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Abstract
Coronary artery disease (CAD) has become a major illness endangering human 
health. It mainly manifests as atherosclerotic plaques, especially vulnerable 
plaques without obvious symptoms in the early stage. Once a rupture occurs, it 
will lead to severe coronary stenosis, which in turn may trigger a major adverse 
cardiovascular event. Computed tomography angiography (CTA) has become a 
standard diagnostic tool for early screening of coronary plaque and stenosis due 
to its advantages in high resolution, noninvasiveness, and three-dimensional 
imaging. However, manual examination of CTA images by radiologists has been 
proven to be tedious and time-consuming, which might also lead to intra- and 
interobserver errors. Nowadays, many machine learning algorithms have enabled 
the (semi-)automatic diagnosis of CAD by extracting quantitative features from 
CTA images. This paper provides a survey of these machine learning algorithms 
for the diagnosis of CAD in CTA images, including coronary artery extraction, 
coronary plaque detection, vulnerable plaque identification, and coronary stenosis 
assessment. Most included articles were published within this decade and are 
found in the Web of Science. We wish to give readers a glimpse of the current 
status, challenges, and perspectives of these machine learning-based analysis 
methods for automatic CAD diagnosis.

Key words: Machine learning; Deep learning; Coronary artery disease; Atherosclerotic 
plaque; Vulnerability; Stenosis; Segmentation; Computed tomography angiography
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Core tip: There are reviews that contributed to the segmentation of the coronary artery, 
detection of calcified plaques, and calculation of fractional flow reserve. To the best of our 
knowledge, this is the first paper to survey the machine learning algorithms for the 
diagnosis of coronary artery disease in computed tomography angiography images, 
including extraction of coronary arteries, detection of calcified, soft and mixed plaques, 
identification of plaque vulnerability features including low density plaque, positive 
remodeling, spot calcification, and napkin ring sign, assessment of both anatomically and 
hemodynamically significant stenosis, and the challenges and perspectives of these 
machine learning-based analysis methods.

Citation: Zhao FJ, Fan SQ, Ren JF, von Deneen KM, He XW, Chen XL. Machine learning for 
diagnosis of coronary artery disease in computed tomography angiography: A survey. Artif 
Intell Med Imaging 2020; 1(1): 31-39
URL: https://www.wjgnet.com/2644-3260/full/v1/i1/31.htm
DOI: https://dx.doi.org/10.35711/aimi.v1.i1.31

INTRODUCTION
Coronary artery disease (CAD) has become a major illness endangering human health, 
which caused more than 17.6 million deaths worldwide in 2016[1]. Atherosclerotic 
plaque is the pathological basis of CAD, especially vulnerable plaques without 
obvious symptoms in the early stage. Once a rupture occurs, it will lead to severe 
coronary stenosis, which in turn may trigger a major adverse cardiovascular event[2]. 
Therefore in CAD diagnosis, it is urgent to accurately detect coronary plaques, identify 
their vulnerable features, and assess the resulting stenosis. Computed tomography 
angiography (CTA) has become a standard diagnostic tool for early screening of CAD 
due to its advantages in high resolution, noninvasiveness, and three-dimensional (3D) 
imaging[3]. However, manual examination of CTA images by radiologists has been 
proven to be tedious and time-consuming, which might also lead to intra- and 
interobserver errors[4].

To date, many state-of-the-art machine learning (ML) algorithms have enabled the 
(semi-)automatic diagnosis of CAD by extracting quantitative features from CTA 
images. These ML algorithms can be grouped into: (1) Conventional ML algorithms 
that are typically based on the predefined or hand-crafted features, such as linear 
regression, support vector machine (SVM), and random forests; and (2) Deep learning 
(DL) algorithms that can directly learn features from original medical images, such as 
the convolutional neural network (CNN) and recurrent neural network.

There are some reviews that contributed to the segmentation of the coronary 
artery[5], detection of calcified plaques[6], and calculation of fractional flow reserve 
(FFR) with both the rule-based (non-ML) and ML-based methods[7]. This paper 
provides a survey of the above two groups of ML methods in (semi-)automatic 
diagnosis of CAD, including coronary artery extraction, coronary plaque detection, 
vulnerable plaque identification, and coronary stenosis assessment (Figure 1 and 
Table 1). Most included articles were published within this decade and appear in the 
Web of Science. Instead of exhaustively listing all of the ML methods of coronary 
plaque diagnosis, we focus on typical ML-based methods with CTA images in recent 
years and summarize the challenges regarding these methods.

