Artificial Intelligence in *Gastroenterology*

Artif Intell Gastroenterol 2021 June 28; 2(3): 69-93

Published by Baishideng Publishing Group Inc

G

Artificial Intelligence in Gastroenterology

Contents

Bimonthly Volume 2 Number 3 June 28, 2021

MINIREVIEWS

69	Artificial intelligence in gastrointestinal diseases					
	Tanabe S, Perkins EJ, Ono R, Sasaki H					
77	Biophysics inspired artificial intelligence for colorectal cancer characterization					
	Hardy NP, Dalli J, Mac Aonghusa P, Neary PM, Cahill RA					

Implications of artificial intelligence in inflammatory bowel disease: Diagnosis, prognosis and treatment 85 follow up

Almomani A, Hitawala A, Abureesh M, Qapaja T, Alshaikh D, Zmaili M, Saleh MA, Alkhayyat M

Contents

Artificial Intelligence in Gastroenterology

Bimonthly Volume 2 Number 3 June 28, 2021

ABOUT COVER

Editorial Board Member of Artificial Intelligence in Gastroenterology, Syed Muhammad Ali, FCPS, FRCS (Ed), FRCS (Gen Surg), MBBS, Adjunct Professor, Surgeon, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar. alismc2051@gmail.com

AIMS AND SCOPE

The primary aim of Artificial Intelligence in Gastroenterology (AIG, Artif Intell Gastroenterol) is to provide scholars and readers from various fields of artificial intelligence in gastroenterology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

AIG mainly publishes articles reporting research results obtained in the field of artificial intelligence in gastroenterology and covering a wide range of topics, including artificial intelligence in gastrointestinal cancer, liver cancer, pancreatic cancer, hepatitis B, hepatitis C, nonalcoholic fatty liver disease, inflammatory bowel disease, irritable bowel syndrome, and Helicobacter pylori infection.

INDEXING/ABSTRACTING

There is currently no indexing.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Jia-Hui Li, Production Department Director: Xiang Li, Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS	
Artificial Intelligence in Gastroenterology	https://www.wjgnet.com/bpg/gerinfo/204	
ISSN	GUIDELINES FOR ETHICS DOCUMENTS	
ISSN 2644-3236 (online)	https://www.wjgnet.com/bpg/GerInfo/287	
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH	
July 28, 2020	https://www.wjgnet.com/bpg/gerinfo/240	
FREQUENCY	PUBLICATION ETHICS	
Bimonthly	https://www.wjgnet.com/bpg/GerInfo/288	
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT	
Rajvinder Singh, Ferruccio Bonino	https://www.wjgnet.com/bpg/gerinfo/208	
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE	
https://www.wjgnet.com/2644-3236/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242	
PUBLICATION DATE June 28, 2021	STEPS FOR SUBMITTING MANUSCRIPTS https://www.wjgnet.com/bpg/GerInfo/239	
COPYRIGHT	ONLINE SUBMISSION	
© 2021 Baishideng Publishing Group Inc	https://www.f6publishing.com	

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

Artificial Intelligence in Gastroenterology

Submit a Manuscript: https://www.f6publishing.com

Artif Intell Gastroenterol 2021 June 28; 2(3): 69-76

DOI: 10.35712/aig.v2.i3.69

ISSN 2644-3236 (online)

MINIREVIEWS

Artificial intelligence in gastrointestinal diseases

Shihori Tanabe, Edward J Perkins, Ryuichi Ono, Hiroki Sasaki

ORCID number: Shihori Tanabe 0000-0003-3706-0616; Edward J Perkins 0000-0003-1693-7714; Ryuichi Ono 0000-0002-1081-0395; Hiroki Sasaki 0000-0002-9443-0364.

Author contributions: Tanabe S designed the outline and coordinated the writing of the paper, performed the majority of the writing and editing, and prepared the figure and table; Perkins EJ performed the editing; Ono R and Sasaki H provided input into the writing the paper and performed the editing.

Supported by Japan Agency for Medical Research and Development (AMED), No. IP20ak0101093.

