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Abstract
Pancreatic adenocarcinoma remains to be one of the deadliest malignancies in the 
world despite treatment advancement over the past few decades. Its low survival 
rates and poor prognosis can be attributed to ambiguity in recommendations for 
screening and late symptom onset, contributing to its late presentation. In the 
recent years, artificial intelligence (AI) as emerged as a field to aid in the process 
of clinical decision making. Considerable efforts have been made in the realm of 
AI to screen for and predict future development of pancreatic ductal adenocar-
cinoma. This review discusses the use of AI in early detection and screening for 
pancreatic adenocarcinoma, and factors which may limit its use in a clinical 
setting.

Key Words: Artificial intelligence; Pancreatic cancer; Pancreatic adenocarcinoma; 
screening; Early detection
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Core Tip: Pancreatic adenocarcinoma has poor survival rate and high morbidity. 
Artificial intelligence is a potential tool to screen for high risk individuals and for early 
detection of pancreatic adenocarcinoma. Despite advances made in artificial intelligence 
research in pancreatic adenocarcinoma, it faces a number of challenges before it can be 
generalised and applied in a clinical setting.
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INTRODUCTION
The global incidence of pancreatic cancer is increasing, and it remains as one of the leading causes of 
cancer-related death, with 495773 new cases of pancreatic cancer diagnosed and accounting for 466003 
deaths in 2020[1]. Although the 5-year survival rates for pancreatic ductal adenocarcinoma (PDAC) 
have improved, it remains low at approximately 9%[2,3], and the overall prognosis of PDAC is poor. 
This is partly due to the late stage of presentation of PDAC, which is largely dependent on patient 
symptoms for suspicion of the disease[4,5]. Early cases are asymptomatic and there is a lack of a simple 
screening tool for clinical use unlike the case of colorectal cancer screening where screening can be 
performed in the primary care setting with the use of fecal immunohistochemical test. In the case of 
PDAC, cross-sectional imaging tests such as computed tomography (CT) or magnetic resonance 
imaging (MRI) are needed for detection, making widespread population screening unfeasible. Germline 
mutations and a family history of PDAC have been identified as the strongest risk factors for the disease
[6,7]. As such, efforts in screening programmes have focused their attention on this group of patients[8]. 
Pancreatic cysts, increased age, and smoking are also known risk factors for PDAC[5,9,10], although it 
may not be practical to conduct routine surveillance for patients with these risk factors. There is an 
interest in selecting higher risk patients for screening, as the appropriate use biomarkers and imaging 
may result in detection of early-stage PDAC amenable to curative resection[2,3,11-15].

Artificial intelligence (AI) is a branch in computer science where computer systems are designed to 
perform tasks which would require human intelligence. It is recognised as a potential tool as part of the 
screening efforts and building predictive models[16]. Most progress for AI in endoscopy has been made 
in the field of colonoscopy, where polyp detection and characterisation has been studied[17]. Computer-
aided diagnosis has also been extended to detection and screening of PDAC[18] in endoscopic 
ultrasound (EUS)[19,20], MRI[21] and cytology from fine needle sampling[22]. In recent years, various 
groups have harnessed the potential of AI in creating prediction models. These include The Felix Project
[23], the Pancreatic-Cancer Collective[24], and the Early Detection Research Network[25] effort.

This mini-review aims to study the role of AI in the early detection and screening for pancreatic 
cancer, as well as factors which may limit its use.

METHODS
A comprehensive literature search was performed in the PubMed, MEDLINE and EMBASE electronic 
databases from the inception of the databases up to and including 30 November 2021. The key words 
used were “artificial intelligence”, “pancreatic cancer”, “pancreatic adenocarcinoma”, “pancreatic ductal 
adenocarcinoma”, “pancreatic carcinoma”, “screening”, and “early detection”. These were supple-
mented with manual searches of references from retrieved articles. Publications in English were 
considered for this mini-review.

AI BASIC PRINCIPLES AND TERMINOLOGIES
AI is a term that refers to the ability of a computer programme to imitate the human mind to perform 
tasks such as problem solving and learning[26,27].

Machine learning (ML) is the commonest branch of AI used in medicine and refers to a mathematical 
model that aims to generate a prediction based on a set of data provided[28,29]. In supervised learning, 
the data points are labelled and the ML model “learns” from these labels and identifies new data points. 
In contrast, labels are not provided in unsupervised learning, and the model recognises the patterns of 
the data by learning its unknown properties and identifying crucial data checkpoints. This is especially 
important when the gold standard is not available[29].

