World J Clin Cases 2021 November 26; 9(33): 10052-10391

Contents

Thrice Monthly Volume 9 Number 33 November 26, 2021

REVIEW

10052 Effects of alcohol consumption on viral hepatitis B and C

Xu HQ, Wang CG, Zhou Q, Gao YH

MINIREVIEWS

10064 Effects of anti-diabetic drugs on sarcopenia: Best treatment options for elderly patients with type 2 diabetes mellitus and sarcopenia

Ma XY, Chen FQ

ORIGINAL ARTICLE

Retrospective Cohort Study

10075 Utility of cooling patches to prevent hand-foot syndrome caused by pegylated liposomal doxorubicin in breast cancer patients

Zheng YF, Fu X, Wang XX, Sun XJ, He XD

Retrospective Study

10088 Clinicopathological features of small T1 colorectal cancers

> Takashina Y, Kudo SE, Ichimasa K, Kouyama Y, Mochizuki K, Akimoto Y, Maeda Y, Mori Y, Misawa M, Ogata N, Kudo T, Hisayuki T, Hayashi T, Wakamura K, Sawada N, Baba T, Ishida F, Yokoyama K, Daita M, Nemoto T, Miyachi H

10098 Comparison of dental pulp periodontal therapy and conventional simple periodontal therapy as treatment modalities for severe periodontitis

Li L, Chen HJ, Lian Y, Wang T

10106 Tripartite intensive intervention for prevention of rebleeding in elderly patients with hypertensive cerebral hemorrhage

Li CX, Li L, Zhang JF, Zhang QH, Jin XH, Cai GJ

10116 Clinical and electroencephalogram characteristics and treatment outcomes in children with benign epilepsy and centrotemporal spikes

Chen RH, Li BF, Wen JH, Zhong CL, Ji MM

10126 Endoscopic ultrasonography diagnosis of gastric glomus tumors

Bai B, Mao CS, Li Z, Kuang SL

10134 Learning curves of robot-assisted pedicle screw fixations based on the cumulative sum test

Yu J, Zhang Q, Fan MX, Han XG, Liu B, Tian W

10143 Value of GRACE and SYNTAX scores for predicting the prognosis of patients with non-ST elevation acute coronary syndrome

Wang XF, Zhao M, Liu F, Sun GR

Contents

Thrice Monthly Volume 9 Number 33 November 26, 2021

10151 Effectiveness of enhanced recovery after surgery in the perioperative management of patients with bone surgery in China

Zhao LY, Liu XT, Zhao ZL, Gu R, Ni XM, Deng R, Li XY, Gao MJ, Zhu WN

Clinical Trials Study

10161 Association between plasma dipeptidyl peptidase-4 levels and cognitive function in perinatal pregnant women with gestational diabetes mellitus

Sana SRGL, Li EY, Deng XJ, Guo L

10172 Paricalcitol in hemodialysis patients with secondary hyperparathyroidism and its potential benefits

Chen X, Zhao F, Pan WJ, Di JM, Xie WN, Yuan L, Liu Z

Observational Study

10180 Did the severe acute respiratory syndrome-coronavirus 2 pandemic cause an endemic Clostridium difficile infection?

Cojocariu C, Girleanu I, Trifan A, Olteanu A, Muzica CM, Huiban L, Chiriac S, Singeap AM, Cuciureanu T, Sfarti C, Stanciu C

10189 Effect of nursing intervention based on Maslow's hierarchy of needs in patients with coronary heart disease interventional surgery

Xu JX, Wu LX, Jiang W, Fan GH

10198 Impacts of statin and metformin on neuropathy in patients with type 2 diabetes mellitus: Korean Health Insurance data

Min HK, Kim SH, Choi JH, Choi K, Kim HR, Lee SH

META-ANALYSIS

10208 Is endoscopic retrograde appendicitis therapy a better modality for acute uncomplicated appendicitis? A systematic review and meta-analysis

Wang Y, Sun CY, Liu J, Chen Y, Bhan C, Tuason JPW, Misra S, Huang YT, Ma SD, Cheng XY, Zhou Q, Gu WC, Wu DD, Chen X

10222 Prognostic value of ground glass opacity on computed tomography in pathological stage I pulmonary adenocarcinoma: A meta-analysis

Pan XL, Liao ZL, Yao H, Yan WJ, Wen DY, Wang Y, Li ZL

CASE REPORT

10233 Atrial fibrillation and concomitant left subclavian, axillary and brachial artery embolism after fiberoptic bronchoscopy: A case report

П

Yang CL, Zhou R, Jin ZX, Chen M, Zi BL, Li P, Zhou KH

10238 Streptococcal toxic shock syndrome after hemorrhoidectomy: A case report

Lee CY, Lee YJ, Chen CC, Kuo LJ

10244 Subsequent placenta accreta after previous mifepristone-induced abortion: A case report

Zhao P, Zhao Y, He J, Bai XX, Chen J

Contents

Thrice Monthly Volume 9 Number 33 November 26, 2021

10249 Autosomal dominant tubulointerstitial kidney disease with a novel heterozygous missense mutation in the uromodulin gene: A case report

