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Abstract
Traditional medical imaging, including ultrasound, computed tomography, 
magnetic resonance imaging, or positron emission tomography, remains widely 
used diagnostic modalities for gastrointestinal diseases at present. These 
modalities are used to assess changes in morphology, attenuation, signal intensity, 
and enhancement characteristics. Gastrointestinal tumors, especially malignant 
tumors, are commonly seen in clinical practice with an increasing number of 
deaths each year. Because the imaging manifestations of different diseases usually 
overlap, accurate early diagnosis of tumor lesions, noninvasive and effective 
evaluation of tumor staging, and prediction of prognosis remain challenging. 
Fortunately, traditional medical images contain a great deal of important 
information that cannot be recognized by human eyes but can be extracted by 
artificial intelligence (AI) technology, which can quantitatively assess the 
heterogeneity of lesions and provide valuable information, including therapeutic 
effects and patient prognosis. With the development of computer technology, the 
combination of medical imaging and AI technology is considered to represent a 
promising field in medical image analysis. This new emerging field is called 
“radiomics”, which makes big data mining and extraction from medical imagery 
possible and can help clinicians make effective decisions and develop 
personalized treatment plans. Recently, AI and radiomics have been gradually 
applied to lesion detection, qualitative and quantitative diagnosis, 
histopathological grading and staging of tumors, therapeutic efficacy assessment, 
and prognosis evaluation. In this minireview, we briefly introduce the basic 
principles and technology of radiomics. Then, we review the research and 
application of AI and radiomics in gastrointestinal diseases, especially diagnostic 
advancements of radiomics in the differential diagnosis, treatment option, 
assessment of therapeutic efficacy, and prognosis evaluation of esophageal, 
gastric, hepatic, pancreatic, and colorectal diseases.
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Core Tip: This minireview summarizes the research and application of artificial 
intelligence (AI) technology, radiomics, and texture analysis in gastrointestinal diseases in 
detail and focuses on the diagnostic advances of AI and radiomics in lesion detection, 
differential diagnosis, decision of treatment plans, assessment of therapeutic efficacy and 
tumor response to treatment, and prognosis prediction of gastrointestinal diseases. This 
technology can provide more valuable information to allow clinicians and radiologists to 
understand and perform AI and radiomics in their clinical practice.

Citation: Feng P, Wang ZD, Fan W, Liu H, Pan JJ. Diagnostic advances of artificial intelligence 
and radiomics in gastroenterology. Artif Intell Gastroenterol 2020; 1(2): 37-50
URL: https://www.wjgnet.com/2644-3236/full/v1/i2/37.htm
DOI: https://dx.doi.org/10.35712/aig.v1.i2.37

