove debris and damaged matrix proteins[29]. After 
reaching the wound, neutrophils release proteases such as MMP, ROS, growth factors, 
and antimicrobial peptides, while monocytes arrive within 24 hours and transform 
into M1 macrophages. Lymphocytes are the last inflammatory cells that are attracted 
to the wound site. Among them, γδ+ T cells can participate in the growth and survival 
of fibroblasts, immune cells, and keratinocytes by producing mediators such as IGF-1, 
FGFs, or KGFs. αβ+ T cells are also present in this inflammatory stage and have an 
important effect on pathogenic microorganisms[26,30,31].

In the later stage of inflammation, M2 macrophages transform from M1 
macrophages or monocytes. On the one hand, the release of IL-10, VEGF, PDGF, FGFs, 
and IGF-1 by M2 macrophages plays a role in inducing proliferation, cell migration, 
and matrix formation. On the other hand, these cells also produce TIMP1 to counteract 
MMPs[32].

The focus of the proliferation phase is the development of granulation tissue, which 
covering the exposed wound surface while helps to restore the vascular network[33]. 
At this stage, fibroblasts can play a role in reducing the interstitial space by depositing 
a large amount of ECM. This process is affected by cytokines and growth factors, and 
the regulation of these factors can also induce the release of additional cytokines such 
as VEGF, FGFs, IGFs, IFNs, and HGF[24,28,34,35]. In addition, keratinocytes also 
release growth factors. Keratinocytes proliferate and migrate to facilitate wound 
coverage, form layers and differentiate, ultimately achieving the effect of rebuilding 
the epidermal barrier of the skin[24].
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Remodeling is the final stage and is characterized by a gradual decrease in cells and 
blood vessels[29]. Fibroblasts are the main factors at this stage, and their main role is to 
increase the amount of collagen I and other extracellular matrix (ECM) components, 
while the role of MMPs is to decompose the disordered collagen that was used as a 
template, similar to the more common collagen III[24,36,37]. The decomposition of 
granulation tissue and the formation of scars are driven by a variety of MMPs and 
their inhibitors. Any disturbance in the balance of matrix metalloproteinases and their 
inhibitors can trigger the development of hypertrophic scars or the formation of 
chronic wounds.

Chronic wound healing
When tissue repair is ineffective, the skin may suffer from ulcerative injuries, such as 
venous ulcers in the lower limbs, pressure ulcers, and diabetic foot ulcers[30]. 
Although there is widespread controversy, wounds lasting more than 3 mo are 
generally considered chronic wounds[38].

Persistent inflammation is an important feature of chronic wounds, which manifests 
as dysregulated cytokine/growth factor levels and/or increased protease activity, 
impaired angiogenesis, and difficult re-epithelialization of the wound[38]. At the 
cellular level, many disorders occur in neutrophils and macrophages in chronic 
wounds. Neutrophils show phenotypic changes, reduced infiltration and migration 
across endothelial cells, and stay in the wound for longer periods of time. In addition, 
chronic wounds also showed reduced induction of the M2 macrophage profile and 
reduced antibacterial activity[39,40]. The function of macrophages in chronic wounds 
is also disturbed and may cause abnormal repair. This effect is specifically reflected in 
the uncontrolled production of inflammatory mediators and growth factors by 
macrophages, as well as the imbalance in the M1:M2 profile ratio. There is also 
communication failure between macrophages and other crucial participants (including 
fibroblasts, epithelial cells, endothelial cells, and stem or tissue progenitor cells)[41].

CUTANEOUS WOUND HEALING BY MSC-EXOSOMES
According to the existing literature, MSC-exosomes or MSC-EVs can accelerate wound 
healing at various phases of wound healing, and even have the ability of improving 
scars (Table 1).

Hemostasis phase
During the initial hemostatic stage of wound healing, the physiological mechanism for 
restoring skin barrier function mainly involves reducing blood loss through vasocon-
striction and platelet aggregation in blood clots. As mentioned previously, platelets in 
blood clots can induce the migration of a series of cells to the wound site by releasing 
specific proteins. To date, there is no direct evidence that MSC-derived exosomes are 
involved in hemostasis or blood clotting. According to reports, human umbilical cord 
(hUC)-MSC-EVs can induce blood coagulation in vitro[42]. This result indicates that 
MSC-derived exosomes may have potential benefits in the coagulation process of 
wound healing, but further studies are needed to analyze the role of MSC-EVs or 
MSC-derived exosomes in the coagulation process under healthy or diseased 
conditions.