Zhang LL, Lin JR, Zhu TT, Liu Q, Zhang DM, Gan LW, Li Y, Ou ST

10257 Novel KDM6A mutation in a Chinese infant with Kabuki syndrome: A case report

Guo HX, Li BW, Hu M, Si SY, Feng K

10265 Pancreatic cancer with synchronous liver and colon metastases: A case report

Dong YM, Sun HN, Sun DC, Deng MH, Peng YG, Zhu YY

10273 Veno-venous-extracorporeal membrane oxygenation treatment for severe capillary leakage syndrome: A case report

Nong WX, Lv QJ, Lu YS

10279 Anticoagulant treatment for pulmonary embolism in patient with cerebral hemorrhage secondary to mechanical thrombectomy: A case report

Chen XT, Zhang Q, Zhou CQ, Han YF, Cao QQ

10286 Complete restoration of congenital conductive hearing loss by staged surgery: A case report

Yoo JS, Lee CM, Yang YN, Lee EJ

10293 Blastic plasmacytoid dendritic cell neoplasm with skin and bone marrow involvement: Report of three

Guo JH, Zhang HW, Wang L, Bai W, Wang JF

10300 Extracranial multiorgan metastasis from primary glioblastoma: A case report

Luan XZ, Wang HR, Xiang W, Li SJ, He H, Chen LG, Wang JM, Zhou J

10308 Transverse myelitis after infection with varicella zoster virus in patient with normal immunity: A case

Yun D, Cho SY, Ju W, Seo EH

10315 Duodenal ulcer caused by coil wiggle after digital subtraction angiography-guided embolization: A case

report

Xu S, Yang SX, Xue ZX, Xu CL, Cai ZZ, Xu CZ

10323 Crab lice infestation in unilateral eyelashes and adjacent eyelids: A case report

Tang W, Li QQ

10328 Local random flaps for cervical circumferential defect or tracheoesophageal fistula reconstruction after

failed gastric pull-up: Two case reports

Zhang Y, Liu Y, Sun Y, Xu M, Wang XL

10337 Incurable and refractory spinal cystic echinococcosis: A case report

Zhang T, Ma LH, Liu H, Li SK

10345 Individualized treatment of breast cancer with chronic renal failure: A case report and review of literature

Ш

Cai JH, Zheng JH, Lin XQ, Lin WX, Zou J, Chen YK, Li ZY, Chen YX

Contents

Thrice Monthly Volume 9 Number 33 November 26, 2021

10355 Persistent fibrinogen deficiency after snake bite: A case report

Xu MH, Li J, Han L, Chen C

10362 Successful prolonged cardiopulmonary resuscitation after intraoperative cardiac arrest due to povidoneiodine allergy: A case report

Xiang BB, Yao YT, Jiao SL

Clinical algorithm for preventing missed diagnoses of occult cervical spine instability after acute trauma: A 10369

Zhu C, Yang HL, Im GH, Liu LM, Zhou CG, Song YM

10374 Carbon ion radiotherapy for synchronous choroidal melanoma and lung cancer: A case report Zhang YS, Hu TC, Ye YC, Han JH, Li XJ, Zhang YH, Chen WZ, Chai HY, Pan X, Wang X, Yang YL

10382 Heart failure as an adverse effect of infliximab for Crohn's disease: A case report and review of the literature

Grillo TG, Almeida LR, Beraldo RF, Marcondes MB, Queiróz DAR, da Silva DL, Quera R, Baima JP, Saad-Hossne R, Sassaki LY

ΙX

Contents

Thrice Monthly Volume 9 Number 33 November 26, 2021

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Jian-Wu Zhao, PhD, Chief Physician, Professor, Department of Orthopedics, Jilin University Second Hospital, Changchun 130000, Jilin Province, China. jianwu@jlu.edu.cn

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ji-Hong Liu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREOUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS

https://www.wignet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

November 26, 2021

COPYRIGHT

© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2021 November 26; 9(33): 10143-10150

DOI: 10.12998/wjcc.v9.i33.10143

ISSN 2307-8960 (online)

ORIGINAL ARTICLE

Retrospective Study

Value of GRACE and SYNTAX scores for predicting the prognosis of patients with non-ST elevation acute coronary syndrome

Xiao-Feng Wang, Ming Zhao, Fei Liu, Guo-Rong Sun

ORCID number: Xiao-Feng Wang 0000-0002-6652-606X; Ming Zhao 0000-0002-7007-3630; Fei Liu 0000-0003-1473-7567; Guo-Rong Sun 0000-0002-8348-7410.

Author contributions: Wang XF, Zhao M, Fei Liu F, and Sun GR contributed to the manuscript writing, revising; All authors confirmed the revised version of the manuscript.

Institutional review board statement: The study was reviewed and approved by the Cangzhou Central Hospital Institutional Review Board.

Informed consent statement:

Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement:

There is no conflict of interest.

Data sharing statement: No additional data are available.