INTRODUCTION
In the 1980s, with the application of artificial neural network and computer-aided 
diagnosis and detection system software, artificial intelligence (AI) has gradually been 
integrated into the daily workflow of various fields[1]. Since the beginning of the 21st 
century, advances in computer technology have led to the rapid development of AI in 
medical applications. With the rapid development of AI, the combination of medical 
imaging and AI is considered a promising field in medicine and is primarily used for 
image data mining, extraction, searching, and applications, as well as image 
recognition and deep learning[2]. Currently, AI technology has been widely used in 
lung nodule, lung cancer, and breast cancer screening as well as prostate cancer, 
colorectal cancer, and head and neck cancer imaging[3-8]. In terms of gastroenterology, 
the main applications of AI are radiomics and texture analysis. The concept of 
radiomics was formally proposed in 2012 and refers to the process of converting 
digital medical images into mineable high-dimensional data by high-throughput 
extraction and analysis of innumerable quantitative imaging features from medical 
images obtained with imaging modalities, including ultrasound, computed 
tomography (CT), magnetic resonance imaging (MRI), or positron emission 
tomography (PET)[9,10]. Radiomics is a technology that combines multiple images and 
interdisciplinary techniques and primarily includes the following five imaging steps: 
(1) Image acquisition: Acquirement of high-quality, standardized medical images for 
diagnosis and evaluation; (2) Image segmentation: Manual, automatic, or 
semiautomatic segmentation and reconstruction of the image; (3) Feature extraction 
and quantification: This is the core process of radiomics to extract region of interest 
(ROI) texture feature parameters, including shape or size, first-order histogram or 
spherical statistical features, second-order histogram or texture, and higher-order 
statistics features and other special image features; (4) Feature selection: Screening of 
features based on repeatability, correlation with other features, and relationship with 
staging, prognosis, and gene expression; and (5) Model establishment: Incorporation of 
the selected radiomics features into a suitable prediction model[1,2,11]. By extracting 
high-throughput quantitative features, radiomics based on quantitative imaging can 
reflect not only certain components within the tumor but also intratumoral 
heterogeneity by providing supplementary information, thus helping to assess disease 
characteristics in detail[12]. The application of radiomics in gastroenterology is mainly 
focused on lesion recognition, clinical staging, and prognosis analysis. The purpose of 
this minireview is to provide a descriptive overview of diagnostic advances of AI and 
radiomics in gastroenterology.
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DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN ESOPHAGEAL 
CANCER
Esophageal cancer (EC) is the eighth most frequent malignant disease and the sixth 
most prevalent cause of disease-associated deaths worldwide[13]. The selection of a 
therapeutic approach and prognosis of EC are closely associated with preoperative 
tumor stage[14]. Therefore, accurate preoperative staging is of great importance for 
selecting an appropriate treatment plan and predicting prognosis. Traditionally, CT is 
a widely used modality for diagnosis and preoperative staging of EC; however, due to 
limited contrast resolution, CT cannot accurately identify early stage EC (T1-2) and is 
mainly used in the evaluation of regional spread and distance metastasis[15-17]. Recently, 
some studies have reported that radiomics and text analysis can improve the accuracy 
of preoperative tumor staging classification. In a study enrolling 73 patients with 
esophageal squamous cell carcinoma (ESCC), CT texture parameters based on 
unenhanced and contrast-enhanced CT images, kurtosis, entropy, and skew showed 
great potential in differentiating T stages (T1–2 vs T3–4), lymph node metastasis (N- vs 
N+), and overall stages of ESCC[18]. In a study of 154 patients with ESCC, the radiomics 
signature extracted from CT images was significantly associated with ESCC staging, 
yielding a better performance for discrimination of early stage (T1–2) and advanced 
stage (T3–4) ESCC compared to tumor volume, indicating the potential of radiomics in 
staging ESCC preoperatively[19]. F-18-fluorodeoxyglucose (18F-FDG) PET image-derived 
characteristics, including image textural features, standard unit value (SUV), and 
shape features, also allowed for better stratification of American Joint Committee on 
Cancer and tumor-node-metastasis (TNM) than F-18-fluorothymidine (18F-FLT) PET in 
ESCC patients[20]. Radiomics based on MR images (T2-TSE BLADE and contrast-
enhanced Star VIBE) also more accurately distinguished metastatic lymph nodes 
compared with nonmetastatic lymph nodes, yielding an area under the receiver 
operating characteristic curve (AUC) of 0.821 (95%CI: 0.7042 to 0.9376) and 0.762 
(95%CI: 0.7127 to 0.812), respectively[21].

In addition to tumor staging, radiomics and textural analysis have also shown 
significant importance for efficacy and prognosis evaluation. Tixier et al[22] extracted 
gray level cooccurrence matrices (GLCM), gray-level size zone matrix, entropy, long-
run matrix, and other texture features from PET images and found that these texture 
features were more effective (AUC: 0.82-0.89) than SUVmax and SUVmean (AUC: 
0.59-0.7) in predicting the clinical response of chemoradiotherapy for patients with EC. 
In a study on prediction of response after chemoradiation for EC, an integrated model 
combining CT radiomic features and dosimetric parameters for 94 patients with EC 
permitted a prediction accuracy of 0.708 and AUC of 0.689, while using radiomic 
features alone permitted the best prediction accuracy of 0.625 and AUC of 0.412[23]. In 
total, 138 radiomics features extracted from MR T2WI in 68 patients with ESCC 
exhibited potential in distinguishing complete response (CR) from stable disease (SD), 
partial response (PR) from non-response (SD), and response (CR and PR) from SD. 
Moreover, using neural network and support vector machine prediction models, 
features extracted through spectral attenuated inversion-recovery T2WI exhibited 
better performance than those extracted from T2WI in predicting the response to 
chemoradiotherapy in EC[24].

