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Abstract
In recent years, the application of artificial intelligence (AI) in radiology has been 
growing rapidly, fueled by the availability of large datasets, advances in 
computing power, and newly developed algorithms. Progress in AI applied to 
medical imaging analyses has transformed these images into quantitative data, 
termed radiomics. When combined with patients’ clinical data, these models, 
when developed by machine learning, have the potential to improve diagnostic, 
prognostic, and predictive accuracy. Currently, limited literature is available on 
the use of radiomics for pancreatic disease. Here, we will review recent studies in 
the application of AI in a variety of pancreatic diseases, mainly involving lesion 
detection, tumor characterization, tumor grading, response, and prognosis 
evaluation. Finally, we will also discuss the challenges and prospects in the field 
of radiomics for pancreatic disease.

Key words: Artificial intelligence; Machine learning; Deep learning; Radiomics; Texture 
analysis, Pancreas
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Core tip: The integration of radiomics, clinical data, and advanced machine-learning 
methodologies will improve diagnostic, prognostic, and predictive accuracy in patients 
with pancreatic disease, and facilitate clinical decision and management towards precision 
medicine.

Citation: Chen BB. Artificial intelligence in pancreatic disease. Artif Intell Med Imaging 2020; 
1(1): 19-30
URL: https://www.wjgnet.com/2644-3260/full/v1/i1/19.htm
DOI: https://dx.doi.org/10.35711/aimi.v1.i1.19

https://www.f6publishing.com
https://dx.doi.org/10.35711/aimi.v1.i1.19
http://orcid.org/0000-0001-7058-1427
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:bangbin@gmail.com
https://www.wjgnet.com/2644-3260/full/v1/i1/19.htm
https://dx.doi.org/10.35711/aimi.v1.i1.19


Chen BB. AI in pancreatic disease

AIMI https://www.wjgnet.com 20 June 28, 2020 Volume 1 Issue 1

Published online: June 28, 2020

P-Reviewer: Cimen SG 
S-Editor: Wang JL 
L-Editor: A 
E-Editor: Xing YX

INTRODUCTION
Artificial intelligence (AI) describes the use of computers to simulate performance and 
critical thinking equivalent to a human being. Its application in radiology has been 
growing rapidly, powered by the availability of large datasets, advances in computing 
power, and newly developed algorithms[1]. The progress in AI of medical imaging 
analyses has converted these images into quantitative and minable data to facilitate 
better clinical decisions and management[2,3]. This comprehensive method, when used 
to analyze high-dimensional quantitative features from multimodality medical images, 
is known as radiomics[4].

To establish robust quantitative image analyses, standardized methodologies are 
required based on various image modalities, such as those of computed tomography 
(CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), 
especially for texture- and filter-based features[5,6]. After the mining of correlations 
between these features and diagnosis/prognosis of tumors, tumors can then be 
decoded into different imaging phenotypes[7]. These data are then combined with other 
patients’ data to develop models that can potentially enhance diagnostic, prognostic, 
and predictive accuracy[8]. Because these analyses are based on the standard of care 
images, it is imaginable that radiomics analysis will eventually become routine 
practice[9,10].

There are three approaches to data-mining for radiomics, including hand-crafted 
features, deep features, and a hybrid method. Traditional radiomics is done with the 
computation of agnostic hand-crafted features, which are computed automatically by 
image analysis algorithms[5]. For instance, texture analysis has been widely used to 
quantify intuitive qualities by measuring the spatial variation in pixel intensities on 
images. In contrast to traditional radiomics, deep-learning extracts deep features from 
medical images based on the specifications of a pre-defined task, including disease 
diagnostics, cancer type prediction, or survival prediction. These deep features can be 
obtained via various architectures, such as a convolutional neural network (CNN), to 
find the most relevant features related to a pre-defined task[11]. Thus, they can 
automatically learn the best features for a given task, without the need for human 
involvement for feature design. Recent studies have shown better performance by 
deep learning methods over traditional radiomics[12,13]. Besides, the hybrid method, 
which combines hand-crafted and deep features, could provide complementary 
information for the radiological evaluation in cancer patients[14-16].