Deep learning (DL) is subset of ML that employs the use of Artificial Neural Networks (ANN). Like 
the human brain, ANN consists of layers of artificial neurons that are interlinked. Each layer receives a 
weighted signal from the previous layer(s) and these signals will be propagated to the next layer when a 
specific threshold is exceeded[29]. In the setting of a pancreatic lesion or cancer, DL first identifies the 
basics of the lesion (e.g., location) in its initial layers before moving on to next layer for further character-
isation (e.g., size, shape, colour). A final prediction of the pancreatic lesion is made after a systematic 
assessment via multiple layers of neural network[29].

ANNs are first trained using the training data set, where the model learns to identify specific patterns 
to obtain a relationship between the input and the output. Hyperparameters refer to all settings that are 
pre-determined by the investigator and are used to construct the model for optimal execution of a 
particular task or on a specific dataset. The validation data set involves a different data set that is used 
to fine-tune the hyperparameters of the model. Finally, the test data set refers to a data set whose 
purpose is to evaluate the performance of the model against unseen data and determine its generaliz-
ability[29]. This set needs to be unseen by the model during training and validation. However in certain 
studies, the test set is sometimes a subset of the training or validation data set, which many result in 
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Figure 1 Schematic diagram showing the workflow and neural network to be designed for an early detection protocol. CT: Computed 
tomography; CEA: Carcinoembryonic antigen; PDAC: Pancreatic ductal adenocarcinoma; MRI: Magnetic resonance imaging.

overfitting of the model. This may lead to a discrepancy in the performance of the model when tested in 
the same centre and a decline in performance when validated externally.

MODEL FOR SCREENING FOR AND EARLY IDENFICATION OF DEVELOPING PDAC
Early detection of pancreatic cancer requires a step wise approach in order to systematically screen for 
risk factors and identify high-risk groups. Figure 1 is a schematic diagram showing the workflow and 
neural network to be designed for an early detection protocol. It represents the complex interplay 
between each of the input(s) to be processed for the next neural layer(s) until a final output is obtained. 
We will be discussing the role of AI in early detection of pancreatic cancer based on this model.

AI IN CLINICAL DECISION MAKING USING HEALTH RECORDS
The identification of risk factors for pancreatic cancer is essential in identifying the specific population 
which would benefit from screening[18,30,31]. Factors such as diabetes, hemoglobin A1C (HbA1c) 
value, weight, body mass index (BMI), blood type, smoking status, alcohol use and family history of 
pancreatic cancer influence the age of onset of screening for an individual[13,32]. These factors are easily 
available in the primary care setting and could potentially predict the development of pancreatic cancer 
within 5 years, even before any changes to the pancreas can be detected on imaging[30]. However, most 
of the data is stored in health records, which are often proprietary or internet-separated to protect 
patient data. The retrieval and subsequent integration of data from different platforms remains a 
manual and laborious process for physicians[30]. Even after retrieval, there are no validated scoring 
systems to assess these risk factors and stratify patients. On the other hand, AI, with the aid of Natural 
Language Processing, can facilitate this process[33-38]. In a case-control study, Malhotra et al[33] created 
an algorithm based on electronic health records (EHR) obtained from primary care to identify 41.3% of 
patients (≤ 60 years old) who had significant risk of developing pancreatic cancer up to 20 mo prior to 
diagnosis with a sensitivity, specificity, area under the receiver operating characteristic (AUROC) curve 
of 72.5%, 59.0% and 0.66%, respectively. Similarly, Appelbaum et al[35] was able to train an ANN using 
101381 EHRs to predict the development of PDAC one year before the diagnosis in a population of 
high-risk patients (AUROC 0.68, confidence interval (CI): 0.65-0.71).