Radiomics also shows potential in the evaluation of disease prognosis. In a study of 
239 patients with EC, a random forest (RF) model based on pretreatment CT radiomics 
features was used to predict 3-year overall survival (OS) following chemo-
radiotherapy. Compared to the model using standard clinical variables that yielded an 
AUC of 0.63 (95%CI: 0.54–0.71), the radiomics-based RF model yielded an AUC of 0.69 
(95%CI: 0.61–0.77), demonstrating better prognostic power of the radiomics model 
compared with traditional clinical variables[25]. Yip et al[26] also analyzed the radiomics 
features extracted from enhanced CT images of 36 patients with T2 or above EC pre- 
and posttreatment of chemoradiotherapy and found that a posttreatment medium 
entropy of less than 7.356, a coarse of less than 7.116, and a median uniformity greater 
than 0.007 were associated with improved survival time. Moreover, the combination of 
pretreatment texture parameters (entropy and uniformity) with maximal wall 
thickness assessment in survival models performed better than morphologic tumor 
response alone with AUCs of 0.767 vs 0.487 and 0.802 vs 0.487[26]. In a study on the 
prediction of therapy response to neoadjuvant chemoradiotherapy in 97 EC patients, 
Beukinga et al[27] constructed a response prediction model based on pretreatment 
clinical parameters and 18F-FDG PET/CT–derived textural features. Compared with 
the current most accurate prediction model with SUVmax, the constructed model had 
higher AUC (0.78 vs 0.58) and discrimination slope (0.17 vs 0.01). In another study of 
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31 patients with primary EC, a significant decrease in entropy and CT tumor 
heterogeneity and increase in uniformity were observed following neoadjuvant 
chemotherapy, indicating that CT texture analysis has the potential to assess prognosis 
and survival of patients with primary EC[28]. In another study of 61 ESCC patients who 
received radical radiation therapy, the survival rate was significantly correlated with 
the change of coarseness (P = 0.0027) and strength (P = 0.0001), which indicated that 
CT features (such as coarseness and strength) could be selected as outstanding 
imaging biomarkers for prediction of RT prognosis of ESC[29].

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN GASTRIC DISEASE
Radiomics and texture analysis potentially aid radiologists in differential diagnosis of 
gastric tumors. In a study on the utility of texture features of CT images in differential 
diagnosis of gastric tumors, textural features derived from the arterial phase exhibited 
improved accuracy of differentiation between gastric adenocarcinoma (GC) and 
gastric lymphoma as well as gastric stromal tumor (GIST) and lymphoma; however, 
the textural features derived from the venous phase adequately distinguished between 
GC and GIST[30]. Similarly, in a study on the discrimination of Borrmann type IV 
gastric cancer and primary lymphoma, objective feature models including CT objective 
features (stomach wall thickness, infiltration degree, etc.) and clinical features (age, 
gender, etc.), texture feature models, and a combination of these two models were 
established to distinguish these two types of gastric malignancies. A sensitivity of 
86.67% and specificity of 82.5% were found in the texture feature model, and a 
specificity of 100% was noted in the combination model with the highest AUC value 
(0.903), indicating the ability of radiomics in distinguishing gastric tumors from gastric 
primary lymphoma[31].

In addition, radiomics and texture analysis are also helpful for detection of local and 
peritoneal metastases. In a study of 554 patients with advanced gastric cancer (AGC) 
who were initially diagnosed as having no peritoneal metastasis by CT, a nomogram 
of radiomics signatures was developed that reflected primary tumor phenotypes and 
peritoneum region metastasis and demonstrated the best diagnostic accuracy for 
occult peritoneal metastasis[32]. In another study, texture analysis of CT imaging was 
also verified as a useful predictor of occult peritoneal carcinomatosis in patients with 
AGC[33].

Similar to its application in esophageal cancer, radiomics has also been reported to 
be helpful for tumor staging in many studies. CT texture parameters in the arterial 
phase and portal vein phase positively correlated with T stage, N stage, and overall 
stage (P < 0.05) of GC and identified lymph node metastasis of GC[34]. All the entropy-
related parameters derived from whole-volume ADC texture analysis exhibited a 
significant correlation with T, N, and overall stages. Furthermore, significant 
differences in these parameters were found between GCs with and without perineural 
invasion[35].

Regarding preoperative prognosis evaluation, texture analysis has also 
demonstrated good application prospects. Giganti et al[36] analyzed the preoperative 
textural features based on multiple detector CT images of 56 patients with 
pathologically confirmed GC and found that texture parameters, namely, energy, 
entropy, maximum Hounsfield unit value, skewness, root mean square, and mean 
absolute deviation (filter 2), negatively correlated with the prognosis of GC. Moreover, 
these parameters could be used for risk stratification in GC and aid in assessment of 
aggressiveness of GC[36]. A radiomics signature based on CT imaging in the portal 
venous phase was used to predict survival of GC, add prognostic information to the 
TNM staging system, and predict patient benefit from chemotherapy[37]. Moreover, in 
another study of 26 patients with human epidermal growth factor receptor 2-positive 
AGC who received trastuzumab-based combination chemotherapy, heterogeneous 
texture features on contrast-enhanced CT images were associated with better survival, 
demonstrating the potential of an imaging biomarker to provide prognostic 
information on patient selection[38].