Country/Territory of origin: China

Specialty type: Cardiac and Cardiovascular Systems

Provenance and peer review:

Unsolicited article; Externally peer

Xiao-Feng Wang, Ming Zhao, Fei Liu, Guo-Rong Sun, Department of Cardiology, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China

Corresponding author: Xiao-Feng Wang, MSc, Doctor, Department of Cardiology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Yunhe District, Cangzhou 061000, Hebei Province, China. dahuanhuan888@163.com

Abstract

BACKGROUND

GRACE and SYNTAX scores are important tools to assess prognosis in non-STelevation acute coronary syndrome (NSTE-ACS). However, there have been few studies on their value in patients receiving different types of therapies.

To explore the value of GRACE and SYNTAX scores in predicting the prognosis of patients with NSTE-ACS receiving different types of therapies.

METHODS

The data of 386 patients with NSTE-ACS were retrospectively analyzed and categorized into different groups. A total of 195 patients who received agents alone comprised the medication group, 156 who received medical therapy combined with stents comprised the stent group, and 35 patients who were given agents and underwent coronary artery bypass grafting (CABG) comprised the CABG group. General information was compared among the three groups. GRACE and SYNTAX scores were calculated. The association between the relationship between GRACE and SYNTAX scores and the occurrence of major adverse cardiovascular events (MACEs) was analyzed. Pearson's correlation analysis was used to determine the factors influencing prognosis in patients with NSTE-ACS. Univariate and multivariate analyses were conducted to analyze the predictive value of GRACE and SYNTAX scores for predicting prognosis in patients with NSTE-ACS using the Cox proportional-hazards model.

RESULTS

The incidence of MACE increased with the elevation of GRACE and SYNTAX scores (all P < 0.05). The incidence of MACE was 18.5%, 36.5%, and 42.9% in the medication group, stent group, and CABG group, respectively. By comparison, the incidence of MACE was significantly lower in the medication group than in the stent and CABG groups (all P < 0.05). The incidence of MACE was 6.2%, 28.0%

10143

reviewed.

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Received: July 6, 2021 Peer-review started: July 6, 2021 First decision: July 26, 2021 Revised: August 9, 2021 Accepted: August 17, 2021 Article in press: August 17, 2021 Published online: November 26,

P-Reviewer: Scheller B **S-Editor:** Wang JL L-Editor: Filipodia P-Editor: Guo X

2021

and 40.0% in patients with a low GRACE score in the medication group, stent group, and CABG group, respectively (P < 0.05). The incidence of MACE was 31.0%, 30.3% and 42.9% in patients with a medium GRACE score in the medication group, stent group, and CABG group, respectively (P > 0.05). The incidence of MACE was 16.9%, 46.2%, and 43.8% in patients with a high GRACE score in the medication group, stent group, and CABG group, respectively (*P* < 0.05). The incidence of MACE was 16.2%, 35.4% and 60.0% in patients with a low SYNTAX score in the medication group, stent group, and CABG group, respectively (P < 0.05). The incidence of MACE was 37.5%, 40.9%, and 41.7% in patients with a medium SYNTAX score in the medication group, stent group, and CABG group, respectively (P > 0.05). MACE incidence was 50.0%, 75.0%, and 25.0% in patients with a high SYNTAX score in the medication group, stent group, and CABG group, respectively (P < 0.05). Univariate Cox regression analyses showed that both GRACE score (hazard ratio [HR] = 1.212, 95% confidence interval [CI]: 1.083 to 1.176; *P* < 0.05) and SYNTAX score (HR = 1.160, 95%CI: 1.104 to 1.192; P < 0.05) were factors influencing MACE (all P < 0.05). Multivariate Cox regression analyses showed that GRACE (HR = 1.091, 95%CI: 1.015 to 1.037; P < 0.05) and SYNTAX scores (HR = 1.031, 95%CI: 1.076 to 1.143; P < 0.05) were independent predictors of MACE (all P < 0.05).

CONCLUSION

GRACE and SYNTAX scores are of great value for evaluating the prognosis of NSTE-ACS patients, and prevention and early intervention strategies should be used in clinical practice targeting different risk scores.

Key Words: GRACE score; SYNTAX score; Non-ST elevation acute coronary syndrome; **Prognosis**

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Risk stratification with a specific risk score can provide an estimate of patient prognosis and optimize clinical strategies. This study discussed the capabilities of GRACE and SYNTAX score in predicting the incidence of different major adverse cardiovascular events (MACEs) in patients with non-ST segment elevation acute coronary syndrome (NSTE-ACS). It showed that the incidence of MACE was lower in patients with low and high GRACE and SYNTAX scores who received agents than in patients who underwent stent placement or coronary artery bypass grafting. These data suggest that GRACE and SYNTAX scores have prognostic value in NSTE-ACS patients.

