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Abstract
Artificial intelligence (AI) is a computer science that tries to mimic human-like 
intelligence in machines that use computer software and algorithms to perform 
specific tasks without direct human input. Machine learning (ML) is a subunit of 
AI that uses data-driven algorithms that learn to imitate human behavior based 
on a previous example or experience. Deep learning is an ML technique that uses 
deep neural networks to create a model. The growth and sharing of data, 
increasing computing power, and developments in AI have initiated a 
transformation in healthcare. Advances in radiation oncology have produced a 
significant amount of data that must be integrated with computed tomography 
imaging, dosimetry, and imaging performed before each fraction. Of the many 
algorithms used in radiation oncology, has advantages and limitations with 
different computational power requirements. The aim of this review is to 
summarize the radiotherapy (RT) process in workflow order by identifying 
specific areas in which quality and efficiency can be improved by ML. The RT 
stage is divided into seven stages: patient evaluation, simulation, contouring, 
planning, quality control, treatment application, and patient follow-up. A 
systematic evaluation of the applicability, limitations, and advantages of AI 
algorithms has been done for each stage.

Key Words: Radiation oncology; Radiotherapy; Artificial intelligence; Deep learning; 
Machine learning
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Core Tip: Beginning with the initial patient interview, artificial intelligence (AI) can 
help predict posttreatment disease prognosis and toxicity. Additionally, AI can assist in 
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the automated segmentation of both the organs at risk and target volumes and the 
treatment planning process with advanced dose optimization. AI can optimize the 
quality control process and support increased safety, quality, and maintenance 
efficiency.
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INTRODUCTION
Artificial intelligence (AI) is a computer science branch that tries to imitate human-like 
intelligence in machines using computer software and algorithms without direct 
human input to perform certain tasks[1,2]. Machine learning (ML) is a subunit of AI 
that uses data-driven algorithms that learn to imitate human behavior based on 
previous example or experience[3]. Deep learning (DL) is an ML technique that uses 
deep neural networks to create a model. Increasing computing power and reduction of 
financial barriers led to the emergence of the domain of DL[4]. The growth and sharing 
of data, increasing computing power, and developments in AI have initiated a 
transformation in healthcare services. Advances in radiation oncology, clinical and 
dosimetric information from increasing cases, and computed tomography (CT) 
imaging before each fraction have resulted in the accumulation of a significant amount 
of information in big databases.

Evidence-based medicine is based on randomized controlled trials designed for 
large patient populations. However, the increasing number of clinical and biological 
parameters that need to be investigated makes it difficult to design studies[5]. New 
approaches are required for all patient populations. Clinicians should use all 
diagnostic tools, such as medical imaging, blood testing, and genetic testing, to decide 
on the appropriate combination of treatments (e.g., radiotherapy, chemotherapy, 
targeted therapy, and immunotherapy). There are a number of individual differences 
that are responsible for each patient's disease or associated with response to treatment 
and clinical outcome. The concept of personalized treatment is based on determining 
and using these factors for each patient[6]. Integrating such a large amount of 
heterogeneous of data and producing accurate models may present difficulties and 
subjective individual differences for the human brain from time to time.

Beginning with the initial patient interview, AI can help predict posttreatment 
disease prognosis and toxicity. Additionally, AI can assist in the automated 
segmentation of both the organs at risk and target volume and the treatment planning 
process, with advanced dose optimization. AI can optimize the quality control (QA) 
process and support increased safety, quality, and maintenance efficiency.

The aim of this review is to summarize the radiotherapy (RT) process in workflow 
order by identifying specific areas where quality and efficiency can be improved with 
AI. The RT stage is divided into seven stages: patient evaluation, simulation, 
contouring, planning, QA, treatment application, and patient follow-up, and the flow 
chart is given in Figure 1. A systematic evaluation of the applicability, limitations, and 
advantages of AI algorithms has been made to each stage.

CLINICAL EVALUATION
Clinical radiation therapy workflow begins with patient assessment. This step 
typically includes a series of consultations including reviews of the radiation 
oncologist on the patient's symptoms, medical history, physical examination, 
pathological and genomic data, diagnostic studies of prognosis, comorbidities, and 
risk of toxicity from RT. The radiation oncologist then suggests a treatment plan based 
on the synthesis of these data. For clinicians involved in this process, the accumulation 
of big data beyond what people can quickly interpret is the biggest challenge[7]. AI-
based methods that can be used in routine functioning may be important decision 
support tools for clinicians in the future. Such AI-based models have been reported to 

https://www.wjgnet.com/2644-3260/full/v2/i2/13.htm
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Figure 1 Workflow in radiation oncology. DVH: Dose value histogram; RT: Radiotherapy.

improve prognosis and predict treatment outcomes, but are not yet used in routine 
clinical practice[8].

The recent implementation of electronic health records has significantly increased 
the clinical documentation burden of physicians. The notes having constituted 34%-
78% of physicians’ working days, for each hour a physician spends in direct contact 
with the patient, he spends an additional 2 h in front of the computer[9]. AI solutions 
have the potential to automate structured documentation. They can save time 
requirements that add to the documentation burden, reduce burnout, protect 
confidentiality, and organize medical data into searchable and available items[10]. In 
addition, an AI-supported electronic record system may have pre-consultation and 
disease pre-diagnosis power, by including a timeline and the outcomes of relevant 
tests, procedures, and treatments from various sources[10]. AI-based systems can 
record patient-doctor conversations and use speech recognition and natural language 
processing to create a coherent narrative. Such an AI-based system does not yet exist, 
significant technical advances for clinical and persuasive speech require the learning of 
hours of selected recording of patient speech[11]. According to patient demands AI 
systems can present information to the patient at low, medium, or high complexity 
levels.

The radiation oncologist should consider many factors during the evaluation of the 
patient and include consideration of their interactions when making treatment 
decisions. At this point, data-based forecasting models can guide the doctor and make 
the decision phase faster and more accurate. For example, when a patient diagnosed 
with lung cancer is being evaluated for stereotactic RT, the patient's respiratory 
functions, lung capacity, tumor size, proximity of the tumor to critical organs, 
comorbid diseases, and performance of the patient will affect both treatment response 
and toxicity. If modeling is made with these and similar factors, response and toxicity 
rates can be determined before starting treatment. In a case with a diagnosis of left 
breast cancer and treatment with breast-conserving surgery, modeling created with the 
patient and treatment characteristics can be predicted whether she can benefit from a 
breath-holding technique. Big data are needed to create these estimation models. The 
transition to the use of AI will also increase collaboration between centers in the data 
collection phase and make treatments more standardized. In addition, depending on 
the distribution of technology in the centers in the country, AI can direct patients to 
appropriate treatment centers. For example, it can direct pediatric cases requiring 
proton therapy to a specialized center, and cases requiring palliative treatment to a 
conventional center).

SIMULATION
After the RT decision is made, a good simulation is required to choose the right 
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treatment. Immobilization technique, scanning range, and the treatment area should 
be accurately determined. Preliminary preparations such as use of fiducial markers for 
simulation, full/empty bladder, whether an empty rectum is required, renal function 
tests, and fasting status should be carefully considered if intravenous contrast is to be 
applied. Accurate and good simulation is essential to obtain a high-quality, robust 
treatment plan for the patient. In clinical practice, it is not uncommon to repeat a CT 
during CT simulation because of deficiencies and inaccuracies such as insufficient 
scanning range, inadequate/incorrect immobilization technique, an inappropriate 
level of bladder/rectum content, and hardware-related artifacts[12]. There are many 
questions that can be answered with AI to improve overall workflow efficiency. For 
example, will the patient benefit from the use of an intravenous contrast agent? Which 
immobilization technique should be used? Is 4-dimensional (4D)-CT simulation 
necessary?