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN HEPATIC DISEASE
Studies on radiomics in hepatic diseases mainly focus on the staging of hepatic 
fibrosis, differential diagnosis of tumor and nontumor lesions, treatment selection, and 
prognosis evaluation. Echegaray et al[39] performed enhanced CT texture analysis in 29 
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patients with hepatocellular carcinoma (HCC) and found that texture features of 
images obtained in the portal venous phase exhibited the lowest misdiagnosis rate 
(13.57%) in the differential diagnosis of focal liver lesions, demonstrating the 
superiority of radiomics compared with traditional imaging in distinguishing hepatic 
disease characteristics[39]. In a study of 164 hepatic lesions, Huang et al[40] extracted the 
autocovariance texture features of lesions and proposed a support vector machine 
classifier system to identify benign lesions from malignant lesions. The system had an 
accuracy of 81.7% in identifying malignant hepatic lesions with a sensitivity of 75.0% 
and specificity of 88.1% and was useful in reducing the needs for iodinated contrast 
agent injection in CT examination[40]. Oyama et al[41] assessed the accuracy for 
classification of HCC, metastatic tumors (MT), and hepatic hemangioma (HH) by 
characterization of non-contrast-enhanced fat-suppressed three-dimensional (3D) T1-
weighted images by using texture analysis and topological data analysis using 
persistent homology. In the classification of HCC and MT, HCC and HH, and HH and 
MT, accuracies of 92%, 90%, and 73% were obtained by texture analysis, showing the 
potential application for computer-aided diagnosis with MR images[41]. In a study on 
the differential diagnosis of neoplastic or bland portal vein thrombosis in 109 patients, 
the mean value of positive pixels (without filtration), entropy (with fine filtration), and 
mean thrombus density values were helpful in the identification of neoplastic and 
bland thrombi with AUCs of 0.97, 0.93, and 0.91, yielding optimal cutoff values of 56.9, 
4.50, and 54.0 HU, respectively (P < 0.001); these findings indicated that CT texture 
analysis and CT attenuation values based on images obtained in the portal venous 
phase could be helpful in differentiating neoplastic thrombi from benign thrombi[42].

In the evaluation of hepatic fibrosis and other nontumor lesions, radiomics also has 
shown good prospects. In a study on staging of hepatic fibrosis in 289 patients, CT 
texture parameters (mean gray-level intensity, kurtosis, and skewness) were helpful in 
the detection and staging of fibrosis[43]. In total, 41 texture features extracted from 
enhanced CT images of 83 patients with pathologically proven hepatic fibrosis offered 
a noninvasive assessment of liver fibrosis[44]. In a study on the texture features of non-
contrast-enhanced CT images of 88 patients with pathologically confirmed 
nonalcoholic steatohepatitis (NASH), the mean texture parameters without a filter and 
skewness with a 2-mm filter were selected for the NASH prediction model for patients 
without suspected fibrosis, yielding an AUC of 0.94 and accuracy of 94% in the 
predictive model for the validation dataset. These results reveal the ability of the 
model to predict NASH[45].

In addition, imaging texture analysis also shows good prospect in the evaluation of 
prognosis, optimization of treatment plans, and prediction of tumor response to 
treatment. Texture analysis exhibited potential in the assessment of prognosis and 
selection of appropriate patients with intermediate-advanced HCC treated by 
transcatheter arterial chemoembolization (TACE) and sorafenib[46]. In another study on 
the prediction of therapeutic response of HCC to TACE, textures derived from 
pretreatment dynamic CT imaging were analyzed in 96 patients with 132 HCCs, and 
increased arterial enhancement ratios and GLCM moments, smaller tumor size, and 
reduced tumor homogeneity were significant predictors of complete response (CR) 
after TACE[47]. A radiomics scoring system based on 18F-FDG PET was generated in a 
study of 47 patients undergoing transcatheter arterial radioembolization using 
Yttrium-90 for unresectable HCC, and statistically significant differences in 
progression-free survival (PFS) and overall survival (OS) between low-risk patients 
and high-risk patients were detected, indicating that pretreatment 18F-FDG PET-
derived radiomics features served as an independent negative predictor of patient 
prognosis[48]. Similarly, preoperative skewness derived from images obtained in the 
portal venous phase was independently associated with OS in patients with resectable 
HCC and might be useful in the selection of patients for resection[49]. In a study focused 
on the prediction of OS and time to progression of 92 patients with advanced HCC 
treated with sorafenib, pretreatment CT texture feature entropy derived from images 
obtained in the portal venous phase was also identified as an independent predictor of 
OS in patients[50].