Inflammatory phase
The inflammatory stage is very important in the process of skin repair. As mentioned 
previously, this stage mainly relies on the infiltration of neutrophils and monocytes/ 
macrophages at the wound site to complete tasks such as killing bacteria and 
removing debris. In late inflammation, with the release of M2-type macrophages and 
other mediators, wound healing transitions from the inflammatory phase to the prolif-
erative phase, which is a critical step during normal wound healing[43]. However, 
studies have shown that prolonged inflammation can lead to excessive scarring of the 
wound[37], mainly in burns and other chronic wounds[44,45]. Based on this 
mechanism in the inflammatory phase of wound healing, we believe that macrophages 
play a crucial role in the later stages of inflammation, especially through proper 
transformation of M1-type macrophages into M2-type macrophages. A series of 
studies have shown that MSC-derived exosomes are involved in the promotion of 
macrophage polarization through a variety of regulatory mechanisms. This 
phenomenon is critical for transitioning from the inflammatory phase to the prolif-
erative phase during the wound healing process, especially for the promotion of 
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Table 1 Effects of mesenchymal stem cell-exosomes on cutaneous wound healing

Phase Exosome source Nomenclature Related exosomal 
cargo

Secreted factors or expressed genes 
affected Outcome Ref.

Hemostasis Phase Human mesenchymal stem 
cells (MSCs) from the 
umbilical cord

EVs - Phosphatidylserine(+) Umbilical MSCs and extracellular vesicles derived from 
them have a reasonably high procoagulant potential

[42]

Accelerated wound healing in miceHuman jaw bone marrow-
derived MSCs and bone 
marrow MSCs

Exosomes miR-223 TNF-α↓ IL-10 ↑

Induced M2 macrophage polarization (CD206+ 
macrophage ↑)

[46]

Alleviated inflammation and enhanced diabetic 
cutaneous wound healing in rats

Human umbilical cord (UC)-
MSCs

Exosomes let-7b TLR4, p-p65, iNOS ↓ p-STAT3, p-AKT, ARG1 
↑

Induced M2 macrophage polarization Inhibited TLR4 
signaling pathway

[47]

Reduced burn-induced inflammation in rats Human UC-MSCs Exosomes miR-181c TNF-α, IL-1β, TLR4, p65, p-p65↓ IL-10 ↑

Reduced neutrophil and macrophage infiltration (MPO+ 
cell,CD68+ cell↓) Inhibited TLR4 signaling pathway

[48]

Resolved inflammation and ameliorate cutaneous non 
healing wounds in diabetic mice

Inflammatory Phase

Human menstrual blood 
derived MSCs (MenSCs)

Exosomes - iNOS ↓ ARG1, VEGF ↑

Induced M2 macrophage polarization

[49]

Human bone marrow MSC-
derived exosomes

Exosomes TGF-β/Smad TGF-β1, Smad2, Smad3, Smad4 ↓TGF-β3, 
Smad7↑

Effectively promoted the cutaneous wound healing by 
inhibiting the TGF-β/Smad signal pathway

[59]

Human adipose MSCs (ASCs) Exosomes - N-cadherin, cyclin 1, PCNA, collagen I/III, 
elastin ↑

Facilitated cutaneous wound healing via optimizing the 
characteristics of fibroblasts

[62]

Human ASCs Exosomes - Collagen I/II, TGF-β1/3, MMP1/3 α-SMA ↓ Promoted ECM reconstruction in cutaneous wound repair 
by regulating the ratios of collagen type III: type I, TGF-β
3:TGF-β1, and MMP3:TIMP1, and by regulating fibroblast 
differentiation to mitigate scar formation

[63]

Human fetal dermal MSCs Exosomes Jagged 1 Collagen I/III, elastin, fibronectin mRNA ↑ Promoted wound healing by activating the ADF cell 
motility and secretion ability via the Notch signaling 
pathway

[64]

Stimulated the AKT pathway to protect immortalized 
keratinocytes from heat-induced apoptosis