Citation: Wang XF, Zhao M, Liu F, Sun GR. Value of GRACE and SYNTAX scores for predicting the prognosis of patients with non-ST elevation acute coronary syndrome. World J Clin Cases 2021; 9(33): 10143-10150

URL: https://www.wjgnet.com/2307-8960/full/v9/i33/10143.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i33.10143

INTRODUCTION

Acute coronary syndrome (ACS), mainly comprising ST segment elevation myocardial infarction (STEMI) and non-ST segment elevation acute coronary syndrome (NSTE-ACS), is a common cardiac disease. Usually these patients present as acute coronary insufficiency and unstable plaque caused by coronary atherosclerosis[1-3]. Rapid progression of NSTE-ACS may lead to serious complications. Thus, supplementary aids are needed to estimate the prognosis of patients with NSTE-ACS[3,4]. Definite diagnosis and accurate risk stratification are essential for the subsequent treatment of NSTE-ACS. Therapies vary in NSTE-ACS patients with different major adverse cardiovascular event (MACE) risk[5,6]. Currently, the risk assessment model GRACE score is used to predict the prognosis of patients with NSTE-ACS. However, it does not take the results of patients' coronary angiography into consideration[7-9]. Similarly, SYNTAX score is one of the most promising tools for assessment of coronary artery[10]. It is used to stratify risk of patients with NSTE-ACS based on the complexity of coronary artery lesions. To be specific, it can comprehensively assess anatomic features of coronary artery lesions ranging from site of lesion and complexity of severity to bifurcation, calcification, and compensation. This study discusses the value of GRACE and SYNTAX scores for predicting the prognosis of patients with NSTE-ACS.

MATERIALS AND METHODS

General information

A retrospective analysis was conducted in 386 patients with NSTE-ACS admitted to Cangzhou Central Hospital (Hebei Province, China) from March 2017 to December 2020. They were categorized into three groups based on the treatment they received. Of them, 195 patients receiving agents were enrolled in a medication group, 126 patients receiving agents plus stent treatment were enrolled in a stent group, and 35 patients who were administrated with agents and underwent coronary artery bypass grafting (CABG) were enrolled in a CABG group. Enrollment criteria were as follows: patients aged 18-years-old to 75-years-old, diagnosis of NSTE-ACS confirmed by clinical symptoms and relevant examination, and single- or multi-vessel stenosis > 50% validated by coronary angiography. Exclusion criteria included: patients with poor physical performance; patients with a previous history of myocardial infarction; patients with comorbidities of heart failure, myocarditis, or myocardiopathy; patients with arrhythmia; patients with severe kidney, liver, and lung diseases; patients with an infection, malignant tumors, or severe anemia; and pregnant women. Baseline demographic and clinical characteristics data are summarized in Table 1.

Research methodology

Patients received treatment based on their angiographic features of coronary lesions. All patients were administered enteric aspirin oral 300 mg (Approval No. J20171021; Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA) and clopidogrel 300 mg (approval No. J20180029; Sanofi (Hangzhou) Pharmaceuticals Co. Ltd., Hangzhou, China) for secondary prevention of cardiovascular diseases. Patients in the stent group underwent coronary angiography and conventional stent implantation surgery. Patients in the CABG group were given medicine and CABG surgery.

Baseline data were collected from the three groups including gender, age, history of diseases (hypertension, diabetes, hyperlipidemia), unstable angina or acute non-STelevation myocardial infarction. GRACE and SYNTAX scores were calculated. Data on patient prognosis were obtained through telephone follow-up or clinical visits. Hospitalization and coronary angiography were advised for patients with symptoms such as typical chest pain or ischemia. The end points of follow-up were the occurrence of major adverse cardiovascular events (MACEs) after the treatments including cardiac death, non-fatal myocardial infarction, and target lesion revascularization. MACE was estimated. Patients were followed-up for 46 mo.

Evaluation criterion

The incidence of MACE was investigated in patients with different GRACE scores receiving different treatments. According to the GRACE score, patients were divided into tertiles as low- (0 to 88 points), intermediate- (89 to 117 points), and high (≥ 118 points)-risk groups. Also, the incidence of MACE was examined in patients with different SYNTAX scores receiving different treatments. According to the SYNTAX score, patients were sorted into tertiles as low- (0 to 22 points), intermediate- (23 to 32 points), and high (≥ 33 points)-risk groups. Factors influencing NSTE-ACS were analyzed.

Statistical analysis

SPSS18.0 software was used for the statistical analyses in this study. The logged data were rechecked and analyses were conducted after the outliers were deleted and removed. Measurement data are expressed as the mean ± SD, and inter-group differences were compared using the Student's t-test. The statistical relationship between the two variables was determined using Spearman's rank correlation coefficient. Count data are expressed as the frequency and percentage. Kruskal-Wallis

10145

Table 1 Baseline characteristics of patients with non-ST-elevation acute coronary syndrome, n = 386								
Items	n (%)							
Age in yr, mean ± SD	61.25 ± 4.09							
Gender								
Male	243 (63.0)							
Female	143 (37.0)							
Unstable angina	327 (84.7)							
Hypertension	262 (69.4)							
Diabetes	95 (24.6)							
Hyperlipidemia	62 (16.1)							
Major adverse cardiovascular events	108 (28.0)							
Recurrent angina	115 (29.8)							
NYHA class I or above	17 (4.4)							
Nonfatal recurrent myocardial infarction	8 (2.1)							
Target vessel revascularization	22 (5.7)							
Death	4 (1.0)							
Number of stents	247 (64.0)							
CABG	35 (9.1)							

CABG: Coronary artery bypass grafting; NSTEACS: Non-ST elevation acute coronary syndrome; NYHA: New York Heart Association.

test was used for multi-group comparisons. Cox proportional-hazards model was used for univariate and multivariate analyses. P < 0.05 was considered statistically significant. The two-tailed test was performed.