The currently available literature on the use of radiomics for pancreatic disease is 
limited. Here, we will review recent studies in the application of texture analysis and 
radiomics in pancreatic malignancy, mainly involving cancer detection, grading, 
response, and prognosis evaluation. We will also review the performance of radiomics 
in differentiating between pancreatic cancer and other benign pancreatic lesions, such 
as autoimmune pancreatitis (AIP) and mass-forming pancreatitis (MFP). Finally, we 
will discuss the challenges and prospects in the field of radiomics for pancreatic 
disease. A summary table (Table 1) is also presented based on our review of the recent 
literature.

PANCREATIC DUCTAL ADENOCARCINOMA
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related 
deaths in the USA. The 5-year survival for PDAC is only 8%, due to its aggressive 
nature and late-stage presentation when discovered in most patients[17]. Therefore, 
early detection of PDAC is critical, because surgical resection is the only method to 
cure this disease. In patients receiving a surgical intervention, the involvement of 
regional lymph nodes and residual tumor at the surgical margin are also important 
issues related to survival outcome. In patients with metastatic disease receiving 
chemotherapy or radiotherapy, the use of radiomics to predict treatment response is 
being investigated.

Early detection of pancreatic ductal adenocarcinoma
Radiomics might offer an advantage over other techniques in the early detection of 
PDAC. This is because the subtle difference of the texture patterns between early 
cancer and normal pancreas might be discernable using radiomic features prior to 
visual detection.

Chu et al[18] used 3D CT radiomic features to differentiate PDAC and normal 
pancreas by manually segmented features of the pancreas. The dataset included 190 



Chen BB. AI in pancreatic disease

AIMI https://www.wjgnet.com 21 June 28, 2020 Volume 1 Issue 1

Table 1 Recent publications using artificial intelligence and radiomics in pancreatic disease

Ref. Year Disease Number Training/testing Modality Design Feature 
selection Results

PADC detection

Chu et al[18] 2019 PDAC vs normal 190:190 255/125 CT Retrospective RF Accuracy: 99.2%; 
AUC: 0.99

Liu et al[19] 2020 PDAC vs normal 370:320 PDAC: 295/256; 
Normal: 75/64

CT Retrospective CNN Accuracy: 98.6-
98.9%; AUC: 
0.997-0.999

Li et al[21] 2020 LN metastasis 159 118/41 CT Retrospective LASSO Combined 
model; AUC: 
Training/test = 
0.944/0.912

Bian et al[22] 2019 LN metastasis 225 - CT Retrospective LASSO The arterial rad-
score is 
associated with 
the risk of LN 
metastasis.

Hui et al[25] 2020 R0 vs R1 after PD 34:52 - CT Retrospective SVM AUC: 0.8614 
Accuracy: 
84.88%

Bian et al[26] 2020 SMV margin (R0 vs 
R1) after PD

127:54 - CT Retrospective LASSO AUC: 0.75

Zhang et al[28] 2018 POPF after PD 117 80/37 CT Retrospective LASSO AUC: 
Training/test 
0.8248/0.7609

Xie et al[32] 2020 PFS and OS 220 147/73 CT Retrospective LASSO Rad-score is 
better than 
clinical model 
and TNM system

Cozzi et al[33] 2019 OS and local control 
after SBRT

100 60/40 CT Retrospective Elastic net 
regularization, 
Cox regression 
models

Identify low and 
high-risk groups

IPMN

Chakraborty 
et al[41]

2018 Low risk vs high 
risk

103 CT Retrospective RF, SVM AUC: 0.77

Corral et al[42] 2019 Normal pancreas, 
low-grade 
dysplasia, high-
grade dysplasia, 
and 
adenocarcinoma

139 
(31:48:20:40)

- MRI Retrospective Deep learning AUC: 0.78

PNET

Liang et al[49] 2019 Grade 1 vs 2/3 137 86/51 CT Retrospective LASSO AUC: 
Training/test = 
0.907/0.891

Gu et al[50] 2019 Grade 1 vs 2/3 138 104/34 CT Retrospective MRMR, RF AUC: 
Training/test = 
0.974/0.902