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN PANCREATIC 
DISEASES
At present, the applications of radiomics analysis in pancreatic diseases mainly focus 
on the diagnosis and differential diagnosis of pancreatic tumors, biological 
stratification and grading of tumors, prognosis prediction, therapeutic assessment, and 
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efficacy evaluation. Radiomics analysis also aids in preoperative diagnostic accuracy 
and proper management decisions. In a study that enrolled 260 surgically resected 
pancreatic cystic neoplasms, the accuracy rate for serous cystic neoplasms (SCNs) 
before surgery was only 30.4% (102/260), indicating that greater than two-thirds of 
patients with SCN underwent unnecessary surgery. However, using a diagnostic 
model established based on dual-phase pancreatic CT imaging features, the accuracy 
rate of diagnosis significantly improved with an AUC of 0.767, sensitivity of 68.6%, 
and specificity of 70.9%[51]. In clinical practice, imaging findings of pancreatic 
neuroendocrine carcinoma (PNEC) and pancreatic ductal adenocarcinoma (PDAC) 
usually overlap, and the misdiagnosis of these two entities is common. In addition to 
traditional CT imaging features of tumor margin, parenchymal atrophy, and contrast 
ratio in the arterial and portal phases, Guo et al[52] confirmed that texture parameters of 
entropy and uniformity were also valuable for distinguishing PNEC from PDAC. CT 
features and texture analysis were also useful for the classification of pancreatic 
neuroendocrine tumors (PNETs). In a study enrolling 101 patients with PNETs, 
entropy was predictive of Grades (G) 2 and 3 tumors with an accuracy of 79.3% for 
classifying G1, G2, and G3 tumors[53]. D'Onofrio et al[54] also reported that parameters of 
kurtosis and entropy extracted from 3D CT-texture imaging analysis could predict the 
grade of PNETs, distinguishing G1 from G3, G2 from G3, and G1 from G2 tumors.

Promising results of radiomics and texture analysis were reported in the field of 
therapeutic assessment and prognosis prediction of PDAC. Texture parameters from 
preoperative CT images of pancreas head cancer in patients who underwent curative 
resection significantly differed between patients with and without recurrence, and this 
method could be used as an independent imaging tool for predicting prognosis[55]. In 
another study on patients with unresectable PDAC treated with chemotherapy, 
pretreatment CT quantitative imaging biomarkers based on texture analysis were 
associated with PFS and OS, and the combination of pretreatment texture parameters 
and tumor size performed better in survival models than imaging biomarkers alone[56]. 
Cozzi et al[57] also reported that a CT-based radiomics signature correlated with OS and 
local control of PDAC after stereotactic body radiation therapy and allowed for 
identification of low- and high-risk groups of patients.

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN COLORECTAL 
DISEASES
At present, research on colorectal tumors mainly focuses on the extraction of texture 
features, identification of neoplastic and nonneoplastic lesions, preoperative staging of 
colorectal cancer (CRC), and evaluation of lymphatic metastasis. In a study on the 
efficiency of texture features by CT colonography in the differential diagnosis of colon 
lesions, combining high-order CT images with CT volumetric texture features yielded 
a significantly increased AUC of 0.85 in distinguishing neoplastic colon tumors from 
nonneoplastic lesions compared with the exclusive use of the parameter of image 
intensity[58]. A CT-based radiomics signature of patients with CRC before surgery 
might be a useful method for preoperative CRC tumor staging given its ability in the 
discrimination of stage I-II from stage III-IV CRC, yielding an AUC of 0.792 with a 
sensitivity of 0.629 and specificity of 0.874[59].

The application of radiomics also showed efficacy in therapeutic evaluation of rectal 
cancer (RC). In a study on the response to neoadjuvant chemoradiation therapy 
(NCRT) in 51 patients with local advanced RC, radiomics based on pretreatment and 
early follow-up MRI could provide quantitative information to differentiate pathologic 
CR (pCR) from non-pCR and good response (GR) from non-GR[60]. Texture parameters 
derived from T2WI of RC also exhibited potential to assess the tumoral response to 
NCRT[61].