CORONARY ARTERY EXTRACTION
Due to the tortuous structure of the coronary arteries, it is necessary to perform 
multiplanar reconstruction or curved planar reconstruction visualization of CTA 
images before CAD diagnosis[8]. The reconstruction of both multiplanar reconstruction 
and curved planar reconstruction images relies on the extraction of coronary artery 
trees. In addition, some studies have directly carried out a plaque analysis along the 
cross-section perpendicular to the coronary artery[9,10]. It can be seen that the accurate 
extraction of coronary arteries plays an indispensable role in CAD diagnosis. Manual 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://www.wjgnet.com/2644-3260/full/v1/i1/31.htm
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Table 1 Summary of different machine learning-based methods used in coronary artery disease diagnosis

CAD diagnosis Method Task Category

Coronary artery extraction

Schaap et al[14] Linear and nonlinear regression Artery ML

Huang et al[15] 3D U-net Artery DL

Kong et al[16] ConvRNN + ConvGRU Artery DL

Shen et al[17] 3D FCN + level set Artery DL

Wu et al[18] CNN + nearest neighbor search Artery DL

Wolterink et al[19] 3D dilated CNN Centerline DL

Coronary plaque detection

Mittal et al[20] PBT, RF Calcified ML

Kurkure et al[21] SVM Calcified ML

Wei et al[22] Linear discriminant analysis Soft ML

Jawaid et al[23] SVM Soft ML

Tessmann et al[24] AdaBoost Multiple ML

Kelm et al[25] PBT, RF Multiple ML

Zhao et al[26] SVM Multiple ML

Zreik et al[27] CNN + RNN Multiple DL

Huo et al[28] Attention recognition dual network Calcified DL

Vulnerable plaque identification

Kolossváry et al[33] Radiomics NRS ML

Kolossváry et al[2] Radiomics LAP &NRS ML

Kolossváry et al[34] Logistic regression, K-nearest neighbors, RF, least 
angle regression, naive Bayes, Gaussian process 
classifier, decision trees, DNN

Advanced lesion ML, DL

Coronary stenosis assessment

Zuluaga et al[36] SVM ASS ML

Kang et al[37] SVM + formula-based analytical method ASS ML

Zreik et al[27] CNN + RNN ASS DL

Itu et al[41] DNN HSS DL

Wang et al[42] DeepVessel-FFR HSS DL

Dey et al[43] Boosted ensemble algorithm HSS ML

Kumamaru et al[44] 2D conditional generative adversarial network + 3D 
convolutional ladder network

HSS DL

ASS: Anatomically significant stenosis; CAD: Coronary artery disease; CNN: Convolutional neural network; ConvGRU: Convolutional gated recurrent 
unit; ConvRNN: Convolutional recurrent neural network; DL: Deep learning method; DNN: Deep neural network; FCN: Fully convolutional network; FFR: 
Fractional flow reserve; HSS: Hemodynamically significant stenosis; LAP: Low density plaque; ML: Conventional machine learning method; NRS: Napkin 
ring sign; PBT: Probability boosting tree; RF: Random forest; RNN: Recurrent neural network; SVM: Support vector machine.

extraction of the coronary arteries is labor intensive and observer dependent. 
Therefore, automatic/semi-automatic extraction methods have been adopted, such as 
the Hessian matrix method, mathematical morphology, and minimal cost path[5,11]. 
These traditional methods discriminate coronary arteries from the background based 
on intuitively and exquisitely designed models[12].

ML methods transfer the segmentation into the problem of pixel classification by 
assigning each pixel as the coronary artery or background[13]. Specifically, Schaap 
et al[14] employed both linear regression and nonlinear regression to learn the arterial 
geometry and appearance from annotated CTA images, and then made full use of the 
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Figure 1  Main topics of this survey, including coronary artery extraction, coronary plaque detection, vulnerable plaque identification, 
and coronary stenosis assessment. CTA: Computed tomography angiography.

learned knowledge to segment coronary arteries in unseen CTA images. Huang et al[15] 
introduced the 3D U-net, a typical fully convolutional network (FCN), to segment the 
coronary artery, which densely performed the pixel-wise classification via directly 
extracting features from CTA images. Alternatively, Kong et al[16] employed a 
convolutional recurrent neural network and a tree-structured convolutional gated 
recurrent unit to learn the anatomical structure of the coronary artery, and hereby they 
achieved accurate segmentation of coronary arteries. Recently, the combination of 
traditional methods (such as level set and nearest neighbor search) and DL methods 
(such as fully convolutional network and CNN) were also devised for coronary artery 
segmentation[17,18]. Moreover, Wolterink et al[19] trained a 3D dilated CNN to iteratively 
track the centerline points in CTA images in which the coronary artery could be 
reconstructed based on the extracted centerline and the radius of each centerline point.