Bian et al[51] 2020 Grade 1 vs 2/3 (non-
functional)

139 97/42 MRI Retrospective LASSO and LDA AUC: 
Training/test = 
0.851/0.736

Other pancreatic lesions

Park et al[54] 2020 AIP vs PDAC 85: 93 60/29: 60/33 CT Retrospective RF Accuracy: 95.2%; 
AUC: 0.975

Zhang et al[55] 2019 AIP vs PDAC 45: 66 - PET/CT Retrospective RF, adaptive 
boosting, SVM

Accuracy: 85%; 
AUC: 0.93

Ren et al[56] 2019 MFP vs PDAC 79: 30 69/40 CT Retrospective Mann-Whitney U 
test, MRMR

AUC: 0.98
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Mashayekhi 
et al[57]

2020 Functional 
abdominal pain, 
recurrent acute 
pancreatitis, chronic 
pancreatitis

20:19:17 - CT Retrospective Isomap and SVM Accuracy: 82.1%

Yang et al[58] 2019 Serous vs mucinous 
cystadenoma

53: 25 4:1 CT Retrospective RF Accuracy: 83%; 
AUC: 0.75

AIP: Autoimmune pancreatitis; AUC: Area under receiver operating characteristic curve; CNN: Convolutional neural network; DFS: Disease-free survival; 
IPMN: Intraductal papillary mucinous neoplasms; LASSO: Least absolute shrinkage and selection operator; LDA: Linear discriminative analysis; LN: 
Lymph node; MFP: Mass-forming pancreatitis; MRMR: Minimum redundancy maximum relevance; OS: Overall survival; PD: Pancreaticoduodenectomy; 
PDAC: Pancreatic ductal adenocarcinoma; PET: Positron emission tomography; PFS: Progression-free survival; PNET: Pancreatic neuroendocrine tumor; 
POPF: Postoperative pancreatic fistula; RF: Random forest; SBRT: Stereotactic body radiation therapy; SVM: Support vector machine; SMV: Superior 
mesenteric vein.

patients with PDAC and 190 healthy controls, and was divided into 255 training and 
125 validation cases. A total of 478 features was extracted, and 40 features were 
selected for analysis by a random forest (RF) classifier. The overall accuracy was 
99.2%, and the area under the curve (AUC) was 99.9%. The results were encouraging 
for using radiomics in the early detection of PDAC, but a limitation of this study was 
that the manual segmentation of pancreas boundaries was a labor-intensive work and 
required expert knowledge of radiologists.

To overcome this limitation, Liu et al[19] used CNN to distinguish 370 patients with 
pancreatic cancer and 320 normal controls. CT images were preprocessed into patches 
to classify as cancerous or non-cancerous. In local test sets, CNN-based analysis had an 
accuracy of 0.986–0.989 and AUC of 0.997–0.999. In the test set (281 pancreatic cancers 
and 82 controls) of a different country, the accuracy was 0.832 and AUC was 0.920. The 
sensitivity for tumors smaller than 2 cm was 92.1% in the local test sets and 63.1% in 
the other country test set. When compared with radiologists’ interpretation, CNN-
based analysis achieved higher sensitivity than radiologists. Therefore, this method 
could be incorporated into the development of computer-aided detection software for 
pancreatic cancer detection. In clinical practice, other benign lesions, such as MFP or 
AIP, might mimic PDAC. Whether CNNs can distinguish between PDAC and other 
pancreatic pathologies, such as pancreatitis and other pancreatic tumors, must also be 
further studied. Besides, about 11%–27% of pancreatic cancer is enhancing the 
pancreatic parenchyma and not visible on contrast-enhanced CT[20]. It is interesting to 
see whether radiomics can detect this particular type of PDAC.

Predicting lymph node metastasis
Accurate identification of the extent of lymph node (LN) metastasis is critical for the 
determination of surgical methods in resectable PDAC.