RESULTS

The incidence of MACE increased with the elevated scores of GRACE and SYNTAX (all P < 0.05; Table 2). The rates of MACE were 18.5%, 36.5%, and 42.9% in the medication group, stent group, and CABG group, respectively. The MACE rate was significantly lower in the medication group than in the stent and CABG groups (all *P* < 0.05). However, the difference in MACE rate between the stent group and CABG group was not significant (P > 0.05).

The rates of MACE were 6.2%, 28.0%, and 40.0% in patients receiving medication, stent, and CABG, respectively, in the low GRACE score tertile group (all P < 0.05; Table 3). The rates of MACE were 31.0%, 30.3%, and 42.9% in patients receiving medication, stent, and CABG, respectively, in the intermediate GRACE score tertile group (all P > 0.05). The rates of MACE were 16.9%, 46.2%, and 43.8% in patients receiving medication, stent, and CABG, respectively, in the high GRACE score tertile group (all P < 0.05).

The rates of MACE were 16.2%, 35.4%, and 60.0% in patients receiving medication, stent, and CABG, respectively, in the low SYNTAX score tertile group (all P < 0.05); 37.5%, 40.9%, and 41.7%, respectively, in the intermediate SYNTAX score tertile group (all P > 0.05); and 50.0%, 75.0%, and 25.0%, respectively, in the high SYNTAX score tertile group (all P < 0.05; Table 4).

Univariate Cox regression analyses showed that GRACE (hazard ratio [HR] = 1.212, 95% confidence interval [CI]: 1.083 to 1.176; P < 0.05) and SYNTAX (HR = 1.160, 95%CI: 1.104 to 1.192; P < 0.05) scores were factors contributing to the risk of MACE (all P < 0.05). Multivariate analyses of GRACE and SYNTAX scores revealed that GRACE (HR = 1.091, 95%CI: 1.015 to 1.037; P < 0.05) and SYNTAX (HR = 1.031, 95%CI: 1.076 to 1.143; P < 0.05) scores were independent factors influencing MACE (all P < 0.05) 0.05).

Groups	n	MACE, n	Incidence of MACE, %	Hc value	P value
GRACE scores (points)				7.398	0.031
Low risk group (0-88)	95	13	13.7		
Intermediate risk group (89-117)	151	48	31.7		
High risk group (≥ 118)	140	47	33.6		
SYNTAX scores (points)				4.381	0.042
Low risk group (0-22)	330	85	25.8		
Intermediate risk group (23-32)	42	17	40.5		
High risk group (≥ 33)	14	6	42.9		
Treatment				8.123	0.021

18.5

36.5

42.9

28.0

Hc value: The test statistic for the Kruskal-Wallis test; MACEs: Major adverse cardiovascular events.

195

156

35

386

36

57

15

108

Medication group

Stent group

CABG group

Total

Table 3 Major adverse cardiovascular events rate in patients with different GRACE risk scores receiving different treatments, n (%)										
GRACE risk scores (points)	_	Medication group		Ster	Stent group		BG group	Overall MACE rate	Hc value	Dualua
	n	n	MACE rate	n	MACE rate	n	MACE rate	Overall MACE rate	nc value	P value
Low risk group (0-88)	95	65	4 (6.2)	25	7 (28.0)	5	2 (40.0)	13 (13.7)	5.231	0.041
Intermediate risk group (89-117)	151	71	22 (31.0)	66	20 (30.3)	14	6 (42.9)	48 (31.8)	2.742	0.086
High risk group (≥ 118)	140	59	10 (16.9)	65	30 (46.2)	16	7 (43.8)	47 (33.6)	5.381	0.040
Total	386	195	36 (18.5)	156	57 (36.5)	35	15 (42.9)	108 (28.0)	4.412	0.044

 $CABG: Coronary\ artery\ by pass\ grafting; \textit{Hc}\ value: The\ test\ statistic\ for\ the\ Kruskal-Wallis\ test; MACE: Major\ adverse\ cardiovascular\ events.$

Table 4 Major adverse cardiovascular events rate in patients with different SYNTAX risk scores receiving different treatments, n (%)										
SYNTAX risk scores (points)	_	Medication group		Stent group		CABG group		Overall MACE rate	Hc value	Dvalue
	n	n	MACE rate	n	MACE rate	n	MACE rate	Overall MACE rate	nc value	P value
Low risk group (0-22)	330	185	30 (16.2)	130	46 (35.4)	15	9 (60.0)	85 (25.8)	12.213	0.001
Intermediate risk group (23-32)	42	8	3 (37.5)	22	9 (40.9)	12	5 (41.7)	17 (40.5)	1.984	0.214
High risk group (≥ 33)	14	2	1 (50.0)	4	3 (75.0)	8	2 (25.0)	6 (42.9)	8.432	0.014
Total	386	195	36 (18.5)	156	57 (36.5)	35	15 (42.9)	108 (28.0)	4.412	0.044

CABG: Coronary artery bypass grafting; Hc value: the test statistic for the Kruskal-Wallis test; MACE: major adverse cardiovascular events.