Depending on the location of the disease, this process can be very complex, and 
optimal patient immobilization is individual, so this process often requires the 
participation of a radiation oncologist and a medical physicist. For example, special 
care should be taken to assess potential interference between the immobilization 
device and treatment beam angles, or patient-specific problems that could cause 
collisions with the RT device. In simulation, CT is still used in many centers, but brain 
and prostate tumors can be seen better with magnetic resonance (MR). As a solution, 
efforts have been made to develop CT scans using MR data, also called synthetic CT 
(sCT) scans using the atlas-based, sparse coding-based, or learning-based methods. 
Convolutional neural networks (CNNs), which are less time consuming and more 
efficient AI-based method with fewer artifacts, increasingly used to convert MR data 
to sCT[13]. Therefore, in the future, sCT scans with AI-based methods may 
compensate for the need for CT scanning, as they can be created with electron density 
data faster and are more reliable for plan generation than MR. Compared with 
traditional sCT methods, DL methods can be fully automated. Training with MR-CT 
images has been improved by the use of cycle-consistent generative adversarial 
networks (GANs)[14]. GANs require a new DL algorithm using two networks, a 
generator network creates realistic images and a differential mesh distinguishes 
between real and created images[14]. Studies have reported that images created by 
sCT and DL are accurate enough for dose calculation[15,16]. The same method can be 
used for other image syntheses. For example, virtual 4D-MR images can be 
synthesized from 4D-BT in order to see liver tumors well in image-guided RT 
(IGRT)[17].

Simulation is one of the most important steps in RT because ant deficiencies or 
errors that occur are reflected in the entire treatment process. AI techniques can be 
used to increase the accuracy of the simulation, to personalize it according to the 
patient characteristics, and to better characterize the tumor, but more studies are 
needed for its routine clinical use.

IMAGE REGISTRATION - SEGMENTATION
Image registration
Image registration is the process of spatially aligning two or more sets of images of the 
same region shot in different modalities at different times[17]. Commercially available 
automated image registration algorithms are typically designed to perform well only 
with modality-specific registration problems and require additional manual 
adjustments to achieve a clinically acceptable registration[7]. The two main 
registration methods used in RT are density based and have rigid registration. In a 
review of image registration Viergever et al[18] examined relevant developments 
between 1998 and 2016. They stated that DL approaches to registration can be novel 
game-changers in facilitating the implementation process and doing more, and they 
advocated the application of DL concepts to make it a routine integral part of the 
entire clinical imaging spectrum[18]. AI tools are also trained to determine the 
sequence of motion actions that result in optimal registration. These algorithms can 
provide better accuracy than various state-of-the-art registration methods and can be 
generalized to multiple display methods[19]. AI approaches have been shown to 
mitigate the effects of image artifacts like metal screws, guide wires, prostheses, and 
motion artifacts, which pose difficulties in both registration and segmentation[7].

Segmentation
In the standard workflow, the target volume and organs at risk (OARs) are manually 
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contoured by the radiation oncologist in a cross-section. As a result, the process is long 
and has a high degree of variability as a result of individual differences[20]. Manual 
segmentation directly affects the quality of the treatment plan and dose distribution 
for OARs[21]. There have been some attempts at automatic segmentation. It is the 
most widely available atlas-based segmentation in clinical use. First, the target image 
is matched with one or more selected reference images. Then, the contours in the 
reference image are transferred to the target image[22]. Atlas-based methods depend 
on the choice of atlas and the accuracy of reference images[23]. AI can be used to 
minimize the differences between physicians and to shorten the duration of this step in 
RT planning.

Segmentation of at-risk organs: To protect at-risk organs and to correctly evaluate RT 
toxicity, the segmentation of OARs should be done correctly. To fully benefit from 
technological developments in RT planning and devices, at-risk organs must be 
identified correctly. In clinics with high patient density, this step can be rate limiting. 
In addition, there may be differences among the practitioners, and because of 
significant anatomical changes (e.g., edema, tumor response, weight loss, and others) 
during treatment, a new plan with new segmentation may be required. AI, particularly 
CNN, is a potential tool to reduce physician workload and define a standard 
segmentation. In recent years, DL methods have been widely used in medical 
applications such as organ segmentation in CNN, head-neck, lung, brain, and prostate 
cancers[24-27].

In a head and neck cancer study by Ibragimov et al[28] contouring the spinal cord, 
mandible, parotid glands, submandibular glands, larynx, pharynx, eyes, optic nerves, 
and optic chiasm was done in 50 patients by DL using CT images. They obtained dice 
similarity coefficients (DSCs) of between 37.4% (optic chiasm) and 89.5% (mandible). 
Compared with the contouring algorithm of current commercial software, contouring 
of the medulla spinalis, mandibular and parotid glands, larynx, pharynx, and eye 
globes, was better and that of the optic nerve, submandibular gland (SMG), and the 
optic chiasm was worse with DL. CT images were used in that study, and higher 
accuracy rates were achieved with MR image support[28]. In a study of head and neck 
organ segmentation in 200 patients with oropharyngeal squamous cell carcinoma, 
Chan et al[29] used CT for planning, with 160 cases used for training, 20 for internal 
validation, and 20 for testing. Mandibula, right and left parotid glands, oral cavity, 
brainstem, larynx, esophagus, right and left SMG, right and left temporomandibular 
joints were contoured. In a lifelong learning-based CNN (LL-CNN) comparison, 
manual contouring was used as the gold standard and DSC and root-mean-square 
error (RMSE) was used for accuracy. LL-CNN was then compared to 2D U-Net, 3D U-
Net, single-task CNN (ST-CNN) and multitask CNN. Higher DSC and lower RMSE 
were obtained with LL-CNN compared with the other algorithms. The study found 
that LL-CNN had a better prediction accuracy than all alternative algorithms for the 
head and neck organs at risk[29]. In another study, Rooij et al[30] used CT images of 
157 head and neck cancer patients, 142 for case training and 15 for testing. The right 
and left SMGs, right and left parotid glands, larynx, cricopharynx, pharyngeal 
constrictor muscle, upper esophageal sphincter, brain stem, oral cavity, and esophagus 
were contoured. With DL, contouring of the 11 OARs was < 10 s per patient. The mean 
DSC of seven of the 11 contoured organs ranged from 0.78 to 0.83, and the DSC values 
for the esophagus, brainstem, PMC and cricopharynx were 0.60, 0.64, 0.68 and 0.73, 
respectively[30]. The study found that for the head and neck OAR, DL-based 
segmentation was fast and performed well enough for treatment planning purposes 
for most organs and most patients.

OARs in the thorax area have also contoured for RT with AI[31-34]. Zhu et al[25] 
used CT images of 66 lung cancer cases, 30 cases for training and 36 cases for testing. 
CNN was used for segmentation, and compared with atlas-based automatic 
segmentation (ABAS). DSC, the mean surface distance (MSD), and 95% Hausdorff 
distance (95% HD) were used to evaluate the results. The MSD (mm) values for CNN 
and ABAS were 2.92 and 3.14 for the heart, 3.21 and 3.83 for the liver, 1.81 and 3.03 for 
ms, 2.65 and 2.67 for the esophagus, and 1.93 and 1.85 mm for the lungs. The 95% HD 
(mm) values for CNN and ABAS were 7.98 and 9.53 in the heart, 10.0 and 11.87 in the 
liver, 8.74 and 11.97 in ms, 9.25 and 9.45 in the esophagus, and 7.96 and 8.07 mm in the 
lungs[25]. According to the results of that study, CNN can be used in segmentation for 
RT of lung cancer. Zhang et al[33] compared CNN-based segmentation and ABAS and 
reported that CNN-based segmentation required 1.6 minutes per case and atlas-based 
contouring required 2.4 min (P < 0.001). Accuracy rates were measured by DSC and 
MSD and found that CNN-based segmentation was better than atlas-based 
segmentation for left lung and heart RT[33]. A study by Vu et al[34] that included 
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22411 CT images obtained from 168 cases reported training, validation, and test rates 
of 66%, 17% and 17%, respectively. CNN-based and atlas-based segmentation models 
were compared with verification by DSC and 95% HD. All differences were found to 
be statistically significant in favor of CNN-based segmentation[34].