Human UC-MSCs Exosomes Wnt4 CK19, PCNA, collagen I ↑

Stimulated the AKT pathway to protect immortalized 
keratinocytes from heat-induced apoptosis

[65]

Human UC-MSCs Exosomes Akt, ERK, STAT3 HGF, IGF1, NGF, SDF1↑ Promoted the proliferation and migration of fibroblasts in 
normal and chronic wounds. This effect was positively 
correlated with the dose of exosomes

[66]

Proliferative Phase
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Induced pluripotent stem 
cell-derived MSCs 

Exosomes - Collagen ↑ Increased the secretion of collagen by HaCaT cells to 
accelerate skin cell proliferation

[67]

Adipose mesenchymal stem 
cells (ADSCs)

Exosomes AKT/HIF-1α - Promoted the proliferation and migration of HaCaT cells 
by regulating the activation of the AKT/HIF-1α signaling 
pathway, thus promoting wound healing

[68]

Human UC-MSCs Exosomes - PARP-1, PAR↑ Suppressed HaCaT cell apoptosis induced by H2O2 by 
restraining the nuclear translocation of apoptosis-
inducing factor (AIF) and promoting poly (ADP-ribose) 
(PAR) and poly ADP ribose polymerase 1 (PARP-1) 
expression

[69]

Human adipose-derived 
MSCs (adMSC-Exo)

Exosomes miR-125a Angiogenic inhibitor delta-like 4 (DLL4)↓ Transferred miR-125a to endothelial cells and promoted 
angiogenesis by repressing DLL4

[70]

Decreased the threshold for thermal and mechanical 
stimuli in mice

Mouse BM- MSCs Exosomes miR-17 miR-23a miR-
125b

TNF-α, IL-1β, iNOS, TLR4, IRAK1, p65↓ 
ARG1, IL-10, TGF-β↑

Increased nerve conduction velocity, the number of 
intraepidermal nerve fibers, myelin thickness, and axonal 
diameters

[71]

Decreased histopathological score of kidney injury in rats

Reduced the levels of blood urea nitrogen (BUN) and 
creatinineReduced the level of oxidative stress

Increased anti-oxidant status

Reduced apoptosis and inflammation

Rat BM-MSCs Exosomes - MDA, HIF1α, NOX2, Caspase 3, BAX, 
PARP1, MPO, ICAM1, IL-1β, NF-κB↓SOD, 
CAT, GPX, HO-1, BCL2, IL-10, bFGF, HGF, 
SOX9, VEGF↑

Improved regeneration and enhanced angiogenesis

[72]

Human endometrial MSCs Exosomes - Tie2, VEGF, Ang1, Ang2↑ Increased the expression of angiogenesis markers, 
including Tie2, VEGF, Ang1, and Ang2, and increased the 
proliferation, migration, and angiogenesis of HUVECs

[73]

Human umbilical cord 
mesenchymal stem cells 
(hUCMSCs)

Exosomes - Ang2↑ hucMSC-Ex-derived Ang-2 plays a significant role in tube 
formation of HUVECs and promotion of angiogenesis

[74]

Human UC blood-MSCs Exosomes - Ang, Ang1, HFG, VEGF↑ Human umbilical cord blood (UCB)-MSC-derived 
exosomes pretreated with thrombin could accelerate skin 
wound healing in rats with full-thickness wounds. 
Exosomes from human UCB-MSCs increased 
angiogenesis factors, such as VEGF, HGF, and Ang1, and 
decreased TNFα and IL-6

[75]

Human UC-MSCs Exosomes Wnt4 β-catenin, N-cadherin, PCNA, Cyclin D3↑ Enhanced angiogenesis in rats through the Wnt4/β-
catenin pathway. When the expression of Wnt4 was 
knocked out by shRNA, the proangiogenic effect of hUC-
MSC-derived exosomes was eliminated

[76]
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Human UC-MSCs Exosomes -  
α-SMA, collagen I↓

Increased the formation and maturation of new blood 
vessels at the wound site, although the mechanism is still 
unclear

[77]

Human UC-MSCs Exosomes GSK3β-Wnt/β-catenin - Alleviated hepatic IRI by transporting miR-1246 via 
regulating GSK3β-mediated Wnt/β-catenin pathway

[78]

Human gingival MSCs Exosomes - Collagen↑ Reduced the formation of scars by inhibiting the 
accumulation of mouse myofibroblasts