DISCUSSION

The incidence of NSTE-ACS is high, which involves about 75% of patients with ACS. Due to the occlusion of multiple coronary arteries and the rapid disease progression, the management of patients with ACS should be performed targeting the stratified risks[11-13]. The GRACE score is one of the most common risk scoring systems in clinical practice to risk stratify ACS patients based on real clinical symptoms and basic patient data; however, it does not take into account ACS[14-16]. The SYNTAX score is

a tool to risk stratify ACS patients based on anatomic features of coronary artery lesions. Nevertheless, it does not analyze clinical features and cannot realize the general characteristics of patients[17-22]. Therefore, this study discussed the significance of GRACE combined with SYNTAX scores for the assessment of prognosis of NSTE-ACS.

The findings of this study showed that the incidence of MACE increased with the elevated scores of GRACE and SYNTAX (P < 0.05). The incidence of MACE was 18.5%, 36.5%, and 42.9% in the medication group, stent group, and CABG group, respectively, with the medication group lower than the stent and CABG groups (P < 0.05). Moreover, the incidence of MACE varied in patients receiving different treatments, particularly in the medication group. The incidence of MACE was 6.2%, 28.0%, and 40.0% in patients with a low GRACE risk score, and 16.9%, 46.2%, and 43.8% in patients with a high GRACE risk score in the medication group, stent group, and CABG group, respectively (all P < 0.05). This suggests that it is feasible to use GRACE score for the risk stratification of patients with NSTE-ACS. In terms of SYNTAX score, the incidence of MACE was 16.2%, 35.4%, and 60.0% in patients with a low risk score and 50.0%, 75.0%, and 25.0% in patients with a high risk score in the medication group, stent group, and CABG group, respectively (all P < 0.05). These data indicate that the SYNTAX score can effectively predict the prognosis of NSTE-ACS by stratifying patients into high-, intermediate-, and low-risk groups based on which appropriate care can be given.

Meanwhile, univariate and multivariate Cox analyses showed that GRACE and SYNTAX scores were independent predictors of the occurrence of MACE (all P < 0.05). GRACE and SYNTAX scores have significant predictive value for the assessment of prognosis of NSTE-ACS. In the current study, no significant difference was discovered in long-term prognosis between patients with an intermediate GRACE risk score and patients with an intermediate SYNTAX risk score. It can be attributed to different treatments based on different patient conditions or relevant factors influencing the treatment such as results bias caused by treatment switching. As a limitation to this study, the limited number of cases in the single-center retrospective study may be not powered enough to completely reflect the real-life situation. Multicenter large sample long-term follow-up studies are warranted in the future to further demonstrate these findings.

CONCLUSION

In summary, GRACE and SYNTAX scores have significant value for assessing prognosis in NSTE-ACS.

ARTICLE HIGHLIGHTS

Research background

The GRACE score and SYNTAX score are established clinical risk stratification tools for acute coronary syndromes. However, they were seldomly discussed in patients with non-ST elevation acute coronary syndrome (NSTE-ACS) receiving different types of therapies.

Research motivation

Correct diagnosis and early treatment are critical to improve clinical outcomes in patients with NSTE-ACS. Risk stratification may be helpful for the planning of treatment strategy.

Research objectives

This study tested the ability of the GRACE and SYNTAX scores to predict outcomes in patients with NSTE-ACS.

Research methods

Patients with NSTE-ACS who received agents for secondary prevention of cardiovascular diseases, who received medical therapy plus stents or who underwent coronary artery bypass graft (CABG) surgery were enrolled in the study. GRACE and SYNTAX scores were estimated, and patients in the three groups were further subdivided into GRACE and SYNTAX score tertile groups. Data on prognosis and outcomes of these patients were collected over a 46 mo follow-up period. The incidence of major adverse cardiovascular events (MACEs) was calculated. The relationship between GRACE and SYNTAX scores and prognosis and outcomes of this population were analyzed and the abilities of GRACE and SYNTAX scores to predict prognosis and outcomes especially MACE were tested.

Research results

The incidence of MACE was lower in patients having low and high GRACE and SYNTAX scores who received agents than in patients who underwent stent placement or CABG. Multivariate Cox regression analyses revealed that GRACE and SYNTAX scores were independent factors influencing the occurrence of MACE in patients with NSTE-ACS.

Research conclusions

GRACE and SYNTAX scores are useful in predicting MACE in risk stratifying patients with NSTE-ACS who undergo CABG.

Research perspectives

The findings need further studies with a larger number of participants to be confirmed.