Li et al[21] developed a model integrating clinical data and imaging features extracted 
from venous phase CT to predict LN metastasis. Their study included 159 patients 
with PDAC (118 in the primary cohort and 41 in the validation cohort). A total of 2041 
radiomics features were extracted, and 15 features were selected for constructing the 
radiomics signature in the primary cohort. A combined prediction model was built by 
integrating the radiomics signature and clinical characteristics selected by using 
multivariable logistic regression. The combined prediction model reached a better 
discrimination power than the clinical prediction model, with an AUC of 0.944 vs 0.666 
in the primary cohort, and 0.912 vs 0.713 in the validation cohort.

Bian et al[22] used arterial phase CT images to predict LN metastasis in 225 patients. 
A total of 1029 radiomics features of the arterial phase were extracted and then 
reduced using the least absolute shrinkage and selection operator logistic regression 
(LASSO) algorithm. Multivariate logistic regression models were used to analyze the 
association. The radiomics score (rad-score), which consisted of 12 selected features, 
was significantly associated with LN status, both in univariate and multivariate 
analyses. Higher arterial rad-score was also associated with LN metastasis. In the 
future, it is necessary to establish a one-to-one correlation between the imaging 
findings and the pathological evidence of LN metastasis.

Predicting surgical margin and postoperative pancreatic fistula after 
pancreaticoduodenectomy
In a pathological examination after pancreaticoduodenectomy (PD), a resection margin 
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without cancer cells in 1 mm is considered as R0; a resection margin with cancer cells 
in 1 mm is considered as R1. The preoperative identification of R0 and R1 is a 
determining factor for surgical decisions and prognosis[23,24].

Hui et al[25] retrospectively analyzed CT images of 86 patients (34 cases of R0 and 52 
cases of R1) with pancreatic head PDAC and that underwent PD. The radiomics 
features were reduced using principal component analysis. The support vector 
machine (SVM) with a linear kernel was used to classify the resection margins with 
leave-one-out cross-validation. The results achieved an AUC of 0.8614 and an accuracy 
of 84.88%. Two features of the run-length matrix, which are derived from diagonal 
sub-bands in wavelet decomposition, showed significant differences between R0 and 
R1.

Similarly, Yun et al[26] used a portal rad-score to predict pathologic superior 
mesenteric vein (SMV) resection margin in 181 patients. For each patient, 1029 
radiomics features of the portal phase were extracted, which were reduced using the 
LASSO logistic regression algorithm. The rad-score was significantly associated with 
the SMV resection margin status. The portal rad-score had an accuracy of 71.3% and 
AUC of 0.750. Although radiomics seem promising in predicting SMV section margin, 
assessment of all pancreatic resection margins is needed to predict patients’ outcomes. 
Furthermore, the radiomic features of mesopancreas (located between the superior 
mesenteric artery and the uncinate process) are more likely to predict the status of the 
section margin than those of a primary tumor, because it is regarded as the primary 
site of cancer cell infiltration[27].

Zhang et al[28] used radiomic features extracted from the portal venous phase CT for 
the preoperative prediction of postoperative pancreatic fistula (POPF) in 117 patients 
receiving PD. The rad-score was constructed by LASSO, and its performance was 
compared with standard pancreatic Fistula Risk Score. Their rad-score could predict 
POPF with an AUC of 0.8248 in the training cohort (80 patients) and of 0.7609 in the 
validation cohort (39 patients). In addition, the AUC of the rad-score was statistically 
higher than the Fistula Risk Score for predicting POPF in both cohorts.

Predicting therapy response
Many researchers have utilized radiomic features derived from pretreatment CT to 
identify imaging phenotypes that might predict the treatment response in patients 
with PDAC.

Chen et al[29] assessed the response of pancreatic head cancer during chemoradiation 
therapy in 20 patients. They found that significant changes in CT radiomic features 
were observed during therapy based on quantitative analysis of daily CT. In cases of 
good response, patients tend to have large reductions in mean histograms of CT 
number and skewness, and large increases in standard deviation and kurtosis. Thus, a 
high reduction of these features might suggest early treatment response and could be 
used to identify patients that need therapeutic intensification.