Looking at other studies in the literature, Feng et al[32] evaluated 36 cases, with 24 
used as training and 12 used as testing. The DSC obtained with 3D U-Net for medulla 
spinalis, right lung, left lung, heart, and esophagus were 0.89, 0.97, 0.97, 0.92, and 0.72, 
respectively. The corresponding MSDs were 0.66, 0.93, 0.58, 2.29 and 2.34 mm; and the 
95% HDs were 1.89, 3.95, 2.10, 6.57, 8.71[32]. The conclusion was that because of the 
improved accuracy and low cost of OAR segmentation, DL has the potential to be 
clinically adopted in RT planning. Loap et al[31] performed AI-based heart 
segmentation with CT images obtained from 20 breast cancer cases. The performance 
of the model was evaluated by DSC, and this value was found to be 95% for the whole 
heart and 80% for the heart chambers[31].

Studies on OAR segmentation in the pelvic region have generally been done with 
cervical and prostate cancer[27,35]. The bladder, bone marrow, left femoral head, right 
femoral head, rectum, small intestine, and ms were contoured using CT images of 105 
locally advanced cervical cancer cases. U-Net was used and the accuracy of the model 
was evaluated by DSC and 95% HD. The DSC of OARs ranged from 92% to 79%, with 
the best results in the bladder and the worst in the rectum. 95% HD values ranged 
between 5.09 and 1.39 mm[35]. Savenije et al[27] included 150 prostate cancer cases 
with MR imaging. DeepMedic and dense V-net were used in modeling. Bladder, 
rectum and femoral heads are contoured. The duration of DeepMedic, dense V-net, 
and atlas-based segmentation were 60 s, 4 s and 10-15 min, respectively. The accuracy 
of the DeepMedic algorithm that had been obtained in a feasibility study was 
confirmed the clinical setting in that study[27].

Additional evidence is available from a study by Ahn et al[36] who used CT images 
of 70 cases diagnosed with liver cancer, 45 for training, 15 for validation, and 19 for 
testing. The reference was accepted segmentation by three senior physicians. The 
model was created with deep CNN (DCNN). The accuracy rate was evaluated with 
95% HD, DSC, volume overlap error (VOE), and relative volume difference (RVD). In 
ABAS, the DSCs were 0.92, 0.93, 0.86, 0.85, and 0.60 for the heart, liver, right kidney, 
left kidney and stomach. In the DCNN-based model, the values were 0.94, 0.93, 0.88, 
0.86, and 0.73. The VOE% values in DCNN and atlas-based segmentation were 10.8 vs 
15.17, 10.82 vs 13.52, 12.19 vs 17.51, 16.31 vs 25.63 and 37.53 vs 62.64. The RVD% values 
in DCNN and atlas-based segmentation were 5.17 vs 12.90, 1.86 vs 5.56, 4.53 vs 9.75, 
2.45 vs 10.23 and 21.26 vs 50.6[36]. In that study, DL-based segmentation appeared to 
be more effective and efficient than atlas-based segmentation for most of the OAR in 
liver cancer RT.

Dolz et al[26] performed brainstem segmentation from the MR images of 14 brain 
cancer cases. A support vector machine (SVM) algorithm was used for the model, 
DSC, absolute volume difference (AVD) and percentage volume difference (pVD) 
between automatic and manual contours were used for the performance evaluation of 
the model. The mean values were, DSC 0.89-0.90, AVD 1.5 cm3 and pVD 3.99%[26]. The 
proposed approach has consistently shown similarity to manual segmentation and can 
be considered promising for adoption in clinical practice. Studies that investigated 
segmentation of OARs are summarized in Table 1.

Learning algorithms are trained to maximize measures of similarity between 
outcomes and examples given to them. Therefore, although they are increasingly 
skilled at imitating human-drawn contours, they are limited by the quality of their 
training samples. Until more concrete consensus definitions are specified for 
boundaries, machines cannot be more accurate than the human input taken as their 
clinically fundamental truth. Machine “accuracy” is only considered to be meaningful 
in the context of individuals and institutional protocols. More case numbers and 
multicenter studies are needed for the development and standardization of contouring 
models.

Target volume contouring: Target volume contouring is a labor-intensive step in the 
treatment planning flow in RT. Differences in manual contouring result from 
variability between contours, differences in radiation oncology education, or quality 
differences in imaging studies. Current automatic contouring methods aim to reduce 
manual workload and increase contour consistency, but still tend to require significant 
manual editing[37]. Recent studies have shown that DL-based automatic contouring of 
target volumes is promising, with greater accuracy and time savings compared with 
atlas-based methods.
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Table 1 Contouring of at-risk organs

Ref. Tumor 
site

Artificial 
intelligence 
technique 

Patient number Contouring Results

Ibragimov 
et al[28], 2017

Head-
neck

CNN 50 Contoured with CT. OARs: (1) Ms; (2) Mandible; (3) 
Parotid; (4) SMG; (5) Larynx; (6) Pharynx; (7) Eyes; 
(8) Optic nerve; and (9) Optic chiasm

DSC: (1) Ms: 87%; (2) Mandible: 89.5%; (3) Right parotid gland: 77.9%; (4) Left parotid gland: 76.6%; 
(5) Left SMG: 69.7%; (6) Right SMG: 73%; (7) Larynx: 85.6%; (8) Pharynx: 69.3%; (9) Left eye glob: 
63.9%; (10) Right eye glob: 64.5%; (11) Left optic nerve: 63.9%; (12) Right optic nerve: 64.5%; and (13) 
Optical chiasm: 37.4%

Chan 
et al[29], 2019

Orafarenx LL-CNN, 2D U-Net, 
3D U-Net, ST-CNN, 
MT-CNN

200 (160 training, 20 
validation, 20 test)

Contoured with CT. OAR: (1) Mandible; (2) Right 
and left parotid gland; (3) Oral cavity; (4) Brain stem; 
(5) Larynx; (6) Esophagus; (7) Right and left SMG; 
and (8) Right and left TMJ

DSC (mm) for LL-CNN and RMSE: (1) Mandible: 0.91 and 0.66; (2) Right parotid gland: 0.86 and 
1.67; (3) Left parotid gland: 0.85 and 1.86; (4) Oral cavity: 0.87 and 0.83; (5) Brain stem: 0.89 vs 0.96; 
(6) Larynx: 0.86 vs 1.34; (7) Esophagus: 0.86 vs 1.03; (8) Right SMG: 0.85 vs 1.24; (9) Left SMG: 0.84 vs 
1.22; (10) Right TMJ: 0.87 vs 0.43; and (11) Left TMJ: 0.84 vs 0.47

Rooij 
et al[30], 2019

Head-
neck 

3D U-Net 157 (142 training, 15 tests) Contoured with CT. OAR: (1) Right and left SMG; (2) 
Right and left parotid gland; (3) Larynx; (4) 
Cricopharynx,; (5) PCM; (6) UES; (7) Brain stem; (8) 
Oral cavity; and (9) Esophagus