[79]

Adipose mesenchymal stem 
cells (ASCs)

Exosomes - N-cadherin, cyclin-1, PCNA  collagen I, III↑ Facilitates cutaneous wound healing via optimizing the 
characteristics of fibroblasts

[62]

ASCs Exosomes ERK/MAPK Matrix metalloproteinases-3 (MMP3)↑ APromoted ECM reconstruction in cutaneous wound 
repair by regulating the ratios of collagen type III: type I, 
TGF-β3:TGF-β1, and MMP3:TIMP1, and by regulating 
fibroblast differentiation to mitigate scar formation

[63]

Resolved inflammation and ameliorated cutaneous non-
healing wounds in diabetic mice

Remodeling Phase

MenSCs Exosomes - iNOS↓ ARG1, VEGF↑

Induced M2 macrophage polarization

[49]

MSCs: Mesenchymal stem cells; EVs: Extracellular vesicles; ILVs: Intraluminal vesicles; IL: Interleukin; MVBs: Multivesicular bodies; PF-4: Platelet factor 4; EGF: Epidermal growth factor; PDGF: Platelet-derived growth factor; TGF-β: 
Transforming growth factor; VEGF: Vascular endothelial growth factor; NAP-2: Neutrophil activating peptide-2; SDF-1α: Stromal-cell-derived factor-1; BMSC: Bone marrow-derived stem cells; MMP: Matrix metalloproteinases; ROS: 
Reactive oxygen species; IGF-1: Insulin growth factor 1; FGFs: Fibroblast growth factors; KGFs: Keratinocyte growth factors; TIMP1: Tissue inhibitor of metalloproteinase 1; TNF-a: Tumor necrosis factor alpha; CTGF: Connective tissue 
growth factor; IFNs: Interferons; HGF: Hepatocyte growth factor; ECM: Extracellular matrix; hUC: Human umbilical cord; hBM: Human bone marrow; BMMSC: Bone marrow MSC; JMMSC: Jaw bone marrow MSC; HDFs: Human dermal 
fibroblasts; HaCaTs: Human keratinocytes; LPS: Lipopolysaccharide; ASC: Human adipose mesenchymal stem cell; FD: Human fetal dermis; iPSC: Induced pluripotent stem cell; AIF: Apoptosis-inducing factor; HUVECs: Human umbilical 
vein endothelial cells; DLL4: Delta-like 4; Ang: Angiopoietin; iNOS: Inducible nitricoxide synthase.

chronic wound healing: (1) MiR-223 produced by human bone marrow MSC (hBM-
MSC)-derived exosomes and jaw bone marrow MSC-derived exosomes regulates the 
polarization of macrophages by targeting pknox1, thereby promoting the healing and 
metastasis of skin wounds in mice[46]; (2) Lipopolysaccharide (LPS)-preconditioned 
exosomes may mediate the regulation of macrophage polarization and chronic inflam-
mation regression by shuttling let-7b, thus promoting the healing of diabetic skin 
wounds[47]; (3) Burns significantly increased the inflammatory response in rats or 
macrophages exposed to LPS, while hUC-MSC-derived exosomes overexpressing miR-
181c inhibited the TLR4 signaling pathway effectively, thus reducing inflammation in 
burned rats[48]; (4) The miRNA let-7b carried by MSC-EXOs pretreated with LPS can 
regulate the polarization of macrophages by inhibiting the TLR4/NF-κB pathway and 
activating the STAT3/AKT signaling pathway, thereby promoting wound healing[47]; 
and (5) Menstrual blood-derived MSC exosomes can resolve inflammation by inducing 
M1–M2 macrophage polarization[49].

In fact, there have been a large number of reports on the anti-inflammatory and 
immunoregulatory effects of MSC-derived exosomes[18,50-58].
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Proliferative phase
In the proliferation stage of wound healing, whether MSC-derived exosomes can 
promote the development of granulation tissue and the recovery of the vascular 
network is a concern. Studies have shown that hBM-MSC-derived exosomes could 
effectively promote the proliferation of two types of skin cells in vitro: Human dermal 
fibroblasts (HDFs) and human keratinocytes (HaCaTs). In vivo, hBM-MSC-derived 
exosomes could accelerate skin wound healing by inhibiting the TGF-β/Smad 
signaling pathway[59]. This pathway is critical in the pathogenesis of wound healing
[60]. TGF-β1 seems to be the key mediator of tissue scarring and mainly antagonizes 
acellular (Smad) signal transduction by activating its downstream factors[61].