Borazanci et al[30] used texture analysis to predict treatment response to poly 
adenosine diphosphate-ribose polymerase (PARP) inhibitors. In 13 patients with 
PDAC who have deoxyribonucleic acid damage repair deficiency mutations, 
exploratory analysis of index lesions revealed correlations between lesion texture 
features with overall survival (OS), and also with time on PARP inhibitors.

Yue et al[31] stratified patients into low and high-risk groups using pre- and post-
radiotherapy 18F-FDG-PET/CT images from 26 patients. A total of 48 texture and 
clinical variables were identified, and the prognostic heterogeneity features were 
selected using LASSO/elastic net regression and multivariate Cox analysis. After 
radiotherapy, the metabolic activity in the primary tumor was suppressed, and 
underlying tissue heterogeneity was reduced. The authors identified five significant 
variables: Age, node stage, variations of homogeneity, variance, and cluster tendency. 
These patients could be stratified into two risk groups: A low-risk group (n = 11) with 
a longer mean OS and higher texture variation (> 30%), and a high-risk group (n = 15) 
with a shorter mean OS and lower texture variation (< 15%). The authors concluded 
that locoregional metabolic texture response might predict clinical outcomes following 
radiotherapy.

Predicting prognosis
Recent studies have suggested that radiomic features extracted from CT and PET were 
predictive of the survival outcome of PDAC patients.

Xie et al[32] developed a CT-based radiomics nomogram for survival prediction in 
patients with resected PDAC in 220 patients (training = 147; validation = 73). A total of 
300 radiomic features were extracted, followed by LASSO with multivariate regression 
analysis. The rad-score was significantly associated with disease-free survival (DFS) 
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and OS. Radiomics nomogram could better predict survival than the clinical model, 
and the TNM staging system could. However, there was no association between the 
rad-score and recurrence patterns.

Cozzi et al[33] used CT radiomics signature to predict clinical outcomes after 
stereotactic body radiation therapy in 100 patients (training = 60; validation = 40) and 
found a clinical-radiomics signature was associated with OS and local control.

The value of texture features to predict prognosis and help clinical management in 
PDAC patients has been evaluated in several studies. In patients undergoing surgical 
resection, Kim et al[34] found that high grey-level non-uniformity values suggested 
shorter recurrence-free survival in 116 patients, suggesting that high tumor 
heterogeneity was a poor prognostic indicator. However, Yun et al[35] found that lower 
average values with homogeneous features (lower standard deviation and contrast 
and higher correlation) were significantly associated with poorer DFS in 18 patients. 
They conjectured that homogeneous texture features could represent more aggressive 
tumor nature, resulting from higher cellular density or dense desmoplasia. Besides, 
Eilaghi et al[36] found that high tumor dissimilarity (high heterogeneity) and low 
inverse difference normalized (low heterogeneity) were associated with better OS in 30 
patients. Therefore, the results of correlations between tumor heterogeneity with 
surgical outcome were contradictory and need further investigation.

In patients with unresectable PDAC treated with chemotherapy, Cheng et al[37] 
found pretreatment CT texture analysis was associated with PFS and OS in 41 patients. 
Besides, a combination of pretreatment standard deviation (spatial scaling factor = 3) 
with tumor size in the survival model performed better than the standard deviation 
alone. Similarly, Sandrasegaran et al[38] found that texture features of the mean value of 
positive pixels and kurtosis at medium spatial filters had a significant correlation with 
OS in 60 patients.

Hyun et al[39] evaluated intratumoral heterogeneity measured by 18F-FDG PET 
texture analysis in 137 patients. The best imaging biomarker for OS prediction was 
first-order entropy (AUC = 0.720), followed by total lesion glycolysis (AUC = 0.697), 
metabolic tumor volume (AUC = 0.692), and maximum standard uptake value (AUC = 
0.625). Multivariable Cox analysis demonstrated that higher entropy was 
independently associated with worse survival. Thus, first-order entropy is a better 
quantitative imaging biomarker of prognosis than conventional PET parameters.