DSC: (1) Right SMG: 0.81; (2) Left SMG: 0.82; (3) Right parotid gland: 0.83; (4) Left parotid gland: 
0.83; (5) Larynx: 0.78; (6) Cricopharynx: 0.73; (7) PCM: 0.68; (8) UES: 0.81; (8) Brain stem: 0.64; (9) 
Oral cavity: 0.78; and (10) Esophagus: 0.60

Zhu et al[25], 
2017

Lung CNN 66 (30 training, 36 tests) Contoured with CT. OAR: (1) Heart; (2) Liver; (3) Ms; 
(4) Esophagus; and (5) Lung 

MSD (mm) (CNN vs ABAS): (1) Heart: 2.92 vs 3.14; (2) Liver: 3.21 vs 3.83; (3) Ms: 1.81 vs 3.03; (4) 
Esophagus: 2.65 vs 2.67; and (5) Lung: 193 vs 1.85; 95% HD (mm) (CNN vs ABAS): (1) Heart: 7.98 vs 
9.53; (2) Liver: 10.06 vs 11.87; (3) Ms: 8.74 vs 11.97; (4) Esophagus: 9.25 vs 9.45; and (5) Lung: 7.96 vs 
8.07

Zhang 
et al[33], 2020

Lung CNN 200: training;50: validation 
19: test 

Contoured with CT. OAR: (1) Lungs; (2) Esophagus; 
(3) Heart; (4) Liver; and (5) Ms

DSC (CNN vs atlas based): (1) Left lung: 94.8% vs 93.2%; (2) Right lung: 94.3% vs 94.3%; (3) Heart: 
89.3% vs 85.8%; (4) Ms: 82.1% vs 86.8%; (5) Liver: 93.7% vs 93.6%; and (6) Esophagus: 73.2% vs -; MSD 
(mm) (CNN vs atlas based): (1) Left lung: 1.10 vs 1.73; (2) Right lung: 2.23 vs 2.17; (3) Heart: 1.65 vs 
3.66; (4) Ms: 0.87 vs 0.66; (5) Liver: 2.03 vs 2.11; and (6) Esophagus: 1.38 vs -

Vu et al[34], 
2020

Lung 2D-CNN 168 (66% training, 17% 
validation, 17% testing)

Contoured with CT. OAR: (1) Ms; (2) Lungs; (3) 
Heart; and (4) Esophagus

DSC (CNN vs atlas - based model): (1) Ms: 71% vs 67%; (2) Right lung: 96% vs 94%; (3) Left lung: 96% 
vs 94%; (4) Heart: 91% vs 85%; and (5) Esophagus: 63% vs 37%; 95% HD (mm) (CNN vs atlas - based 
model): (1) Ms: 9.5 vs 25.3; (2) Right lung: 5.1 vs 8.1; (3) Left lung: 4.0 vs 8.0; (4) Heart: 9.8 vs 15.8; and 
(5) Esophagus: 9.2 vs 20

Feng 
et al[32], 2019

Lung 3D U-Net 36 (24 training, 12 tests) Contoured with CT. OAR: (1) Ms; (2) Right lung; (3) 
Left lung; (4) Heart; and (5) Esophagus

DSC: (1) Ms: 0.89; (2) Right lung: 0.97; (3) Left lung: 0.97; (4) Heart: 0.92; and (5) Esophagus: 0.72; 
95% HD (mm): (1) Ms: 1.89; (2) Right lung: 3.95; (3) Left lung: 2.10; (4) Heart: 6.57; and (5) 
Esophagus: 8.71; MSD (mm): (1) Ms: 0.66; (2) Right lung: 0.93; (3) Left lung: 0.58; (4) Heart: 2.29; and 
(5) Esophagus 2.34

Liu et al[35], 
2019

Cervix 3D U-Net 105 (77 training, 14 
validation, 14 tests)

Contoured with CT. OAR: (1) Bladder; (2) Bone 
Marrow; (3) Left femoral head; (4) Right femoral 
head; (5) Rectum; (6) Small intestine; and (7) Ms

DSC: (1) Bladder: 0.92; (2) Bone Marrow: 0.86; (3) Left femoral head: 0.89; (4) Right femoral head: 
0.89; (5) Rectum: 0.79; (6) Small intestine: 0.83; and (7) Ms: 0.82; 95% HD (mm): (1) Bladder: 5.09; (2) 
Bone marrow: 1.99; (3) Left femoral head: 1.39; (4) Right femoral head: 1.43; (5) Rectum: 5.94; (6) 
Small intestine: 5.21; and (7) Ms: 3.26

Savenije 
et al[27], 2020

Prostate DeepMedic and 
Dense V-net

48 (36 training, 16 tests) for 
feasibility study; 150 cases 
in total (97 train, 53 tests)

Contoured by MR. OAR: (1) Bladder; (2) Rectum; (3) 
Left femur; and (4) Right femur

DSC/95% HD (mm)/MSD (mm): (DeepMedic and dense V-net (feasibility study): (1) Bladder: 
0.95/3.8/1.0; (2) Rectum: 0.85/8.3/2.1; (3) Left femur: 0.96/2.2/0.6; and (4) Right femur: 
0.96/1.9/0.6; DSC/95% HD (mm)/MSD (mm): (Clinical application with DeepMedic): (1) Bladder: 
0.96/2.5/0.6; (2) Rectum: 0.88/7.4/1.7; (3) Left femur: 0.97/1.6/0.5; and (4) Right femur: 0.97/1.5/0.5

Ahn et al[36], 
2019

Liver DCNN 70 (45 training, 15 
validation, 10 tests)

Contoured with CT. OAR: (1) Heart; (2) Liver; (3) 
Kidney; and (4) Stomach

DSC (DCNN vs atlas-based contouring): (1) Heart: 0.94 vs 0.92; (2) Liver: 0.93 vs 0.93; (3) Right 
kidney: 0.88 vs 0.86; (4) Left kidney: 0.86 vs 0.85; and (5) Stomach: 0.73 vs 0.60
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95% HD: 95% Hausdorff distance; ABAS: Atlas-based automatic segmentation; CNN: Convolutional neural network; CT: Computational Tomography; DCNN: Deep convolutional neural network; DSC: Dice similarity coefficient; ms: 
Medulla spinalis; MSD: Mean surface distance; MSD: The mean surface distance; MT-CNN: Multitask Convolutional neural network, RMSE: Root-mean-square error; OAR: Organ at risk; PCM: Pharyngeal constrictor muscle; SMG: 
Submandibular gland; ST-CNN: Single-task Convolutional neural network; TMJ: Temporamandibular joint; UES: Upper esophageal sphincter.

The first reason for the necessity of computer-aided delineation is the variation 
between contours or even between contours of the same person at different times. 
Chao et al[38] reported that differences in defining CTVs from scratch among radiation 
oncologists is important, and the use of computer-aided methods reduces volumetric 
variation and improves geometric consistency[38]. The second reason is that it is time 
consuming. In a study by Chao et al[38], computer-assisted contouring provided 36%-
29% time savings for experienced physicians and 38%-47% for less experienced 
physicians[38]. Ikushima et al[39] estimated the gross tumor volume (GTV) of 14 lung 
cancers. Six were solid, six were part-solid, and four had mixed ground-glass opacity 
(GGO) using AI. Image properties around the GTV contours were taught to the SVM 
algorithm during training, after which the algorithm was tested to generate GTV for 
each voxel. Diagnostic CT, planning CT and PET were used for image properties. The 
final GTV contour was determined using the optimum contour selection method. DSC 
was used for the performance of the algorithm and was determined to be 0.77 for 14 
cases. The DSC values for solid, part-solid and mixed GGO were 0.83, 0.70 and 0.76, 
respectively[39]. In a study conducted by Cui et al[40], 192 cases of lung cancer (118 
solid, 53 part-solid, and 21 pure GGO) with stereotactic body radiotherapy (SBRT) 
were contoured with dense V-networks using planning it. Of those, 147 cases were for 
training, 26 for validation, and 19 cases were for testing. Evaluation was performed 
with a DSC and HD 10-fold cross validation test. The 3D-DSC values were 0.838 ± 
0.074, 0.822 ± 0.078, and 0.819 ± 0.059 for solid, part-solid, and GGO tumors 
respectively. The HD value of each inner group was 4.57 ± 2.44 mm[40]. The proposed 
approach has the potential to assist radiation oncologists in identifying GTVs for 
planning treatment of lung cancer SBRT.