According to related studies, MSC-derived exosomes are able to promote the 
migration and proliferation of dermal fibroblasts and can produce collagen, elastin, 
and fibronectin: (1) Human adipose MSC (ASC)-derived EVs or ASC-derived 
exosomes induce the migration and proliferation of dermal fibroblasts or keratinocytes 
in vitro[62,63]; (2) Human ASC-derived exosomes induce type I/III collagen and 
elastin production in HDFs to promote the healing of skin wounds in mice[62,63]; (3) 
Human fetal dermis (FD)-MSC-derived exosomes activate the Notch pathway by 
transmitting Jagged1 protein and induce the mRNA expression of collagen I/III, 
elastin, and fibronectin[64]; (4) hUC-MSC-derived exosomes containing Wnt4 
accelerated the re-epithelialization of burned skin in rats. The wound healing effect 
was inhibited when the expression of Wnt4 in hUC-MSC-derived exosomes was 
knocked out with siRNA[65]; and (5) hUC-MSC-exosomes can promote the prolif-
eration and migration of fibroblasts in normal and chronic wounds. This effect was 
positively correlated with the dose of exosomes[66].

The positive effects of MSC-derived exosomes on keratinocytes have also been 
reported: (1) hUC-MSC-derived exosomes can stimulate the AKT pathway to protect 
immortalized keratinocytes from heat-induced apoptosis[65]; (2) Induced pluripotent 
stem cell (iPSC)-derived MSC (iMSC) exosomes could increase the secretion of 
collagen by HaCaT cells to accelerate skin cell proliferation[67]; (3) ASC-derived 
exosomes activate the AKT/HIF-1α axis to accelerate the migration and proliferation 
of keratinocytes to promote wound healing[68]; and (4) Human umbilical cord MSC 
(hUCMSC)-derived exosome treatment suppressed HaCaT cell apoptosis induced by 
H2O2 by restraining the nuclear translocation of apoptosis-inducing factor (AIF) and 
promoting poly (ADP-ribose) (PAR) and poly ADP ribose polymerase 1 (PARP-1) 
expression[69].

Regarding the recovery of the vascular network, it has also been reported that MSC-
derived exosomes can induce angiogenic activity in endothelial cells: (1) Human ASC-
derived exosomes induce HUVEC tube formation by delivering miR-125a, thereby 
inhibiting the expression of the angiogenesis inhibitor delta-like 4[70]; (2) Human BM-
MSC-EVs or rat BM-MSC-derived exosomes enhance angiogenesis in stroke mice[71] 
or in rats with renal ischemia-reperfusion (IR) injury[72]; (3) Exosomes from human 
endometrial MSCs can increase the expression of angiogenesis markers, including 
Tie2, vascular endothelial growth factor (VEGF), angiopoietin 1 (Ang1), and Ang2, and 
increase the proliferation, migration, and angiogenesis of human umbilical vein 
endothelial cells (HUVECs)[73]; and (4) In a rat burn model, treatment with hUCMSC-
derived exosomes promoted Ang-2 protein expression in wounds and HUVECs 
through exosome-mediated Ang-2 transfer. The overexpression of Ang-2 in hUCMSC-
derived exosomes further promoted the migration and tube formation of HUVECs, 
while knockout of Ang-2 in hUCMSC-derived exosomes eliminated these therapeutic 
and proangiogenic effects[74].

In addition, there have been reports confirming the proangiogenic effect of MSC-
derived exosomes in vivo: (1) Human umbilical cord blood (UCB)-MSC-derived 
exosomes pretreated with thrombin could accelerate skin wound healing in rats with 
full-thickness wounds. Exosomes from human UCB-MSCs increased angiogenesis 
factors, such as VEGF, HGF, and Ang1, and decreased TNFα and IL-6[75]; (2) hUC-
MSC-derived exosomes enhanced angiogenesis in rats through the Wnt4/β-catenin 
pathway. When the expression of Wnt4 was knocked out with shRNA, the 
proangiogenic effect of hUC-MSC-derived exosomes was eliminated[76]; (3) Human 
iMSC-derived exosomes increased the formation and maturation of new blood vessels 
at the wound site, although the mechanism is still unclear[77]; and (4) hUCB-MSC-
derived exosomes alleviated hepatic ischemia/reperfusion injury by transporting miR-
1246 by regulating the glycogen synthase kinase 3β (GSK3β)-mediated Wnt/β-catenin 
pathway[78].