INTRADUCTAL PAPILLARY MUCINOUS NEOPLASMS GRADE AND RISK
Intraductal papillary mucinous neoplasms (IPMN) represents 15%–30% of cystic 
lesions of the pancreas. They are premalignant tumors that can progress from low-
grade dysplasia to high-grade dysplasia to invasive cancer, accounting for 20%–30% of 
pancreatic cancer[40]. The ability to identify IPMNs with low or high risk and malignant 
transformation into invasive cancer would optimize treatment strategy and improve 
surgical decision-making.

Chakraborty et al[41] retrospective analyzed pancreatic cyst and parenchyma regions 
on preoperative CT in 103 patients with pathologically proven branch duct-IPMN to 
predict IPMN risk. Expert pathologists categorized IPMNs as low or high risk 
following resection. A total of 131 texture features were derived from each cyst and 
pancreas regions. Five clinical variables were combined with imaging features to 
design prediction models. Their results of CT features achieved an AUC of 0.77, and 
the combination model obtained an AUC of 0.81.

Corral et al[42] developed a new deep learning protocol on MRI to identify neoplasia 
for IPMN in 139 cases. A computer-aided framework was designed using CNN to 
classify IPMN. Their cases included normal pancreas (20%), low-grade dysplasia 
(34%), high-grade dysplasia (14%), and adenocarcinoma (29%). The sensitivity and 
specificity of the deep learning protocol to detect dysplasia were 92% and 52%, and to 
detect high-grade dysplasia or cancer were 75% and 78%, respectively. The deep 
learning protocol showed accuracy (AUC = 0.78) comparable to current radiographic 
criteria (American Gastroenterology Association, AUC = 0.76; Fukuoka, AUC = 0.77). 
Their computer-aided frameworks could assist in identifying high-risk IPMN.

Hanania et al[43] investigated 360 texture features on CT images in 53 patients with 
IPMN (34 high-grade and 19 low-grade). These authors identified 14 imaging features 
within the gray-level co-occurrence matrix that predicted histopathological grade. The 
most predictive feature differentiated low-grade and high-grade lesions with an AUC 
of 0.82 (sensitivity 85%, specificity 68%). Using a cross-validated design, the best 
logistic regression yielded an AUC of 0.96 (sensitivity 97%, specificity of 88%).
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Permuth et al[44] evaluated 38 IPMNs (20 benign, 18 malignant) with preoperative CT 
radiomic data and matched plasma-based miRNA genomic classifier data. The miRNA 
classifier, high-risk, and worrisome radiologic features had AUC values of 0.83, 0.84, 
and 0.54, respectively. Fourteen CT radiomic features differentiated malignant from 
benign IPMNs with an AUC of 0.77. Combining radiomic features with the miRNA 
classifier revealed an AUC of 0.92 and superior predictive performance than other 
models. This study suggested that radiogenomic approach might more accurately 
predict IPMN pathology than radiologic features in consensus guidelines.

PANCREATIC NEUROENDOCRINE TUMOR GRADES
Recent updates of the World Health Organization classification separate pancreatic 
neuroendocrine tumor (PNET) into two broad categories, including the Ki-67 
proliferative index and mitotic counts: Well-differentiated PNET and poorly 
differentiated pancreatic neuroendocrine carcinoma (PNEC). The classification also 
incorporates a new subcategory of well-differentiated grade 3 (G3) PNET[45]. The 
assessment of tumor grade is essential for the prediction of prognosis and choice of the 
proper treatment strategy.

D’Onofrio et al[46] evaluated 3D CT-texture analysis in 100 patients with NET [grade 
1 (G1) in 31, grade 2 (G2) in 52, and G3 in 17 cases]. Their results showed kurtosis was 
significantly different among the three groups, and entropy was significantly different 
between the G1 and G3 groups and between the G2 and G3 groups.

Guo et al[47] evaluated CT images of 37 patients (G1 in 13, G2 in 11, and G3 in 13 
cases). Arterial enhancement ratio and portal enhancement ratio showed the best 
sensitivity (0.86–0.94) and specificity (0.92–1.0) for differentiating G3 from G1/G2, 
while the mean grey-level intensity, entropy, and uniformity showed acceptable 
sensitivity (0.73–0.91) and specificity (0.85–1.0). Mean grey-level intensity also showed 
acceptable sensitivity (91% to 100%) and specificity (82% to 91%) in differentiating G1 
from G2.