Zhong et al[41] performed segmentation with 3-D DL and fully convolutional 
networks (DFCN) using both PET and BT images of 60 lung SBRT cases. Delineation 
was performed by three senior physicians. A simultaneous truth and performance 
level estimation algorithm was accepted as a reference, and DSC was used to evaluate 
DFCN performance. The mean DSCs were for 0.861 ± 0.037 for CT and 0.828 ± 0.087 for 
PET[41]. Kawata et al[42] used pixel-based MÖ techniques such as fuzzy-c-means 
clustering (FCM), artificial neural network (ANN), and SVM to evaluate the GVT of 16 
lung cancer tumors (six solid, four GGO, six part-solid) for SBRT by AI using PET/CT. 
The performance of the algorithms was determined by DSC. The DSC values for FCM, 
ANN, and SVM were 0.79 ± 0.06, 0.76 ± 0.14 and 0.73 ± 0.14, respectively[42]. FCM had 
the highest accuracy rates of GTV contouring compared with the other algorithms.

There are also GTV and CTV contouring studies with AI in head and neck 
cancers[43-47]. In a study by Li et al43], tumor segmentation was performed in 
nasopharyngeal cancer by using CT images. The U-Net model was used, 302 cases 
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were used for training, 100 for validation, and 100 for testing. In the U-Net model, DSC 
was found to be 65.8% for lymph nodes and 74.0% for tumor segmentation. Automatic 
delineation was calculated as 2.6 h per patient and manual delineation as 3 h[43]. This 
study found that DL increased the accuracy, consistency, and efficiency of tumor 
delineation and that additional physician input might be required for lymph node 
delineation. Multimodality medical images can be very useful for automated tumor 
segmentation as they provide complementary information that can make the 
segmentation of tumors more accurate. Ma et al[44] used multimodality CNN (M-
CNN) based methods to investigate the segmentation of nasopharyngeal cancer using 
CT and MR images. M-CNN is designed to co-learn the segmentation of matched CT-
MR images. Considering that each modality has certain distinctive features, it was 
planned to create a combined-CNN (C-CNN) using single-modality (S-CNN) and 
higher-layer features derived from M-CNN. Ninety CT and MR images were used, 
and positive predictive value (PPV), sensitivity (SE), DSC, and average symmetric 
surface distance (ASSD) were used to evaluate modalities. The PPV, SE, DSC and 
ASSD obtained by C-CNN, were 0.797 ± 0.109, 0.718 ± 0.121, 0.752 ± 0.043, and 1.062 ± 
0.298 mm respectively. The included two main models, M-CNN and C-CNN, which 
can integrate complementary information from CT and MR images for tumor 
identification. The results in the clinical CT-MR dataset show that the proposed M-
CNN can learn the correlations of two modalities and tumor segmentation together 
and perform better than using a single modality[44].

Zhao et al[45] used PET-CT and FCN to contour 30 nasopharyngeal cancer tumors. 
The mean DSC was 87.47% after threefold cross validation. Guo et al[46] performed 
GTV contouring with Dense Net and 3D U-Net using PET/CT and PET-CT in 250 
head and neck cancer patients. DSC, MSD, and HD95 were calculated for each of the 
three imaging methods separately. For Dense Net, the DSC values were 0.73 for PET-
CT, 0.67 for PET, and 0.32 for CT. The DSC for 3D-U-Net and PET-CT was 0.71. MSD, 
HD for Dense Net PET-BT were 2.88, 6.48 and 3.96 mm, respectively. For Dense Net 
PET, the MSD, and HD95 DC were 3.38, 8.29 and 5.56 mm, respectively. For 3D U-Net, 
the MSD, HD95, DC were 2.98, 7.57 and 4.40 mm respectively[46]. In a study using a 
deep deconvolutional neural network (DDNN), the GTVtumor, GTVlymph node, and CTV 
were determined from CT images of 230 nasopharyngeal cancer cases that were 
randomly allocated to 184 cases for training and 46 cases for testing. The DSC values 
were 80.9% for GTVtumor, 62.3% for GTVlymph node, and 82.6% for CTV[47].

AI-based contouring studies have also been performed in primary brain tumors and 
brain metastases[48-53]. In a study by Jeong et al[51], T1-weighted dynamic contrast-
enhanced (DCE) perfusion MR images of 21 patients diagnosed with brain tumors 
were used for tumor segmentation. 3D mask region-based CNN (R-CNN) was used 
and algorithm performance was evaluated with DSC, HD, MSD, and center of mass 
distance. The values were 0.90 ± 0.04, 7.16 ± 5.78 mm, 0.45 ± 0.34 mm and 0.86 ± 0.91 
mm, respectively[51]. The results support the feasibility of accurate localization and 
segmentation of brain tumors from DCE perfusion MRIs. Segmentation with 3D mask 
R-CNN in DCE perfusion imaging holds promise for future clinical use. Tang et al[53] 
described postoperative glioma segmentation of the CTV region using MR image 
information on CT. A deep feature fusion model (DFFM) guided by multisequence MR 
was used in CT images for postop glioma segmentation. DFFM is a multisequence 
MR-guided CNN that simultaneously learns deep features from CT and 
multisequence MR images and then combines the two deep features. In this study, 59 
BT and MR (T1/T2-weighted FLAIR, T1-weighted contrast-enhanced, T2-weighted) 
data sets were used. The DSCs were 0.836 and 0.836[51]. Given the DSC rate, this 
algorithm can be used in the presegmentation stage to reduce the workload of the 
radiation oncologist.

Liver tumor segmentation with CT is difficult because the image contrast between 
liver tumors and healthy tissues is low, the boundary is blurred, and images of the 
liver tumor are complex, and vary in size, shape, and location. To solve these 
problems, Meng et al[54] performed liver tumor segmentation with 3D dual-path 
multiscale CNN (TDP-CNN). In the study, 81 CT images were used for training and 25 
were used for the test. Tumor segmentation determined by an experienced radiologist 
was used as a reference. Performance evaluation was determined as DSC, HD average 
distance, and the values were 0.689, 7.69, and 1.07mm[54].

There are also studies using AI in pelvic tumor and CTV contouring[55-59]. In a 
prostate cancer study, MR images and the DeepLabV3 + method were used for with 
target volume segmentation. Volumetric DSC and surface DSC were used to evaluate 
performance, and these values were 0.83 ± 0.06 and 0.85 ± 0.11, respectively[56]. 
According to this model, the planning workflow can be accelerated with MR. Voxel-
based ML was evaluated, and MR images of 78 cases were used in a study of tumor 
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delineation in locally advanced cervical cancer. The model was trained according to 
the delineation of two radiologists, mean sensitivity was 94% and specificity was 
52%[57]. CT images were used for CTV delineation in rectal cancer, and 218 randomly 
selected cases were used for training and 60 cases for validation. Deep dilated CNN 
(DDCNN) was used and the DSC for the model was 87.7%[59]. According to that 
study, the accuracy rate was high and effective in CTV segmentation in the DDCNN 
rectal cancer. Deep dilated residual network (DD-ResNet) was used in breast cancer 
CTV contouring, and the model was compared with DDCNN and DDNN. CT images 
of 800 breast cancer cases were used in the study, and the training/test rate was 
determined as 80%/20%. Mean DSC was used for segmentation accuracy. For the right 
and left breast, DD-ResNet was 0.91 and 0.91, 0.85 and 0.85, 0.88 and 0.87 for DDCNN 
and DDNN, respectively. HD values were 10.5 and 10.7 mm, 15.1 and 15.6 mm, and 
13.5 and 14.1 mm, respectively. Mean segmentation times were 4, 21 and 15 s per 
patient[60]. The method proposed in the study contoured the CTV in a short time and 
with high accuracy. The studies of target volume segmentation are summarized in 
Table 2. More cases and multidisciplinary studies are needed to reduce the 
heterogeneity in tumor response and in GTV and CTV contouring, shorten the 
contouring step, and create standard delineations.