Despite its potential benefits, research in AI for the above purpose is still preliminary as they are 
mostly based on retrospective data from single institutions or registries, and hence not ready for use in a 
wider clinical setting[33-38]. One of the major limitations would be the lack validation in the real-world 
setting or at least in populations derived from different centres to overcome the risk of bias and 
overfitting.
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The use of AI in EHR faces other challenges. Various institutions’ medical records are built on 
different healthcare systems and encoding systems, making the task of harmonising them difficult[30]. 
There is also a lack of standardised clinical research data collection models. To overcome this, efforts are 
made to build a model of processing and integrating data across institutions. The i2b2 was created to 
review medical records, retrieve specific data of interest and repurpose it for research[39]. The Observa-
tional Health Data Sciences and Informatics was developed from the Observational Medical Outcomes 
Partnership, an initiative that develops the Common Data Model aiming to gather information from 
different data sets or medical repositories and systemically analyse them in a common platform[40]. 
Similarly, the National Patient-centered Clinical research network is another example which was 
developed in United States to access millions of EHR and create a common data set for research 
purposes[41]. A common dataset with a standardised format for input of data relevant to PDAC would 
enable AI systems to leverage on big data to identify changing risk profiles in PDAC, enabling the 
clinician to channel resources for screening to the appropriate cohorts of patients depending on the 
population from which this data has been derived.

While these are upcoming and promising initiatives, concerns surrounding restrictions in data 
sharing, privacy issues, and maintenance costs could hinder data collection efforts[18]. EHRs are also 
stored in different languages in different regions of the world, making the integration of data difficult. 
Besides, once data sets are gathered, obtaining IRB approval from the various sites for research may be 
difficult.

AI AND THE USE OF NON-INVASIVE BIOMARKERS
Carbohydrate Antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) are the most widely used 
markers for screening of PDAC, but have also been proven to lack the specificity when applied 
individually and without clinical context[42,43]. On the other hand, a combined measurement can 
potentially increase its sensitivity and specificity up to 1 year before the diagnosis of PDAC[44-46]. 
Capitalising on this concept, Yang et al[47], developed an algorithm (with 658 subjects in its training set) 
to diagnose pancreatic cancer by using ANN to combine CA19-9, CA125 and CEA values. This model 
was subsequently evaluated against the test set and was able to yield an AUROC of 0.905 (95%CI = 
0.868-0.942) and a high diagnostic accuracy of 83.5% for pancreatic cancer.

New biomarkers for PDAC such as MicroRNAs and gene expressions have generated much interest 
in the recent years[45,48-52]. MicroRNAs are non-coding RNAs that are involved in the regulation of 
biological pathways, and when altered, could lead to the development of PDAC[53]. MicroRNAs can 
potentially predict future PDAC[54] or detect early stage pancreatic cancer. However, they have the 
same limitations in sensitivity and specificity when applied without clinical context and as independent 
test[55,56]. A combination of the commonly used biomarkers and newer biomarkers may address the 
problem of low sensitivity and specificity[56], and in particular can be combined with clinical and 
demographic information as described earlier to increase its usefulness.

While AI is able to make use of plasma microRNA panels and specific gene expressions to diagnose 
pancreatic cancer[57,58], studies on their use on predicting future pancreatic cancer are not available
[55]. By integrating Particle Swarm Optimization, ANN and Neighborhood Component Analysis 
iterations on a list of microRNAs that are most commonly expressed by pancreatic cancer, Alizadeh et al
[59] created a model consisting of 5 MicroRNAs (miR-663a, miR-1469, miR-92a-2-5p, miR-125b-1-3p and 
miR-532-5p) to diagnose pancreatic cancer (Accuracy: 0.93, Sensitivity: 93%, and Specificity: 92%). 
Similarly in a multicentre study by Cao et al[57], a machine learning approach was able to identify 2 
panels of microRNAs to differentiate pancreatic cancer from chronic pancreatitis with an accuracy of 
above 80%.

Gene expressions have gained popularity in diagnosing pancreatic cancer[13,60]. Using a machine 
learning approach, Khatri et al[61] analysed the results from transcriptomics-based meta-analysis to 
create a nine-gene panel to diagnose pancreatic cancer. This panel was able to differentiate PDAC from 
chronic pancreatitis with a specificity of 89%, sensitivity of 78%, and accuracy of 83% and an AUROC of 
0.95. As compared to a normal pancreas, it was also used to identify stage I and II PDACs with a 
sensitivity of 74%, specificity of 75%, and an AUROC of 0.82. In another study, a machine learning 
algorithm was formulated based on the biochemical differences in the serum of 2 groups of subjects 
(PDAC group and High risk group) detected via the use of Probe Electrospray Ionization Mass 
Spectrometry (PESI-MS) to identify early stages of pancreatic cancer[62]. It was able to differentiate 
healthy controls from subjects with earlier stage of PDAC with sensitivity of 81.2% and specificity of 
96.8% respectively and an accuracy of 92.9%.