Canellas et al[48] evaluated CT images of 101 patients (G1 in 63, G2 in 35, and G3 in 3 
cases). The CT features predictive of G2/3 were size larger than 2.0 cm, presence of 
vascular involvement, pancreatic ductal dilatation, and lymphadenopathy. The texture 
parameter entropy was also predictive of more aggressive tumors. Tumors with high 
grade (G2/3), vascular invasion, and high entropy had shorter PFS after surgical 
resection.

Liang et al[49] used arterial phase CT to preoperatively differentiate grade 1 and 
grade 2/3 NET of 137 patients (training = 86, validation = 51). The Mann-Whitney U 
test and LASSO were applied for feature selection, and an eight-feature-combined 
radiomics signature was constructed. The nomogram model combining the radiomics 
signature with the clinical stage had the best performance (training AUC = 0.907; 
validation AUC = 0.891). A significant correlation was found between the nomogram 
model and the Ki-67 index and the rate of nuclear mitosis. The survivals of predicted 
grade 1 and grade 2/3 groups were significantly different.

Gu et al[50] used arterial and portal venous phase CT images for preoperatively 
predicting grade 1 and grade 2/3 NET in 138 patients (training = 104, validation = 34). 
A total of 853 radiomic features were extracted. Minimum redundancy, maximum 
relevance, and RF methods were adopted for the feature selection. The radiomics 
signature had a significant association with histologic grade. The nomogram 
incorporating independent clinical risk factor, tumor margin, and fusion radiomics 
signature showed strong discrimination in the training cohort (AUC = 0.974) and 
validation cohort (AUC = 0.902) with good calibration.

Bian et al[51] used 3T MRI for the preoperative prediction of nonfunctional PNET 
grade in 139 cases (training = 97, validation = 42). The LASSO and linear 
discriminative analysis were used to select the features and to construct a radiomics 
model. The clinical model revealed an AUC of 0.769 in the training cohort and 0.729 in 
the validation cohort. The mixed model, which combined the radiomics signature and 
14 imaging features, yielded AUC values of 0.870 and 0.701. Thus, the noncontrast 
MRI could be used as a screening tool to help differentiate G1 and G2/3 tumors.

Currently, most studies have attempted to differentiate between G1 and G2/3 
PNETs. However, the 5-year survival rates were 75%, 62%, and 7% for G1, G2, and G3, 
respectively[52]. It would be more valuable to show the diagnostic values of the 
nomogram model in differentiating G1/G2 and G3. Furthermore, the G3 tumors are 
divided into two subgroups: Well-differentiated PNETs G3 and PNEC[53]. The 
prognosis of the two subgroups is also different. Further studies are now needed to 
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differentiate well-differentiated PNET G3 and PNEC, and between PNETs G1/G2 and 
G3.

PANCREATIC TUMOR CHARACTERIZATION
Autoimmune pancreatitis vs pancreatic ductal adenocarcinoma
AIP has similar clinical and radiological presentations to PDAC, but the treatments of 
these two entities are different. Patients with AIP might be treated with oral 
corticosteroids, but patients with PDAC need surgical resection and chemotherapy. 
Thus, the differentiation of these two entities is imperative to avoid unnecessary 
surgical resections in patients with AIP or delayed treatment in patients with PDAC.

Park et al[54] used CT-based machine learning of radiomic features to distinguish AIP 
from PDAC. Eighty-nine patients with AIP and 93 patients with PDAC were 
retrospectively included. Four-hundred-thirty-one radiomic features were extracted, 
and a RF method was used to discriminate AIP from PDAC. The radiomic features 
help differentiate AIP from PDAC with a sensitivity of 89.7%, specificity of 100%, 
accuracy of 95.2%, and AUC of 0.975.