RADIOTHERAPY PLANNING
RT planning process is quite complex. A mistake during planning can lead to life-
threatening situations such as tumor incontinence or high doses of radiation to normal 
tissue. As technology advances, the margin given to the tumor also decreases, so even 
with a small margin of error, it is possible to miss the tumor geographically. After 
target volumes and OARs are defined, the planning process continues with the 
determination of dosimetric targets for targets and OARs, selection of an appropriate 
treatment technique [e.g., 3DCRT, intensity-adjusted RT (IMRT), volumetric 
modulated arc therapy (VMAT), protons], the achievement of planning goals, and 
evaluation and approval of the plan. Treatment planning, which is an RT design for 
each case, can be considered as both a science and an art.

Because of the complex mathematics and physics involved, RT planning includes 
computer-aided systems. During planning, humans interact many times with the 
computer-aided system, using their experience and skills to ensure the satisfactory 
quality of each plan. Planning is a very complex process. There are AI studies related 
to the planning steps of RT, such as dose calculation, dose distribution, dose-volume 
histogram (DVH), patient-specific dose calculation, IMRT area determination, beam 
angle determination, real-time tumor tracking, and replanning in adaptive RT[61-71].

The purpose of researching the dose calculation algorithm is to increase calculation 
accuracy while maximizing computational efficiency. In the study conducted by Zhu 
et al[61], it was aimed to calculate the 3D distribution of total energy release per unit 
mass and electron density based on CNN. Twelve sets of CT images were used for 
training, and a random beam configuration was created with a convolution/ 
superposition (CCCS) algorithm. 7500 samples were created for each single-energy 
photon model training set and 1500 samples for validation. Training included 0.5 MeV, 
1 MeV, 2 MeV, 3 MeV, 4 MeV, 5 MeV, and 6 MeV monoenergetic photon models. To 
evaluate its usability under linear accelerator (Linac) conditions, 12 additional new CT 
images with different anatomical regions and 1512 samples were used for testing. For 
all anatomies, the mean value for the criterion of 3%/2mm, 95% lower confidence 
limit, and 95% upper confidence limit were 99.56%, 99.51%, and 99.61%, respectively. 
In that study, DL was investigated for CCCS dose calculation[61]. With DL, calculation 
accuracy can be improved and calculation efficiency can be increased, and the method 
can speed up dosing algorithms and also has great potential in adaptive RT.

In their study, Zhang et al[62] aimed to estimate voxel level doses by integrating the 
distance information between the planning target volume (PTV) and OAR as well as 
the image information into the DCNN. First, they created a four-channel feature map 
consisting of PTV image, OAR image, CT image, and distance image. A neural 
network was created and trained for dose estimation at the voxel level. Given that the 
shape and size of OARs are highly variable, dilated convolution was used to capture 
features from multiple scales. The network was evaluated by five-fold cross validation 
based on 98 clinically validated treatment plans. The voxel level mean absolute error 
values of the DCNN for PTV, left lung, right lung, heart, spinal cord and body were 
2.1%, 4.6%, 4.0%, 5.1%, 6.0% and 3.4% respectively[62]. This method significantly 
improved the accuracy of the dose distribution estimated by the DCNN model. In their 
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Table 2 Target volume segmentation

Ref. Tumor site Artificial intelligence 
technique Patient number Contouring Results

Ikushima 
et al[39], 2017

Lung SVM 14 (solid: 6, GGO: 4, 
mixed GGO: 4)

GTV DSC: (1) 0.777 for 14 cases; and (2) 0.763 for GGO, 0.701 for mixed GGO 

Cui et al[40], 2021 Lung DVNs 192 (solid: 118, part-
solid:53, pure GGO: 
21)

GTV 3D-DSC: (1) Solid: 0.838 ± 0.074; (2) Part-solid: 0.822 ± 0.078; and (3) GGO: 0.819 ± 0.059

Zhong et al[41], 
2019

Lung 3D-DFCN 60 GTV DSC: (1) CT: 0.861 ± 0.037; and (2) PET: 0.828 ± 0.087

Kawata et al[42], 
2017

Lung FCM, ANN, SVM 16 (solid: 6, GGO:4, 
part-solid GGO:6)

GTV DSC: (1) FCM-based framework:0.79 ± 0.06; (2) ANN-based framework: 0.76 ± 0.14; and (3) SVM-based framework: 0.73 ± 0.14

Li et al[43], 2019 Nasopharynx U-Net 502 GTV DSC: (1) Lymph nodes: 65.86%; (2) Primary tumor: 74.00%; HDs: (1) Lymph nodes: 32.10 mm; and (2) Primary tumor:12.85 mm

Zhao et al[45], 
2019

Nasopharynx FCN 30 GTV DSC: 87.47%

Guo et al[46], 
2020

Head and neck Dense Net and 3D U-
Net

250 GTV DSC: (1) Dense Net with PET/CT: 0.73; (2) Dense Net with PET: 0.67; (3) Dense Net with CT: 0.32; and (4) 3D U-Net with 
PET/CT: 0.71; MSD: (1) Dense Net with PET/CT: 2.88; (2) Dense Net with PET: 3.38; (3) Dense Net with CT: -; and (4) 3D U-Net 
with PET/CT: 2.98; HD95: (1) Dense Net with PET/CT: 6.48; (2) Dense Net with PET: 8.29; (3) Dense Net with CT: -; and (4) 3D 
U-Net with PET/CT: 7.57

Jeong et al[51], 
2020

Brain 3D-R-CNN 21 GTV DSC: 0.90 ± 0.04; HD: 7.16 ± 5.78 mm; MSD: 0.45 ± 0.34 mm; Center of mass distance: 0.86 ± 0.91 mm

Meng et al[54], 
2020

Liver TDP-CNN 106 GTV DSC: 0.689; HD: 7.69mm; Average distance: 1.07 mm

Elguindi 
et al[56], 2019

Prostate 2D-CNN, DeepLabV3 
+

50 Prostate Volumetric DSCL: 0.83 ± 0.06; Surface DSC: 0.85 ± 0.11

Men et al[59], 
2017

Rectum DDCNN 278 CTV DSC: 87.7%

ANN: Artificial neural network; CT: Computed tomography; CTV: Clinical target volume.; DDCNN: Deep dilated convolutional neural network; DFCN: Fully convolutional network; DSC: Dice similarity coefficient; DVNs: Dense V-
network; FCM: Fuzzy-c-means clustering method; GGO: Ground-glass opacity; GTV: Gross tumor volume; HD: Hausdorff distance; MSD: Mean surface distance; PET: Positron emission tomography; R-CNN: Region-based convolutional 
neural network; SVM: Support vector Machine; SVM: Support vector machine; TDP-CNN: Three-dimensional dual-path multiscale convolutional neural network.