At present, these studies have shown that AI can offer the advantage of identifying specific 
microRNA and genetic combinations to identifying pancreatic cancer at a faster speed, making this 
process less laborious. However, these studies lack external validation, limiting their application in 
modern practice. Besides, studies utilising AI to formulate specific sequences to accurately predict 
future pancreatic cancer development are still lacking. More studies are required to analyse its ability in 
predicting future pancreatic cancer for high risk groups especially during the latency period.
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Table 1 Studies on artificial intelligence using computed tomography or MRI imaging to diagnose pancreatic ductal adenocarcinoma

Ref. Clinical question

Training 
set 
(number 
of 
subjects)

Validation 
set 
(number 
of 
subjects)

AI 
instrument AUROC Accuracy Sensitivity Specificity 

Watson 
et al
[66], 
2021

Detection of 
pancreatic cystic 
neoplasms 
(including PDAC) vs 
benign cysts

18 9 CNN NA NA NA NA

Si et al
[65], 
2021

Detection of 
pancreatic cancer 
(including PDAC, 
IPMN, PNET)

319 347 DL 0.871 87.6% for 
PDAC

86.8% for 
pancreatic 
cancer 

69.5% for 
pancreatic 
cancer

Park et 
al[64], 
2020

Distinguishing 
pancreatic cancer 
tissue from 
autoimmune pancre-
atitis

120 62 Random 
forest 
machine 
learning

0.975 95.2% 89.7% 100%

Ma et al
[63], 
2020

Differentiate 
pancreatic cancer 
from benign tissue

330 41 CNN 0.9653 (plain scan) 95.47% (plain 
scan),95.76% 
(arterial scan), 
95.15% 
(venous 
phase)

91.58% (plain 
scan), 94.08% 
(arterial 
scan), 92.28% 
(venous 
phase)

98.3% (plain 
scan), 97.6% 
(arterial 
scan), 97.9% 
(venous 
phase)

Zhang 
et al
[67], 
2020

Detection of 
pancreatic cancer 

2650 
images

240 images CNN 0.9455 90.2% 83.8% 91.8%

Liu et al
[69], 
2020

Differentiating 
pancreatic cancer 
tissue from non-
cancerous pancreatic 
tissue

412 139 CNN 0.92 83.2% 79.0% 97.6%

Gao et 
al[71], 
2020

To differentiate 
pancreatic diseases 
in pancreatic lesions 

398 106 CNN 0.9035 (includes PDAC, 
adenosquamous carcinoma, 
acinar cell carcinoma, colloid 
carcinoma, myoepithelial 
carcinoma, undifferentiated 
carcinoma with osteoclast-like 
giant cells, mucinous 
cystadenocarcinoma, pancre-
atoblastoma, pancreatic 
neuroendocrine carcinoma 
and metastatic carcinoma)

NA NA NA

Chu et 
al[70], 
2019

Differentiating 
PDAC from normal 
pancreas

255 125 Random 
forest

NA 93.6% 95% 92.3%

Zhu et 
al[72], 
2019

Detecting PDAC 
from normal 
pancreas

205 234 CNN NA 57.3% 94.1% 98.5%

Liu et al
[73], 
2019

Diagnosis of 
pancreatic cancer

238 100 CNN 0.9632 NA NA NA

Corral 
et al
[21], 
2019

Identify and stratify 
IPMN lesions 

139 DL 0.783 NA 75% (for 
PDAC or 
high grade 
dysplasia)

78% (for 
PDAC or 
high grade 
dysplasia)

Chu et 
al[74], 
2019

Differentiating 
PDAC from normal 
pancreas

456 DL NA NA 94.1% 98.5%

Pancreas 
segmentation 
(including PDAC, 
IPMN, Pancreatic 
Neuroendocrine 

Fu et al
[75], 
2018

59 CNN NA NA 82.5% 76.22 (PPV)
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Tumors, Serous Cyst 
Adenoma, and Solid 
Pseudopapillary 
Tumour of the 
pancreas)

AUROC: Area under the receiver operating characteristic; AI: Artificial intelligence; CNN: Convolutional neural network; DL: Deep learning; NA: Not 
available; IPMN: Intraductal papillary mucinous neoplasm; PNET: Pancreatic neuroendocrine tumour; PDAC: Pancreatic ductal adenocarcinoma.