CORONARY PLAQUE DETECTION
Depending on the degree of calcification, coronary plaques can be divided into 
calcified plaques (full calcification), soft plaques (no calcification), and mixed plaques 
(partial calcification). Mittal et al[20] used probability boosting trees and random forests 
to detect coronary calcified plaques with the designed rotation invariant features along 
the coronary centerline. Kurkure et al[21] adopted an SVM-based method to detect the 
calcification positions in the aorta and coronary arteries, amongst which they selected 
coronary calcified plaques. Wei et al[22] proposed a topological soft gradient pre-
screening method to obtain candidate soft plaques and then detected soft plaques from 
the candidate set by a linear discriminant analysis. Jawaid et al[23] divided the coronary 
cross-section into eight concentric circles. Then they constructed an SVM to identify 
abnormal coronary segments caused by soft plaques based on the difference in 
strength stability and localized and identified soft plaques. However, due to large 
morphological differences between different types of plaques, it is challenging to 
simultaneously detect multiple types of coronary plaques.

Thus, Tessmann et al[24] performed feature extraction on a cylindrical coronary 
region of interest and introduced the AdaBoost algorithm to identify calcified plaques 
and soft plaques. Kelm et al[25] regressed the vessel radius based on the pre-acquired 
centerline to evaluate stenosis and then constructed a classifier (similar to[20]) to 
determine the type of coronary plaques that caused the stenosis, so as to realize the 
classification of multiple types of plaques. Zhao et al[26] designed a random radial 
symmetric feature vector and augmented the training data by rotating the cross-
section with random angles. Then they trained an SVM to detect and classify 
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multiclass coronary plaques. With the advantages in representing the complex texture 
of medical images, DL methods have been brought to the domain of plaque image 
analysis. Zreik et al[27] constructed a CNN model to extract the image features of 
coronary artery sections, and then used a recurrent neural network to fuse the features 
extracted by multiple CNNs. Finally, they realized the detection and classification of 
different coronary plaques. Huo et al[28] proposed a weak supervised attention 
recognition dual network to perform the detection of calcified plaques, which required 
only scan-level labels instead of pixel-level labels.

VULNERABLE PLAQUE IDENTIFICATION
CTA imaging can evaluate plaque components in coronary arteries with the diameter 
greater than 1.5 mm[29]. Studies found that the plaque vulnerability in CTA images was 
closely related to low density plaque, positive remodeling, spotty calcification, and 
napkin ring sign (NRS)[30,31]. If a coronary plaque contains two or more of the above 
four vulnerable features, the plaque is more likely to be a vulnerable plaque[32]. 
Traditionally, visual inspection performed by radiologists is used to determine 
whether a coronary plaque contains the above vulnerable features. However, different 
patients have large individual differences in CTA imaging, resulting in the visual 
inspection relying heavily on experienced radiologists.

ML-based radiomics can extract a large number of quantitative features from the 
image to describe the complex texture and spatial structure of the lesion area, 
providing an automated solution for plaque vulnerability analysis. Kolossváry et al[33] 
applied radiomics to the identification of NRS in coronary CTA images, and the results 
showed that radiomic features were superior to traditional imaging parameters in 
distinguishing NRS and non-NRS plaques. Afterwards, they identified the low density 
plaque, NRS, and Na18F-positive vulnerable features in CTA images[2]. The results 
demonstrated that noninvasive CTA diagnosis could accurately distinguish high risk 
plaques that were previously diagnosed by intravascular ultrasound, optical coherence 
tomography, and positron emission tomography. In addition, they also collaborated 
with researchers from the Massachusetts General Hospital to identify advanced 
coronary atherosclerotic lesions through an ML-based radiomics analysis of ex vivo 
coronary CTA imaging[34]. The identification results on the cross-section were better 
than the visual inspection and histogram evaluation.

CORONARY STENOSIS ASSESSMENT
Various types of plaques are the main causes of coronary stenosis, i.e. narrowing of the 
coronary artery lumen, which will restrain blood flow to the myocardium and 
potentially lead to myocardial ischemia[35]. Therefore, the assessment of coronary 
stenosis is also an important aspect in the diagnosis of CAD. Taking physiology into 
account, coronary stenotic lesions are generally categorized as anatomically significant 
stenosis and hemodynamically significant stenosis, both of which can be 
noninvasively assessed by CTA imaging. Anatomically significant stenosis refers to 
the narrowing of the coronary lumen of at least 50%, which acts as the early 
assessment for the severity of stenosis in CAD patients. Zuluaga et al[36] employed SVM 
to detect coronary stenosis and arterial bifurcation based on the features of concentric 
circles in two-dimensional cross-sectional images. Kang et al[37] developed a structured 
learning algorithm based on SVM and a formula-based analytical method to detect 
both obstructive (with over 50% stenosis) and non-obstructive (with stenosis between 
25% and 50%) lesions. Furthermore, Zreik et al[27] applied a recurrent CNN on coronary 
artery multiplanar reconstruction images to detect different grades of anatomically 
significant stenosis, including no stenosis, nonsignificant stenosis (with less than 50% 
narrowing), and significant stenosis (with over 50% narrowing). However, the 
detected anatomically significant stenosis from CTA images has only moderate 
specificity for predicting hemodynamically significant stenosis (HSS) that causes 
myocardial ischemia[38].