Radiomics and texture analysis are also valuable for treatment decisions. In a study 
that enrolled 95 patients with T2-4 N0-1 RC treated with NCRT, a deep neural network 
was proposed to predict the CR of tumor to treatment. The model predicted CR with 
an increased accuracy of 80% compared with the linear regression model (69.5%) and 
support vector machine model (71.58%) after NCRT, demonstrating the potential of 
radiomics in the selection of patients for NCRT rather than radical resection[62]. In 
another study of 326 pathologically proven CRC patients, a radiomics nomogram 
incorporating both the radiomics signature and clinicopathologic risk factors for 
individual preoperative prediction of lymph node metastasis in patients with CRC 
was developed and facilitated the preoperative individualized prediction of lymph 
node metastasis[63].
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CONCLUSION
In conclusion, AI and radiomics have been applied in routine clinical practice, 
including lesion detection, differential diagnosis, therapeutic assessment, prognosis 
prediction and so on (Figure 1). The incorporation of AI into current clinical radiology 
workflow has shown potential to help radiologists improve accuracy of diagnosis, 
evaluate therapeutic effect, and predict prognosis (Tables 1-3). However, at present 
these applications in clinical practice remain in their infancy, and many details of 
workflow need to be improved. First, there is no uniform standard for image 
acquisition at present. Different types of scanners and imaging acquisition protocols 
vary across institutions, and the image quality and stability of features also need to be 
improved. Second, although a majority of models could be built for radiomics analysis, 
it is still difficult to decide the best one for different clinical issues. Third, till now, 
most studies were retrospectively designed and the reliability of these research 
conclusions still needs to be tested. In order to overcome these barriers, it is of great 
importance to establish a unified labeling database, develop automatic standardized 
ROI mapping software, and select multiple machine learning methods for 
optimization. Moreover, for more applications and development of AI and radiomics 
in gastroenterology, multicenter cooperation is also an inevitable trend to verify large 
sample data from various institutions. Given the continuous accumulation of data, 
standardization of work processes, and continuous improvement of computer 
technology, AI and radiomics will make a major breakthrough in the field of precision 
medicine for gastroenterology in the future.
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Table 1 Application of radiomics in qualitative diagnosis in gastroenterology

Classification of 
disease

Imaging 
modality Features evaluated and methods Outcomes Ref.

Gastric disease

AC; GIST; 
lymphoma

CECT RLM; GLCM; absolute gradient; 
autoregressive model; wavelet 
transformation

Texture-based lesion classification in arterial phase differentiated 
between AC and lymphoma, and GIST and lymphoma, with 
misclassification rates of 3.1% and 0%, respectively Texture-based 
lesion classification in venous phase differentiated between AC 
and GIST, and different grades of AC with misclassification rates 
of 10% and 4.4%, respectively

[30]

Borrmann type IV 
GC; PGL

CECT A total of 485 3D features, divided into four 
groups: First order statistics, shape and size 
based features, texture features, and wavelet 
features

The subjective findings model, radiomics signature, and combined 
model showed a diagnostic accuracy of 81.43% (AUC, 0.806; 
sensitivity, 63.33%; specificity, 95.00%), 84.29% (AUC, 0.886; 
sensitivity, 86.67%; specificity, 82.50%), and 87.14% (AUC, 0.903; 
sensitivity, 70.00%; specificity, 100%), respectively, in the 
differentiation of Borrmann type IV GC from PGL

[31]

Hepatic disease

Neoplastic and 
bland portal vein 
thrombus

CECT Mean; entropy; SD of pixel intensity; 
kurtosis; skewness

In the discrimination of neoplastic from bland thrombus, the 
AUCs were 0.97 for mean value of positive pixels, 0.93 for 
entropy, 0.99 for the model combining mean value of positive 
pixels and entropy, 0.91 for thrombus density, and 0.61 for the 
radiologist's subjective evaluation

[42]

HCC; MT; HH MRI GLCM; GLRLM; GLSZM; NGTDM Texture analysis in differential diagnosis: HCC and MT: accuracy 
92%, sensitivity100%, specificity 84%, AUC 0.95 HCC and HH: 
accuracy 90%, sensitivity 96%, specificity 84%, AUC 0.95 MT and 
HH: accuracy 73%, sensitivity74%, specificity72%, AUC 0.75

[41]

Pancreatic disease

PSCN CECT A total of 385 radiomics high-throughput 
features: Intensity; wavelet; NGTDM

The accuracy rate of SCNs before surgery was only 30.4% (31/102) 
while the diagnostic model established based on dual-phase 
pancreatic CT imaging features had an improved accuracy rate of 
diagnosis, showing an AUC of 0.767, sensitivity of 68.6%, and 
specificity of 70.9%

[51]

PNEC; PDAC CECT Filtration-histogram approach and 
Laplacian-of-Gaussian band-pass filters 
(sigma values of 0.5, 1.5, and 2.5) were used 
and texture parameters under different 
filters, including: Kurtosis, skewness, 
entropy, and uniformity

PNEC showed a lower entropy and a higher uniformity compared 
to PDAC in the portal phase with an acceptable AUC of 0.71-0.72

[52]

Colorectal disease

Neoplastic and 
non-neoplastic 
lesions

CECT 78 features for each lesion in total Combining high-order CT images with CT volumetric texture 
features allowed a significantly higher AUC of 0.85 in 
distinguishing neoplastic colon tumors from non-neoplastic ones 
than only using the image intensity (AUC of 0.74)