CURRENT EVIDENCE IN PREDICTING THE DEVELOPMENT OF PANCREATIC LESIONS 
INTO PDAC IN THE FUTURE
Various studies have been conducted using AI to diagnose pancreatic cancer and yielded promising 
results. Table 1 summarises the studies to date[21,63-75]. In a retrospective study, Liu et al[69] was able 
to train a convolutional neural network (CNN) to identify pancreatic cancer on contrast-enhanced CT 
and achieve an AUROC of 0.9, with more than 90% for its sensitivity and specificity for its test set. It 
maintained good sensitivity of 91.3%, specificity of 84.5%, an accuracy of 85.6% and AUROC of 0.955 
(95%CI 0.955-0.956) with the validation set. Further analysis revealed that with CNN, radiologists 
missed 7% of the pancreatic cancers, of which majority were accurately diagnosed by CNN[69]. By 
enhancing the CNN, Liu et al[73] was able to process the CT images and obtain the diagnosis faster than 
the radiologists (3 s for CNN vs 8 mins for a radiologist) with an AUROC of 0.9632, proving that AI is 
comparable to radiologists.

Besides CT, EUS has been frequently utilised to diagnosed pancreatic cancer. Table 2 summaries these 
studies[19,20,76-86]. The EUS-CAD based CNN was developed in a retrospective study by Tonozuka et 
al[83] to identify lesions harbouring pancreatic cancer in patients with chronic pancreatitis with a 
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 90.2%, 
74.9%, 80.1%, and 88.7%, respectively, and an AUROC of 0.924. Similar findings were also echoed in 
Zhu et al[86] who utilised SVM to obtain a sensitivity, specificity, PPV and NPV of over 90% for 
diagnosis of pancreatic cancer in chronic pancreatitis.

Despite numerous studies looking at using AI to diagnose pancreatic cancer (as shown in Tables 1 
and 2), only a few attempted to predict the development to pancreatic cancer. On average, CT changes 
for early pancreatic cancer starts approximately 12 to 18 mo before diagnosis[87]. Yet, pancreatic cancer 
can advance from being undetectable to metastatic in a short period of time even before the next 
surveillance imaging[88,89]. AI-based imaging itself cannot be used to predict pancreatic cancer and 
should be combined with other markers.

An ideal AI model for predicting pancreatic cancer is one that integrates multiple biochemical, 
radiological and clinical data[90]. In a retrospective proof-of-concept study, Springer et al[91] developed 
a supervised machine learning-based approach (CompCyst) based on a combination of patient-reported 
symptoms, imaging results (including CT, MRI and EUS images), cyst fluid and molecular character-
istics to calculate its malignant potential and subsequently determine the management of pancreatic 
cyst(s). When tested against the validation set, CompCyst outperformed the current standard of care 
(accuracy 56%) in its ability to identify patients who required surgery, close monitoring or can be 
discharged (accuracy 69%). CompCyst correctly identified 60% of the surgeries that were not warranted 
and could have been avoided, while not compromising on its ability to identifying those who truly 
require surgery. With CompCyst, 71% of the pancreatic lesions were correctly identified as PDAC as 
compared to 58% based on clinical suspicion[91].

While this study has proven that AI has the potential to incorporate various clinical characteristics, 
biomarkers, and imaging characteristics to assess for the malignant potential of a pancreatic lesion, it 
has a number of limitations. Firstly, the imaging characteristics and molecular biomarkers that were 
identified as high risk features were obtained at the time of surgery and not during screening. These 
features may not be present early enough to be identified by routine screening. Secondly, important risk 
factors (including age and diabetes) that were crucial in the early detection of PDAC (as shown in 
Figure 1) were not included in its learning process, representing a missed step in the screening process. 
Finally, CompCyst is yet to be externally validated and cannot be applied to the clinical setting 
currently.