Currently, FFR is the standard examination for diagnosis of HSS, which invasively 
measures the ratio of distal blood flow to the proximal blood flow of the stenosis by 
inserting a special catheter. FFR estimation based on CTA images (FFTCT) provides a 
noninvasive alternative for evaluating HSS based on computational fluid 
dynamics[39,40], which is accurate but computationally demanding due to the complex 
iterative computation. To improve the computation efficiency, Itu et al[41] proposed an 
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artificial neural network to predict the FFR value of each coronary artery segment 
based on the geometry and global features extracted from the most severe stenosis. 
Wang et al[42] developed a DL method (DEEPVESSEL-FFR) to calculate the FFR value 
from CTA images and predicted the ischemic risk of HSS. Both of the above ML-based 
FFR prediction methods only rely on the geometry of the coronary artery, leading to 
their susceptibility to the errors of coronary artery segmentation. Therefore, Dey et al[43] 
performed the HSS identification with a boosted ensemble algorithm, which combined 
the geometric features of stenosis with the volumes of plaques, the contrast density 
difference, and the plaque length. Moreover, Kumamaru et al[44] proposed a 3D DL 
model to identify patients with at least one HSS, where the model could automatically 
extract the representative features from the CTA dataset without segmentation or 
other data manipulation.

CHALLENGES AND PERSPECTIVES
ML algorithms have been widely used in the analysis of CTA images for CAD 
diagnosis, including the extraction of coronary arteries, diagnosis of plaques, and 
assessment of stenotic lesions. In particular, DL methods can directly extract task-
specific features from input CTA images, which have partially replaced conventional 
ML methods that depend on the hand-crafted features (or engineered features). 
Nevertheless, there are some merits and challenges for both the conventional ML 
methods and DL-based methods. (1) Conventional ML methods are more often 
involved in plaque and stenosis diagnosis, where the used hand-crafted features were 
designed according to the visual and clinical experience of radiologists. For this 
reason, the diagnostic results of these ML methods are inherently explainable, which 
means they can explicitly show task-relevant quantitative features. Moreover, these 
ML models are relatively simple and easy to train with only a small number of CTA 
images. However, the quantitative features used in the ML methods heavily depend 
on the careful designing by computer vision experts. How to develop or select task-
specific quantitative features requires extensive experience accumulation; and (2) DL-
based methods are sometimes applied in both coronary artery extraction, and stenosis 
and plaque diagnosis. DL methods can integrate the whole ML-based analysis 
workflow including (hand-crafted) feature extraction, feature selection, and classifier 
training into only one DL model, whose performance would be continuously 
improved via end-to-end learning as long as enough training samples are provided[45]. 
However, DL methods generally require a large number of training samples. As is 
known, manual labeling of coronary data is time-consuming and laborious, so the 
number of labeled samples is still very limited, even though there are large amounts of 
patient data in the clinics. Moreover, difficulty in interpretability may also prevent 
using the DL methods in clinical diagnosis of CAD.

Nevertheless, the DL method has become an important branch in the family of ML 
algorithms, especially for coronary artery segmentation and coronary stenosis 
assessment. It is foreseeable that most tasks in CAD diagnosis may start using DL 
methods or at least the combination of DL and conventional ML methods. For the 
latter, the DL method functions like a feature extractor, and the classifier from the 
conventional ML method carries out the subsequent classification. There are some 
solutions that may address the shortcomings of DL methods. For example, semi-
supervised DL methods in natural image processing can potentially solve the 
classification with only small labeled data. It is reported the prediction error of semi-
supervised methods using only 4000 labeled samples in the CIFAR-10 dataset was 
approximated to supervised learning with 50000 labeled samples[46,47]. Moreover, some 
studies tried to explain the decision made by a DL model by double-checking the 
results with an expert[48], generating a heat-map to highlight the input regions 
responsible for a specific task[49], or projecting the high-dimensional feature space to a 
bi-dimensional plane[50].

CONCLUSION
In conclusion, we have surveyed the ML-based CAD diagnostic methods in CTA 
images in recent years and highlighted the most typical application of both 
conventional ML and DL methods. We wish to give the readers a glimpse of the 
current status, challenges, and perspectives of these ML-based analysis methods for 
automatic CAD diagnosis.
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