Zeng QL et al. MSC-exosomes in wound healing

WJCC https://www.wjgnet.com 6226 August 6, 2021 Volume 9 Issue 22

Remodeling phase
MSC-derived exosomes may help to further reduce scar formation. Typically, 
uncontrolled accumulation of myofibroblasts in the wound leads to scar formation. 
Recently, it has been reported that hUC-MSC-derived exosomes reduced the formation 
of scars by inhibiting the accumulation of mouse myofibroblasts[79]. It has also been 
reported that human ASC-derived exosomes accelerate skin healing by optimizing the 
characteristics of fibroblasts. In the early stage of wound healing, ASC-derived 
exosomes increased the production of collagen I and III, and exosomes could inhibit 
the expression of collagen to reduce the formation of scars in the later stage[62]. It is 
well known that various proteases, such as MMPs, are necessary for all stages of skin 
wound healing[80]. In the remodeling phase, macrophages, fibroblasts, endothelial 
cells, and epidermal cells control the release of MMPs to degrade the majority of type 
III collagen fibers[81]. However, the levels of MMPs and their inhibitors should be 
kept in a relatively stable balance; otherwise, hypertrophic scars or chronic wound 
outcomes may occur. Studies have shown that ASC-derived exosomes promote ECM 
reconstruction in cutaneous wound repair by regulating the collagen III:collagen I, 
MMP3:TIMP1, and TGF-β3: TGF-β1 ratios and by regulating fibroblast differentiation 
to mitigate scar formation[63]. However, whether ASC-derived exosomes prevent 
excessive ECM degradation in chronic wounds through the same regulatory 
mechanism remains to be investigated. Another study also showed that exosomes 
derived from human menstrual blood mesenchymal cells can reduce scar formation by 
affecting the Col1:Col3 ratio[49].

PERSPECTIVES ON CLINICAL APPLICATIONS OF MSC-EXOSOMES 
Advantages and disadvantages
In the past few years, MSC-derived exosomes have been used as a new cell-free 
treatment for wound healing and regeneration. This new treatment method has 
unique advantages. First, exosomes with diameters of 40-100 nm are more likely to 
participate in blood circulation than MSCs. Some MSCs cannot circulate easily through 
capillaries, but exosomes can. Second, the treatment also benefits from the small sizes 
of exosomes. Compared with injection of MSCs, injection of exosomes can achieve 
higher efficacy with a lower dose. In addition, MSC-derived exosomes can be 
produced and sterilized as a commercial product, while MSCs cannot be produced. 
Last but not least, the use of exosomes for cell-free therapy can largely avoid the 
transfer cells whose DNA may have been damaged or mutated. In cell-based therapy, 
MSC-derived exosomes are considered to have no safety issues, such as the tumori-
genicity potential of cell-mediated drug delivery[11,82]. However, this method of 
treatment also has some shortcomings. The exosomes injected into the body are static 
and cannot produce more exosomes. In addition, compared with using MSCs, 
exosome treatment has increased manufacturing costs and difficulty associated with 
laboratory preparation.