While CompCyst is a potential tool to aid in clinical decision making, future studies aiming at early 
detection of PDAC face a myriad of challenges. Firstly, the pancreas is a complex organ. Unlike the 
other organs, the pancreas can be highly variable in its anatomy and location. Moreover, the training 
data set is highly dependent on the quality of the images provided. Hence, automated segmentation of 
the pancreas via a deep learning approach remains challenging[92]. Secondly, the lack of databases 
limits the ability to develop new training sets. There are currently only a few open-access databases[93], 
and there are issues regarding sharing of images across various institutions as pointed out by the 
Alliance of Pancreatic Cancer Consortia imaging working group[90]. Finally, the algorithm for early 
detection of PDAC will have to evaluate images of pancreatic lesion(s) across different time points of 
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Table 2 Studies on artificial intelligence using endoscopic ultrasound to diagnose pancreatic ductal adenocarcinoma

Ref. Clinical question

Training 
set 
(number of 
subjects)

Validation 
set (number 
of subjects)

AI instrument AUROC Accuracy Sensitivity Specificity 

Udristoiu et 
al[84], 2021

Detecting focal pancreatic 
masses in four EUS imaging 
modalities

65 CNN and 
Long Short-
term Memory 
models

0.97 97.6% 98.1% 96.7%

Tonozuka et 
al[83], 2021

Detecting PDAC in patients 
with normal 
pancreas/Chronic pancre-
atitis

92 CNN 0.924 NA 90.2% 74.9%

Marya et al
[78], 2021

Differentiate AIP from 
PDAC, chronic pancreatitis 
and other pancreatic 
diseases

336 124 CNN 0.976 NA 95% 90%

Kuwahara 
et al[77], 
2019

Predicting malignancy in 
IPMN

50 CNN 0.98 94% 95.7% 92.6%

Ozkan et al
[80], 2016

Differentiating pancreatic 
cancer from healthy 
pancreas

260 images 72 images ANN NA 87.5% 83.3% 93.3%

Saftoiu et al
[81], 2015

Differentiate pancreatic 
cancer from chronic pancre-
atitis

117 25 ANN NA NA 94.6% 94.4%

Zhu et al
[86], 2013

Differentiating pancreatic 
cancer from chronic pancre-
atitis. 

194 194 SVM NA 94.2% 96.3% 93.4%

Saftoiu et al
[82], 2012

Diagnosis of focal 
pancreatic lesions 

258 patients ANN 0.94 84.27% 87.59% 82.94%

Zhang et al
[85], 2010

Differentiate pancreatic 
cancer from non-tumorous 
tissue

108 108 SVM NA 97.98% 94.3% 99.45%

Saftoiu et al
[20], 2008 
cancer

Differentiate normal 
pancreas, chronic pancre-
atitis, pancreatic cancer, and 
neuroendocrine tumors

68 Neural 
network

0.847 (for 
PDAC vs 
chronic 
pan-
creatitis)

86.1% (for 
PDAC vs 
chronic pan-
creatitis)

93.8% (for 
PDAC vs 
chronic pan-
creatitis)

63.6% (for 
PDAC vs 
chronic pan-
creatitis)

Das et al
[19], 2008

Differentiating pancreatic 
adenocarcinoma from non-
neoplastic tissue (includes 
normal pancreas and 
chronic pancreatitis)

160 159 ANN 0.93 NA 93% 92%

Norton et al
[79], 2001

Differentiate malignancy 
from pancreatitis

35 ML NA 80% 100% 50%

AUROC: Area under the receiver operating characteristic; AI: Artificial intelligence; CNN: Convolutional neural network; EUS: Endoscopic ultrasound; 
SVM: Support vector machines; ML: Machine learning; NA: Not available; IPMN: Intraductal papillary mucinous neoplasm; PDAC: Pancreatic ductal 
adenocarcinoma.

surveillance and from different 3 imaging modalities (namely CT, MRI, and EUS). Unlike CompCyst 
which looks at images at one time point (i.e. at surgery), combining multiple images obtained from 
periodical surveillance via these 3 imaging modalities will require a very large database and multiple 
layers.

There is a major gap that needs to be bridged before AI systems for early detection of pancreatic 
cancer can be developed. Given sufficient training data and cooperation, AI-based image analyzers 
could match or even outperform physicians in image classification and lesion detection[90].

CONCLUSION
Despite the recent advances to predict future PDAC, the use of AI in screening for pancreatic cancer 
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remains limited in the clinical setting. Much of the efforts are made in the research setting and lack 
external validation and generalisability. However, this field remains promising as we recognise the 
challenges ahead to bridge the necessary gaps. The hope to develop an integrated AI model to screen for 
PDAC remains a reality, and it will play a complementary role in assisting physicians in their clinical 
decision making process but not replace it.
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