REFERENCES

- Hedayati T, Yadav N, Khanagavi J. Non-ST-Segment Acute Coronary Syndromes. Cardiol Clin 2018; **36**: 37-52 [PMID: 29173680 DOI: 10.1016/j.ccl.2017.08.003]
- Ralapanawa U, Kumarasiri PVR, Jayawickreme KP, Kumarihamy P, Wijeratne Y, Ekanayake M, Dissanayake C. Epidemiology and risk factors of patients with types of acute coronary syndrome presenting to a tertiary care hospital in Sri Lanka. BMC Cardiovasc Disord 2019; 19: 229 [PMID: 31638908 DOI: 10.1186/s12872-019-1217-x]
- Sakaguchi M, Ehara S, Hasegawa T, Matsumoto K, Nishimura S, Yoshikawa J, Shimada K. Coronary plaque rupture with subsequent thrombosis typifies the culprit lesion of non-ST-segmentelevation myocardial infarction, not unstable angina: non-ST-segment-elevation acute coronary syndrome study. *Heart Vessels* 2017; **32**: 241-251 [PMID: 27325227 DOI: 10.1007/s00380-016-0862-6]
- Kofoed KF, Kelbæk H, Hansen PR, Torp-Pedersen C, Høfsten D, Kløvgaard L, Holmvang L, Helqvist S, Jørgensen E, Galatius S, Pedersen F, Bang L, Saunamaki K, Clemmensen P, Linde JJ, Heitmann M, Wendelboe Nielsen O, Raymond IE, Kristiansen OP, Svendsen IH, Bech J, Dominguez Vall-Lamora MH, Kragelund C, Hansen TF, Dahlgaard Hove J, Jørgensen T, Fornitz GG, Steffensen R, Jurlander B, Abdulla J, Lyngbæk S, Elming H, Therkelsen SK, Abildgaard U, Jensen JS, Gislason G, Køber LV, Engstrøm T. Early Versus Standard Care Invasive Examination and Treatment of Patients With Non-ST-Segment Elevation Acute Coronary Syndrome. Circulation 2018; 138: 2741-2750 [PMID: 30565996 DOI: 10.1161/CIRCULATIONAHA.118.037152]
- Raposeiras-Roubín S, Abu-Assi E, López-López A, Bouzas-Cruz N, Castiñeira-Busto M, Cambeiro-González C, Álvarez-Álvarez B, Virgós-Lamela A, Varela-Román A, García-Acuña JM, González-Juanatey JR. Risk stratification for the development of heart failure after acute coronary syndrome at the time of hospital discharge: Predictive ability of GRACE risk score. J Cardiol 2015; 66: 224-231 [PMID: 25623483 DOI: 10.1016/j.jjcc.2014.12.015]
- 6 Poldervaart JM, Langedijk M, Backus BE, Dekker IMC, Six AJ, Doevendans PA, Hoes AW, Reitsma JB. Comparison of the GRACE, HEART and TIMI score to predict major adverse cardiac events in chest pain patients at the emergency department. Int J Cardiol 2017; 227: 656-661 [PMID: 27810290 DOI: 10.1016/j.ijcard.2016.10.080]
- Reaney PDW, Elliott HI, Noman A, Cooper JG. Risk stratifying chest pain patients in the emergency department using HEART, GRACE and TIMI scores, with a single contemporary troponin result, to predict major adverse cardiac events. Emerg Med J 2018; 35: 420-427 [PMID: 29622596 DOI: 10.1136/emermed-2017-207172]
- Chan MY, Sun JL, Newby LK, Lokhnygina Y, White HD, Moliterno DJ, Théroux P, Ohman EM, Simoons ML, Mahaffey KW, Pieper KS, Giugliano RP, Armstrong PW, Califf RM, Van de Werf F, Harrington RA. Trends in clinical trials of non-ST-segment elevation acute coronary syndromes over 15 years. Int J Cardiol 2013; 167: 548-554 [PMID: 22341697 DOI: 10.1016/j.ijcard.2012.01.065]
- Mitarai T, Tanabe Y, Akashi YJ, Maeda A, Ako J, Ikari Y, Ebina T, Namiki A, Fukui K, Michishita I, Kimura K, Suzuki H. A novel risk stratification system "Angiographic GRACE Score" for predicting in-hospital mortality of patients with acute myocardial infarction: Data from the K-ACTIVE Registry. J Cardiol 2021; 77: 179-185 [PMID: 32921529 DOI: 10.1016/j.jjcc.2020.08.010]
- Yadav M, Généreux P, Palmerini T, Caixeta A, Madhavan MV, Xu K, Brener SJ, Mehran R, Stone GW. SYNTAX score and the risk of stent thrombosis after percutaneous coronary intervention in