studies, Fan et al[64] aimed to develop a 3D dose estimation algorithm based on DL 
and create a treatment plan based on the dose distribution for IMRT. The DL model 
was trained to estimate a dose distribution based on patient-specific geometry and 
prescription dose. A total of 270 head and neck cancer cases, 195 in the training data 
set, 25 in the validation set, and 50 in the test set, were included in the study. All cases 
were treated with IMRT. The model input consisted of CT images and contours that 
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defined the OAR and plot target volumes. The algorithm output was trained to 
estimate the dose distribution from the CT image slice. The resulting estimation model 
was used to estimate the patient dose distribution. An optimization target function 
was then created based on the estimated dose distributions for automatic plan 
generation. In the study, Differences between the prediction and the actual clinical 
plan in DVH for all OARs were not significant except for the brainstem, right, and left 
lens. Differences between PTVs (PTV70.4, PTV66, PTV60.8, PTV60, PTV56, PTV54, PTV51) in 
the estimated and the actual plan were significant only for PTV70.4[64]. In that study, 
optimization based on 3D dose distribution and an automatic RT planning system 
based on 3D dose estimation were developed. The model is a promising approach to 
realize automatic treatment planning in the future.

Ma et al[65] created a DVH prediction model that depended on support vector 
regression as the backbone of the ML model. A database containing VMAT plans of 63 
prostate cancer cases was used, and a PTV plan was created for each patient. A 
correlative relationship between the OAR DVH (model input) of the PTV plan and the 
corresponding DVH (model output) of the clinical treatment plan was established with 
53 training cases. The predictive model was tested with a validation group of ten cases. 
In the control of dosimetric endpoints for the training group, 52 of 53 bladder cases 
(98%) and 45 of 53 rectum cases were found to be within a 10% error limit. In the 
validation test group, 92% of the bladder cases and 96% of the rectum cases were 
within the 10% error limit. Eight of the ten validation plans (80%) were found to be 
within the 10% error margin for both rectum and bladder[65]. In that study, only the 
PTV plan was used for DVH estimation and an ML model was created based on new 
dosimetric characteristics. The framework had high accuracy for predicting the DVH 
for VMAT plans.

In lung cancer, as in other types of cancer, optimum selection of radiation beam 
directions is required to ensure effective coverage of the target volume by external RT 
and to prevent unnecessary doses to normal healthy tissues. IMRT planning is a 
lengthy process that requires the planner to iterate between selecting beam angles, 
setting dose-volume targets, and conducting IMRT optimization. The beam angle 
selection is made according to the planner's clinical experience. Mahdavi et al[67] 
planned to create a framework that used ML to automatically select treatment beam 
angles in thoracic cancers, intended to increase computational efficiency. They created 
an automatic beam selection model based on learning the relationship between beam 
angles and anatomical features. The plans of 149 cases who underwent clinically 
approved thoracic IMRT were used in the study. Twenty-seven cases were randomly 
selected and used to test the automated plan and the clinical plan. When the estimated 
and clinically used beam angles were compared, a good mean agreement was 
observed between the two (angular distance 16.8 ± 10◦, correlation 0.75 ± 0.2). The 
target volume of automated and clinical plans was found to be equivalent when 
evaluated in terms of winding and the OAR. The vast majority of plans (93%) were 
approved as clinically acceptable by three radiation oncologists[69].

Treatment planning is an important step in the RT workflow. It has become more 
sophisticated in the past few decades with the help of computer science, allowing 
planners to design highly complex RT plans to minimize damage of normal tissue 
while maintaining adequate tumor control. A need of individual patient plans has 
resulted in treatment planning becoming more labor-intensive and time consuming. 
Many algorithms have been developed to support those involved in RT planning. The 
algorithms have had a major impact on focusing on automating and/or optimizing the 
planning process and improving treatment planning efficiency and quality. Studies of 
treatment planning are summarized in Table 3.

QUALITY ASSURANCE
Quality assurance (QA) is crucial in order to evaluate the RT plan and detect and 
report errors. Features of RT QA programs such as error detection, and prevention, 
and treatment device QA are very suitable for AI application[72-75]. Li et al[73] 
developed an application to estimate the performance of medical linear accelerators 
(Linacs) over time. Daily QA of RT in cancer treatment closely monitors Linac 
performance and is critical for the continuous improvement of patient safety and 
quality of care. Cumulative QA measures are valuable for understanding Linac 
behavior and enabling medical physicists to detect disturbances in output and take 
preventive action. Li et al[73] used a time series estimation model of ANNs and an 
autoregressive moving average to analyze 5-yr Linac QA data. Verification tests and 
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Table 3 Radiotherapy planning

Ref. Aim Patient number Artificial intelligence 
technique Results

Zhu et al[61], 2020 Calculating TERMA and ED 24 CNN 3%/2 mm, 95% LCL, and 95% UCL to 
99.56%, 99.51%, 99.61%

Zhang et al[62], 
2020

Making voxel level dose estimation by 
integrating the distance information 
between PTV and OAR

98 DCNN MAEV: (1) PTV: 2.1%; (2) Left lung: 4.6%; (3) 
Right lung: 4.0%; (4) Heart: 5.1%; (5) Spinal 
cord: 6.0%; and (6) Body: 3.4%

Fan et al[64], 2019 Developing a 3D dose estimation 
algorithm

270 Significant difference was found between 
the estimated and the actual plan in only 
PTV70.4

Ma et al[65], 2019 Creating a DVH prediction model 63 SVR The error limit of 10% for the bladder and 
rectum was 92% and 96%

Mahdavi et al[69], 
2015

Selecting treatment beam angles in 
thoracic cancers

149 ANN The majority of plans (93%) were approved 
as clinically acceptable by three radiation 
oncologists

ANN: Artificial neural networks.; CNN: Convolutional neural network; DCNN: Deep convolutional neural network; DVH: Dose value histogram; ED: 
Electron density; LCL: Lower confidence limit; MAEV: Voxel level mean absolute error; OAR: Organ at risk; PTV: Planning target volume; SVR: Support 
vector regression; TERMA: Three-dimensional distribution of total energy release per unit mass; UCL: Upper confidence limit.

other evaluations were made for all models and they reported that the ANN algorithm 
can be applied correctly and effectively in dosimetry and QA[73]. Valdes et al[72] 
developed AI applications to predict IMRT QA transition rates and automatically 
detect problems in the Linac imaging system. Carlson et al[76] developed an ML 
approach to predict multileaf collimator (MLC) position errors. Inconsistencies 
between planned and transmitted motions of multileaf collimators are a major source 
of error in dose distribution during RT. In their study, factors such as leaf movement 
parameters, leaf position and speed, leaf movement towards or away from the 
isocenter of the MLC were calculated from plan files of AI forecasting models. Position 
differences between synchronized DICOM-RT planning files and DynaLog files 
reported during QA delivery were used for training the models. To assess the effect on 
the patient, the DVH in the treated positions and the planned and anticipated DVHs 
were compared. In all cases, they found that the DVH parameters predicted for the 
OAR, especially around the treatment area, were closer to the DVHs in the treated 
position than to the planned DVH parameters[76].