Zhang et al[55] used 18F FDG PET/CT to distinguish AIP from PDAC in 111 patients 
(AIP = 45, PDAC = 66). They extracted 251 features from 2D and 3D images and 
recombined these features into five feature sets according to their modalities and 
dimensions. Four machine learning classifiers were evaluated. CT features and 3D 
features performed better than PET features and 2D features, respectively. 
Multidomain features were superior to single domain features. In addition, the 
combination of the SVM-recursive feature elimination feature selection strategy and 
linear SVM classifier had the best performance (AUC = 0.93, accuracy= 0.85). The 
radiomics model was significantly superior to both human doctors and clinical factors-
based prediction models.

The results of these studies are encouraging. For future work, combined features 
extracted from CNNs and more clinical factors to differentiate these two diseases 
would be an interesting direction to pursue.

Mass-forming pancreatitis vs pancreatic ductal adenocarcinoma
Ren et al[56] used arterial and portal phase CT texture analysis to differentiate 30 
patients with MFP and 79 patients with PDAC. Arterial CT attenuation, arterial, and 
portal enhancement ratios of MFP were higher than PDAC. Arterial CT attenuation 
and pancreatic duct penetrating sign were independent predictors in multivariate 
analysis. AUC of imaging feature-based, texture feature-based in arterial and portal 
phases, and the combined models were 0.84, 0.96, 0.93, and 0.98, respectively. Thus, CT 
texture analysis holds great potential to differentiate MFP from PDAC.

Mashayekhi et al[57] used CT radiomics to differentiate 56 patients with recurrent 
acute pancreatitis (n = 20), functional abdominal pain (n = 19), or chronic pancreatitis (
n = 17). In 54 radiomic features extracted by one-vs-one Isomap SVM classifier, 11 
radiomic features were significantly different between the patient groups with an 
overall accuracy of 82.1%.

Serous and mucinous cystadenomas
Yang et al[58] used CT textural features in the differential diagnosis of pancreatic serous 
cystadenomas (n = 53) and mucinous cystadenomas (n = 25). Textural parameters were 
analyzed using RF and LASSO methods. Patients were divided into training and 
validation sets with a ratio of 4:1. Radiomic features were able to separate serous from 
mucinous cystadenomas in both the training group (slice thickness of 5 mm, AUC 0.72, 
accuracy 0.86) and the validation group (AUC 0.75, accuracy 0.83). These results might 
provide a noninvasive approach to determine whether surgery or imaging follow up is 
suitable for these patients.

CHALLENGES AND PROSPECTS OF ARTIFICIAL INTELLIGENCE IN THE 
PANCREAS
There are three main challenges for the application of AI in the pancreas. First, the 
image analysis methods are diverse and variable, so many study results are 
inconsistent and contradictory. To ensure the availability of accurate and reproducible 
radiomics data, the initiatives to standardize the development of quantitative imaging 
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biomarkers have recently been developed[59]. Second, the public data of pancreatic 
imaging available for machine-learning is insufficient, because most early pancreatic 
lesions are small and occult, and require labor-intensive work from experienced 
radiologists to label the target lesion. Automatic detection and segmentation of these 
pancreatic lesions, either with or without the aid of a radiologist, is needed to solve 
this issue. Third, most studies are retrospective, with limited clinical, laboratory, and 
outcome data. Previous studies have shown that combined models of radiomic and 
clinical factors achieve better performance than each individual model. Upcoming 
prospective studies that combined radiomics and clinical data, even with genomic 
data, are warranted. Ultimately, it is only with the availability of robust integrated 
radiomics and comprehensive clinical data that we can proceed to deploy AI in daily 
practice to improve the care of our patients.

CONCLUSION
The pancreas has both an endocrine and an exocrine digestive function, and its 
imaging presentations are diverse and frequently pose a diagnostic dilemma in clinical 
settings. The use of AI will greatly facilitate accurate pancreatic lesion detection, 
characterization, treatment response evaluation, and prognosis prediction in these 
patients. Currently, radiomics is under rigorous investigation in various pancreatic 
diseases, and recent study results are promising. With the growth of advanced AI 
technology and the availability of standardized imaging data, it seems likely that we 
will accomplish the goal of precision medicine and increase patients’ outcomes in the 
near future.
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