[58]

CECT: Contrast-enhanced computed tomography; AC: Adenocarcinoma; GIST: Gastrointestinal stromal tumors; PGL: Primary gastric lymphoma; MT: 
Metastatic tumor; HH: Hepatic hemangioma; AUC: Area under the curve; GLCM: Grey level cooccurrence matrices; GLSZM: Gray-level size zone matrix; 
PSCN: Pancreas serous cystic neoplasms; SCN: Serous cystic neoplasm; PNEC: Pancreatic neuroendocrine carcinoma; PDAC: Pancreatic ductal 
adenocarcinoma.
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Table 2 Application of radiomics in disease staging in gastroenterology

Classification 
of disease

Imaging 
modality Features evaluated and methods Outcomes Ref.

Esophageal disease

ESCC Unenhanced 
CT and CECT

Six parameters based on HU values: 
Mean; 10th percentiles; 90th percentiles; 
kurtosis; entropy; skew

Kurtosis and entropy based on unenhanced CT were an independent 
predictor of T stages, lymph node metastasis (N- vs N+), and overall 
stages Skew and kurtosis based on unenhanced CT images showed 
significant differences among N stages as well as 90th percentile 
based on contrast-enhanced CT images; entropy and 90th percentile 
based on CECT images showed significant correlations with N stage 
and overall stage

[18]

ESCC CECT A total of 9790 radiomics features were 
extracted including the following four 
categories: First-order histogram 
statistics, size and shape-based features, 
texture features, and wavelet features

The radiomics signature significantly associated with ESCC staging 
and yielded a better performance for discrimination of early and 
advanced stage ESCC compared to tumor volume

[19]

Gastric disease

GC MRI Entropy-related parameters based on 
ADC maps including: (1) First-order 
entropy; (2–5) second-order entropies, 
including entropy(H)0, entropy(H)45, 
entropy(H)90, and entropy(H)135; (6) 
entropy(H)mean; and (7) entropy(H)range

All the entropy-related parameters showed significant differences in 
gastric cancers at different T, N, and overall stages, as well as at 
different statuses of vascular invasion Entropy, entropy(H)0, 
entropy(H)45, and entropy(H)90, showed significant differences 
between gastric cancers with and without perineural invasion

[35]

GC CECT Mean; maximum frequency; mode; 
skewness; kurtosis; entropy

Maximum frequency in the arterial phase and mean, maximum 
frequency, mode in the venous phase correlated positively with T, N, 
and overall stage of GC; entropy in the venous phase also correlated 
positively with N and overall stage; skewness in the arterial phase 
had the highest AUC of 0.822 in identifying early from advanced GCs

[34]

Hepatic disease

Hepatic fibrosis CECT Mean gray-level intensity; entropy; 
kurtosis; skewness

Mean gray-level intensity, mean, and entropy increased with fibrosis 
stage; kurtosis and skewness decreased with increasing fibrosis

[43]

Pancreatic disease

PNET CECT Positive pixels; SD; kurtosis; skewness; 
entropy

Entropy was predictive of Grades 2 and 3 tumors with an accuracy 
rate for classifying G1, G2, and G3 tumors of 79.3%

[53]

PNET CECT Mean value; variance; skewness; 
kurtosis; entropy

Kurtosis was significantly different among the three G groups, giving 
an AUC value of 0.924 for the diagnosis of G3 with a sensitivity and 
specificity of 82% and 85%, respectively; entropy differed 
significantly between G1 and G3 and between G2 and G3 tumors, 
giving an AUC value of 0.732 for the diagnosis of G3 with a 
sensitivity and specificity of 82% and 64%, respectively

[54]

Colorectal disease

CRC CECT The 16-feature-based radiomics 
signature was generated using LASSO 
logistic regression model

The 16-feature-based radiomics signature was an independent 
predictor for staging of CRC and could categorize CRC into stage I-II 
and stage III-IV Compared with the clinical model, the radiomics 
signature showed significantly better performance either in the 
training dataset (AUC: 0.792 vs 0.632; P < 0.001) or in the validation 
dataset (AUC: 0.708 vs 0.592; P = 0.037)

[59]

ESCC: Esophageal squamous cell carcinoma; CECT: Contrast-enhanced computed tomography; GC: Gastric carcinoma; PNET: Pancreatic neuroendocrine 
tumor; CRC: Colorectal cancer; AUC: Area under the curve.
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Table 3 Application of radiomics in evaluation of therapeutic efficacy and prognosis in gastroenterology

Classification 
of disease

Imaging 
modality Features evaluated and methods Outcomes Ref.