The use of treatment plan features to predict patient-specific QA measurement 
results facilitate development of automated pretreatment validation workflows or 
provide a virtual assessment of treatment quality. Granville et al[77] trained a linear 
support vector classifier to classify the results of patient-specific VMAT QA 
measurements, using the complexity of the treatment plan and characteristics that 
define the Linac performance criteria. The “targets” in this model are simple 
classifications that represent the median dose difference between measured and 
expected dose distributions; median dose deviation was considered “hot” if > 1%, 
“cold” if < 1%, and “normal” if ± 1%. A total of 1620 patient-specific QA 
measurements were used for model development and testing’ and 75% of the data was 
used for model development and validation. The remaining 25% was used for the 
independent evaluation of model performance. Receiver operating characteristic 
(ROC) curve analysis was used to evaluate model performance. Of the ten variables 
that are considered important for prediction, half consist of treatment plan 
characteristics, and half are QA measures that characterize Linac performance. For this 
model, the micro-averaged area under the ROC curve was 0.93, and the macro-
averaged area under the ROC curve was 0.88[77]. The study demonstrates the 
potential of using both treatment plan features and routine Linac QA results in the 
development of ML models for patient-specific VMAT QA measurements.

RT APPLICATION, SETUP
During radiation therapy, treatment may need to be adjusted to ensure that the plan is 
properly implemented. Need of adjustment may result from both online factors such 
as the patient's pretreatment position, and longer-term factors related to anatomical 



Yakar M et al. AI in radiation oncology

AIMI https://www.wjgnet.com 26 April 28, 2021 Volume 2 Issue 2

changes and response to treatment. Images taken before treatment should be aligned 
with the images in the planning CT and kept in alignment. Although many modern 
Linac devices currently have daily "cone-beam" CT (CBCT) using mega-voltage X-rays 
for treatment confirmation, but that imaging is not sufficient to distinguish soft tissue 
structures. However, those images are considered suitable for image-guided RT as 
they are used to adapt the treatment plans to the daily anatomy of the patient and to 
reduce intra-fractional shifts. When performing daily RT, the CBCT should be 
reviewed before each treatment. Two, or at least one experienced RT technician, are 
required for this procedure. When the RT technician sees an anatomical difference 
between the CBCT and the planning CT, she/he should inform the radiation 
oncologist and medical physicist. At that stage, it is necessary to decide whether to 
continue treatment with the difference or to require a new CBCT. Each of the steps 
delays patient treatment and causes a significant increase in the RT department 
workload. All this opens a path for the growth of AI in parallel with the training 
program in radiation oncology. In addition to the ability of existing staff to cope with 
the growing workload, innovations in modern technology and the ability to benefit 
from it are limited by access to adequate human resources[78]. In addition, AI 
replanning has been used to identify candidates for adaptive RT. Based on anatomical 
and dosimetric variations such as shrinkage of the tumor, weakening of the patient, or 
edema, classifiers and clustering algorithms have been developed to predict the 
patients who will benefit most from updated plans during fractionated RT[71,79]. 
However, it should also be kept in mind that the algorithm will mimic past protocols 
rather than determine the ideal time for replanning because AI learns from data about 
previous patients, their plans, and adaptive RT.

PATIENT FOLLOW-UP
AI has the potential to change the way radiation oncologists follow definitive-treated 
patients. After surgery, the tumor may disappear during imaging, and tumor markers 
can quickly normalize. In contrast, imaging changes such as loss of contrast-
enhancement, PET involvements or diffusion restriction, or size reduction, and the 
response of tumor markers after RT are gradual. Those characteristics are monitored 
regularly over time, and response assessments are made according to changes that are 
complemented by clinical experience and are considered indicative of therapeutic 
efficacy. Time is required for this assessment. However, if cases that will not respond 
to treatment can be predicted earlier, additional doses of RT or additional systemic 
treatments may be introduced earlier, which may improve oncological outcomes. In 
this context, early work in the field of radiology is promising. In radiology, 
quantitative features are extracted based on size and shape, image density, texture, 
relationships between voxels, and some characteristics to typify an image. AI 
algorithms can be used to correlate image-based features with biological observations 
or clinical outcomes[80-85]. The use of AI techniques for response and survival 
prediction in RT patients is a serious opportunity to further improve decision support 
systems and provide an objective assessment of the relative benefits of various 
treatment options for patients.

Cancer is the most common cause of death in developed countries, and it is 
estimated that the number of cases will increase further in aging populations[86,87]. 
Therefore, cancer research will continue to be the top priority for saving lives in the 
next decade. Prognosis studies have been conducted with AI on many types of cancer. 
The use of AI techniques for response and survival prediction in RT patients is a 
serious opportunity to further improve decision support systems and provide an 
objective assessment of the relative benefits of various treatment options for patients.

Six different ML algorithms were evaluated in a prognosis study with 72 cases of 
nasopharyngeal cancer. Age, weight loss, initial neutrophil/lymphocyte ratio, initial 
lactate dehydrogenase and hemoglobin values, RT time, tumor size, concurrent CT 
number, and T and N stage were determined as critical variables. The highest 
performing model among logistic regression, ANN, XGBoost, support-vector 
clustering, random forest, and Gaussian Naïve Bayes algorithms was determined as 
Gaussian Naïve Bayes, and the accuracy rate was found to be 88% (CI: 0.68-1)[88]. In a 
study using radionics obtained from clinical and PET-CT, prognosis was evaluated in 
101 lung cancer cases, with 67% used for training and 33% validation and testing. The 
highest accuracy rate was achieved with an SVM algorithm that had an accuracy rate 
of 84%, a sensitivity of 86%, and a specificity of 82%[89]. In another study in which 
prognosis was predicted in prostate cancer, somatic gene mutations were evaluated 
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and an accuracy rate of 66% was obtained with an SVM algorithm[90]. Post cystectomy 
bladder cancer prognosis was evaluated in 3503 cases using an SVM algorithm. 
Recurrence, 1-, 3, and 5-yr survival rates were estimated with sensitivity and 
specificity above 70%[91]. In a study including 75 gastric cancer patients, the accuracy 
of survival, distant metastasis, and peritoneal metastasis predictions were 81% for 
GNB, 86% for XGBoost, and 97% for Random Forest (97%)[92]. Pham et al[93] used AI 
to detect DNp73 expression associated with 5-yr overall survival and prognosis in 143 
rectal cancer cases. Ten different CNN algorithms were used, and each 
immunochemical image was resized. For the algorithm, 90% of the images were used 
in training and 10% as test data. The accuracy of ten algorithms varied between 90% 
and 96%[93].

In oncological treatment, forecasting is crucial in the decision-making process 
because survival prediction is critical in making palliative vs curative treatment 
decisions. In addition, the estimation of remaining life expectancy can be an incentive 
for patients to live a fuller or more fulfilling life. It is also a question of which answer is 
sought by health insurance companies. Survival statistics assist oncologists in making 
treatment decisions. However, these are data from large and heterogeneous groups 
and are not well suited to predict what will happen to a specific patient. AI algorithms 
for the prediction of RT and chemotherapy oncological outcomes have attracted 
considerable attention recently. In cases diagnosed with cancer, predicting survival is 
critical for improving treatment and providing information to patients and clinicians. 
Considering the data set of rectal cancer patients with specific demographic, tumor, 
and treatment information, it is a crucial issue whether patient survival or recurrence 
can be predicted by any parameter. Today, many hospitals store medical records as 
digital data. By evaluating these large data sets using AI techniques, it may be possible 
to predict patient treatment outcomes, plan individualized patient treatment, improve 
corporate performance, and regulate health insurance premiums.

CONCLUSION
Although AI can take place at every step in radiation oncology, from patient 
consultation to patient monitoring, and can contribute to the clinician and the society, 
there are still many challenges and problems to be solved. Initially, Large data sets 
should be created for AI and then undergo continuing improvement. The 
development of estimation tools with a wide variety of variables and models limits the 
comparability of existing studies and the use of standards. Estimation algorithms can 
be standardized by sharing data between centers, data diversity, and establishing 
immense databases. In addition, models can be made clinically applicable by updating 
with entry of new data into the models. Today, the accuracy and quality of data are 
also of great importance, as no AI algorithm can fix problems in training data.
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