- patients with non-ST-segment elevation acute coronary syndromes: an ACUITY trial substudy. Catheter Cardiovasc Interv 2015; 85: 1-10 [PMID: 24408084 DOI: 10.1002/ccd.25396]
- Shuvy M, Klein E, Cohen T, Shlomo N, Rozenbaum Z, Pereg D. Value of Adding the CHA2DS2-VASc Score to the GRACE Score for Mortality Risk Prediction in Patients With Acute Coronary Syndrome. Am J Cardiol 2019; 123: 1751-1756 [PMID: 30922543 DOI: 10.1016/j.amjcard.2019.02.045]
- Lang Y, Ran X, Wang L, Li W. [Risk Factors of Death in Patients with Acute ST-segment Elevation Myocardial Infarction after PCI and the Combined Application of CTRP-1 with GRACE Score in Prognosis Evaluation of PCI Treated Patients]. Sichuan Da Xue Xue Bao Yi Xue Ban 2019; 50: 941-945 [PMID: 31880129]
- Chen X, Shao M, Zhang T, Zhang W, Meng Y, Zhang H, Hai H, Li G. Prognostic value of the combination of GRACE risk score and mean platelet volume to lymphocyte count ratio in patients with ST-segment elevation myocardial infarction after percutaneous coronary intervention. Exp Ther Med 2020; 19: 3664-3674 [PMID: 32346430 DOI: 10.3892/etm.2020.8626]
- Gong IY, Goodman SG, Brieger D, Gale CP, Chew DP, Welsh RC, Huynh T, DeYoung JP, Baer C, Gyenes GT, Udell JA, Fox KAA, Yan AT; Canadian GRACE/GRACE-2 and CANRACE Investigators. GRACE risk score: Sex-based validity of in-hospital mortality prediction in Canadian patients with acute coronary syndrome. Int J Cardiol 2017; 244: 24-29 [PMID: 28645803 DOI: 10.1016/j.ijcard.2017.06.055]
- 15 Yu T, Tian C, Song J, He D, Wu J, Wen Z, Sun Z. Value of the fT3/fT4 ratio and its combination with the GRACE risk score in predicting the prognosis in euthyroid patients with acute myocardial infarction undergoing percutaneous coronary intervention: a prospective cohort study. BMC Cardiovasc Disord 2018; **18**: 181 [PMID: 30200880 DOI: 10.1186/s12872-018-0916-z]
- Stamatelopoulos K, Mueller-Hennessen M, Georgiopoulos G, Sachse M, Boeddinghaus J, Sopova K, Gatsiou A, Amrhein C, Biener M, Vafaie M, Athanasouli F, Stakos D, Pateras K, Twerenbold R, Badertscher P, Nestelberger T, Dimmeler S, Katus HA, Zeiher AM, Mueller C, Giannitsis E, Stellos K. Amyloid-β (1-40) and Mortality in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome: A Cohort Study. Ann Intern Med 2018; 168: 855-865 [PMID: 29799975 DOI: 10.7326/M17-1540]
- White HD, Westerhout CM, Alexander KP, Roe MT, Winters KJ, Cyr DD, Fox KA, Prabhakaran D, Hochman JS, Armstrong PW, Ohman EM; TRILOGY ACS investigators. Frailty is associated with worse outcomes in non-ST-segment elevation acute coronary syndromes: Insights from the TaRgeted platelet Inhibition to cLarify the Optimal strateGy to medicallY manage Acute Coronary Syndromes (TRILOGY ACS) trial. Eur Heart J Acute Cardiovasc Care 2016; 5: 231-242 [PMID: 25897147 DOI: 10.1177/2048872615581502]
- Mao Q, Zhou D, Li Y, Wang Y, Xu SC, Zhao XH. The Triglyceride-Glucose Index Predicts Coronary Artery Disease Severity and Cardiovascular Outcomes in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Dis Markers 2019; 2019: 6891537 [PMID: 31281548 DOI: 10.1155/2019/6891537]
- Zhang L, Wu WC, Ma H, Wang H. Usefulness of layer-specific strain for identifying complex CAD and predicting the severity of coronary lesions in patients with non-ST-segment elevation acute coronary syndrome: Compared with Syntax score. Int J Cardiol 2016; 223: 1045-1052 [PMID: 27592047 DOI: 10.1016/j.ijcard.2016.08.277]
- 20 Farooq V, Vergouwe Y, Généreux P, Bourantas CV, Palmerini T, Caixeta A, Garcia-Garcia HM, Diletti R, Morel MA, McAndrew TC, Kappetein AP, Valgimigli M, Windecker S, Dawkins KD, Steyerberg EW, Serruys PW, Stone GW. Prediction of 1-year mortality in patients with acute coronary syndromes undergoing percutaneous coronary intervention: validation of the logistic clinical SYNTAX (Synergy Between Percutaneous Coronary Interventions With Taxus and Cardiac Surgery) score. JACC Cardiovasc Interv 2013; 6: 737-745 [PMID: 23866185 DOI: 10.1016/j.jcin.2013.04.004]
- De Servi S, Crimi G, Calabrò P, Piscione F, Cattaneo M, Maffeo D, Toso A, Bartorelli A, Palmieri C, De Carlo M, Capodanno D, Barozzi C, Tomasi L, Della Riva D, Angiolillo DJ, Palmerini T. Relationship between diabetes, platelet reactivity, and the SYNTAX score to one-year clinical outcome in patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention. EuroIntervention 2016; 12: 312-318 [PMID: 27320425 DOI: 10.4244/EIJV12I3A51]
- Chen X, Guo Y, Lai L, Zhang S, Li Z. Intracoronary and peripheral blood levels of TNF-like Cytokine 1A (TL1A) in patients with acute coronary syndrome. Medicine (Baltimore) 2020; 99: e20305 [PMID: 32481400 DOI: 10.1097/MD.00000000000020305]

Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

Telephone: +1-925-3991568

E-mail: bpgoffice@wjgnet.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