New prospects of MSC-EXOs in treating wounds
Adding carriers and combined stents to treat wounds: It is well known that 
uncontrolled protease activity can hinder wound healing[63]. In addition, some 
studies have shown that the delayed healing of chronic wounds is related to 
prolonged, high levels of protease activity[80,81,83,84]. The proteolytic environment of 
chronic wounds may also affect the therapeutic efficacy of MSC-derived exosomes 
because MSC-derived exosome surface proteins are susceptible to proteolysis, which 
in turn affects the interaction between exosomes and recipient cells[85]. Based on the 
natural biocompatibility and cell targeting ability of exosomes, many clinical 
researchers have focused their attention on using exosomes as new drug delivery 
systems[86]. Some studies have mixed exosomes with hydrogel or chitosan dressings, 
allowing the hydrogel or chitosan dressing to act as a stent for sustained release. This 
strategy can stabilize the local concentration of exosomes, thereby enhancing the 
ability of exosomes to heal chronic wounds. For example, the FHE@exo hydrogel is 
prepared by mixing FHE hydrogel (F127/OHA-EPL) and AMSC-derived exosomes to 
treat diabetic full-thickness skin wounds and can increase the wound closure rate and 
accelerate angiogenesis, re-epithelialization, and collagen deposition at the wound site. 
This treatment can significantly improve the healing of chronic diabetic wounds[87]. 
Similarly, Pluronic F-127 (PF-127) hydrogel containing hUCMSC-derived exosomes 
can also promote the healing of chronic diabetes wounds and complete skin 
regeneration[88]. In addition, gingival MSC-derived exosomes combined with a 
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chitosan/silk hydrogel sponge are also helpful for healing chronic wounds in diabetic 
patients[79]. Furthermore, studies have shown that exosomes derived from 
microRNA-126-overexpressing synovial MSCs mixed with chitosan dressing can also 
promote the healing of chronic diabetic wounds[89,90].

Combined with other medications: It has been reported that the exosomes from 
BMSCs pretreated with atorvastatin could promote angiogenesis through the 
AKT/eNOS pathway, thereby accelerating the repair of diabetic wounds[91]. 
Melatonin-stimulated MSC-derived exosomes regulate the polarization of M1 and M2 
macrophages by targeting the PTEN/AKT pathway to improve wound healing in 
diabetes[92].

Combined treatment with physical factors: It has been reported that the exosomes 
derived from hUC-MSCs exposed to blue light at 455 nm have a robust ability to 
promote angiogenesis[93]. Labeling human BMSC-derived exosomes with iron oxide 
nanoparticles  and guiding this treatment with a magnetic field could significantly 
promote the proliferation and migration of endothelial cells and the formation of 
angiogenic tubules in vivo. Moreover, this treatment could also reduce scar formation 
and PCNA, CK19, and collagen expression in vivo[94].

Development as an immunosuppressant: Based on the inhibitory effect of exosomes 
on immune regulation, exosomes can be used as immunosuppressive therapeutic 
agents in clinical practice. However, because exosomes carry a small amount of 
allogeneic protein, which can stimulate an autoimmune response, their application in 
immune regulation remains to be verified[95].

Quality control of extracellular vesicle therapy
Cell-free therapy using exosomes has great development prospects, but the quality 
control and production specifications should be controlled to some extent for clinical 
use. The existing preparation guide is minimal information for studies of extracellular 
vesicles 2018 (MISEV2018), which was proposed by the International Society of 
Extracellular Vesicles in 2018 and is a series of minimal information on extracellular 
vesicle research (MISEV)[96-98]. The Korean Ministry of Food and Drug Safety also 
issued guidelines for EV therapeutic products, entitled "Guidelines for the Quality, 
Nonclinical and Clinical Evaluation of Extracellular Vesicle Therapeutic Products"[99]. 
There are certain specifications on the identity, quantity, size, and purity of EVs. 
Unfortunately, there is currently no evaluation standard for exosomal therapeutic 
products.

CONCLUSION
In the field of traditional regenerative medicine, although high-dose single factors or 
cells are used to treat diseases, which can take effect to a certain extent, their regulation 
mechanism is single and they carry a certain potential risk, such as the formation of 
ectopic tissue and cell rejection. The clinical application of stem cells in wound repair 
is greatly limited. Compared with direct reaction of stem cells, exosomes can be 
extracted on a large scale, with high activity, safe use, more suitable for the internal 
environment, and no ethical controversy involved, thus having good application 
potential in wound repair. With the recent explosion in the number of studies on MSC-
derived exosomes, various studies have shown anti-inflammatory, anti-aging, and 
wound healing effects of MSC-exosomes in vivo and in vitro models.  MSC-exosome 
factors are now widely accepted as a new generation of drugs for cell-free therapy. 
Undeniably, this treatment can obtain good therapeutic effects and has many 
advantages with practical significance. However, transforming this treatment from a 
clinical experiment into a mature medical commodity still faces many challenges. For 
example, we need to set certain standards for exosomal therapeutic products in terms 
of the identity, quantity, size, purity, and the content of exosomes derived from MSCs.
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