Esophageal disease

EC 18F-FDG 
PET

A total of 38 features (such as entropy, size, and 
magnitude of local and global heterogeneous 
and homogeneous tumor regions) extracted 
from 5 different textures

Tumor textural analysis provided non-responder, partial-
responder, and complete-responder patient identification with a 
higher sensitivity (76%-92%) than any SUV measurement

[22]

ESCC MRI 138 radiomic features were extracted from each 
image sequence based on three principal 
methods: Histogram-based (IH, GH), texture-
based (GLCM, GLRLM, and NIDM), and 
transform-based (GWTF)

Radiomic analysis showed that CR vs SD, PR vs SD, and 
responders (CR and PR) vs non- responders could be 
differentiated by 26, 17, and 33 features, respectively; the 
prediction models (ANN and SVM) based on features extracted 
from SPAIR T2W sequence (SVM: 0.929; ANN: 0.883) showed 
higher accuracy than those derived from T2W (SVM: 0.893; ANN: 
0.861)

[24]

Gastric disease

GC CECT Histogram features: Kurtosis, skewness; GLCM: 
ASM, contrast, entropy, variance, correlation

Contrast, variance, and correlation showed fair accuracy for the 
prediction of good survival with all AUCs being over 0.7, and all 
were statistically significant

[38]

Hepatic disease

HCC CECT 21 textural parameters per filter were extracted 
from the region of interests delineated around 
tumor outline by application of a Gabor filter 
and wavelet transform with 3 band-width 
responses (filter 0, 1.0, and 1.5)

Texture analysis was observed to have potential in assessment of 
prognosis and selection of appropriate patients with 
intermediate-advanced HCC treated by TACE and sorafenib

[46]

HCC CECT First order statistics; geometry; texture analysis; 
GLCM

Textures derived from pretreatment dynamic CT imaging were 
analyzed, higher arterial enhancement ratio and GLCM moments, 
smaller tumor size, and lower tumor homogeneity were 
significant predictors of CR after TACE

[47]

Pancreatic disease

Pancreas head 
cancer

CECT Laplacian of the Gaussian band-pass filter was 
applied to detect intensity changes within the 
images smoothened by Gaussian distribution 
based on the filter sigma value of 1.0 (fine 
texture, filter width 4 pixels), 1.5 to 2.0 (medium 
texture, filter width 6-10 pixels), and 2.5 (coarse 
texture, filter width 12 pixels)

Texture parameters of average, contrast, correlation, and standard 
deviation with no filter, and fine to medium filter values, as well 
as the presence of nodal metastasis were significantly different 
between recurred and non-recurred patients; lower standard 
deviation and contrast and higher correlation with lower average 
value representing homogenous texture were significantly 
associated with poorer DFS, along with the presence of lymph 
node metastasis

[55]

PDAC CECT Mean gray-level; intensity; entropy; MPP; 
kurtosis; SD; skewness

Tumor size, tumor SD, and skewness were significantly and 
independently associated with PFS, while tumor size and tumor 
SD were significantly and independently associated with OS

[56]

Colorectal disease

LARC MRI 18 features extracted using the Haralick's GLCM 
and 12 parameters calculated for the histogram-
based analysis

Radiomics based on pre-treatment and early follow-up MRI could 
provide quantitative information to differentiate pCR from non-
pCR, and GR from non-GR.

[60]

Rectal cancer MRI Kurtosis; entropy; skewness; MPP The change in kurtosis between midtreatment and pretreatment 
images was significantly lower in the PR + NR subgroup 
compared with the pCR subgroup; pretreatment AUROC to 
discriminate between pCR and PR + NR, was significantly higher 
for kurtosis (0.907, P < 0.001)

[61]

EC: Esophageal cancer; ESCC: Esophageal squamous cell carcinoma; PET: Positron emission tomography; MRI: Magnetic resonance imaging; CR: 
Complete response; SDs: Stable diseases; PRs: Partial responses; GLCM: Gray level cooccurrence matrices; GC: Gastric carcinoma; ASM; Angular second 
moment; AUC: Area under the curve; HCC: Hepatocellular carcinoma; CECT: Contrast enhanced computed tomography; TACE: Transcatheter arterial 
chemoembolization; DFS: Disease free survival; PFS: Progression-free survival; OS: Overall survival; PDAC: Pancreatic ductal adenocarcinoma; LARC: 
Local advanced rectal cancer; GR: Good response; MPP: Mean value of positive pixels.
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Figure 1  Overview of the workflow of artificial intelligence and radiomics in clinical practice.
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