Conflict-of-interest statement:

There is no conflict of interest associated with any of the senior author or other coauthors contributed their efforts in this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the

Shihori Tanabe, Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan

Edward J Perkins, Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 3180, United States

Ryuichi Ono, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan

Hiroki Sasaki, Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo 104-0045, Japan

Corresponding author: Shihori Tanabe, PhD, Senior Research Fellow, Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan. stanabe@nihs.go.jp

Abstract

Artificial intelligence (AI) applications are growing in medicine. It is important to understand the current state of the AI applications prior to utilizing in disease research and treatment. In this review, AI application in the diagnosis and treatment of gastrointestinal diseases are studied and summarized. In most cases, AI studies had large amounts of data, including images, to learn to distinguish disease characteristics according to a human's perspectives. The detailed pros and cons of utilizing AI approaches should be investigated in advance to ensure the safe application of AI in medicine. Evidence suggests that the collaborative usage of AI in both diagnosis and treatment of diseases will increase the precision and effectiveness of medicine. Recent progress in genome technology such as genome editing provides a specific example where AI has revealed the diagnostic and therapeutic possibilities of RNA detection and targeting.

Key Words: Artificial intelligence; Gastrointestinal disease; RNA; Therapeutic application; Inflammatory diseases

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The application of artificial intelligence (AI) in the diagnosis and treatment of disease is a promising approach in medicine. The application of AI approaches in gastrointestinal diseases is summarized and reviewed. AI holds great promise in

original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: Japan

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): E, E

Received: January 27, 2021 Peer-review started: January 27, 2021 First decision: March 29, 2021 Revised: April 9, 2021 Accepted: June 4, 2021 Article in press: June 4, 2021 Published online: June 28, 2021

P-Reviewer: Eccher A, Hanada E, Lin Y S-Editor: Gao CC L-Editor: Filipodia P-Editor: Li JH

medicine, but to safely and efficiently apply AI in medicine, the advantages and limitations should first be carefully considered.

Citation: Tanabe S, Perkins EJ, Ono R, Sasaki H. Artificial intelligence in gastrointestinal diseases. Artif Intell Gastroenterol 2021; 2(3): 69-76 URL: https://www.wjgnet.com/2644-3236/full/v2/i3/69.htm

DOI: https://dx.doi.org/10.35712/aig.v2.i3.69

INTRODUCTION

Recent studies have developed RNA editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which has made genome editing more accessible and has resulted in the development of many applications[1-3]. These new technologies have many advantages and disadvantages in their utilization, which are already being applied in medicinal situations. RNA editing has been recognized as a potential prognostic biomarker for cancer and prediction models have been developed with machine learning[4]. The utilization of artificial intelligence (AI) is rapidly expanding and is increasingly useful in understanding gastrointestinal (GI) diseases[5-7]. To better understand the use of AI-oriented diagnosis and treatment of diseases, it is important to determine how to raise the potential of AI and manage the human-AI interaction in diagnosis and therapeutics in diseases. AI technology has been combined with a massive amount of data to understand human activities[8]. Increasingly image data such as magnetic resonance imaging, X-ray, computed tomography scanning or endoscope in clinic will be utilized for the diagnosis of the diseases[9-12]. Currently, machine learning algorithms improve performance of gastrointestinal endoscopy by diagnosing the gastrointestinal diseases[13]. The application of AI has increased identification of patients with intestinal malignancies or premalignant lesions, and inflammatory or other nonmalignant diseases or lesions[14]. Computer-aided diagnosis (CAD) for colonoscopy would improve the quality of image-oriented diagnosis of colorectal cancer^[15]. Classification of systems in AI-oriented disease management is summarized in Table 1.

APPLICATION OF AI IN DIAGNOSIS OF GASTROINTESTINAL DISEASES

There are several areas in which AI can advance the diagnosis of GI diseases. Diseases of interest for AI-oriented disease management are summarized in Figure 1.

Al application in inflammatory diseases

The diagnosis of GI diseases such as inflammatory bowel disease (IBD) including Crohn's disease, a chronic inflammatory condition in the GI tract, and ulcerative colitis, which occurs in the colon, includes several fundamental laboratory tests including measurement of hemoglobin, hematocrit, blood urea nitrogen, creatinine, liver enzymes and C-reactive protein[16].

Al application in tumor

Recent progress in AI has resulted in predictive tools for the diagnosis of GI cancer classification, where network-based machine learning in colorectal and bladder organoid models predicts drug responders and non-responders using network analysis of pharmacogenomics data and the patient's transcriptome[17]. Bioinformatic analyses of gene expression data have revealed common gene signatures in hypopharyngeal and esophageal squamous cell carcinoma, which may serve as diagnostic and therapeutic targets[18]. Balloon catheter tracking and visualization in GI tracking could be made more precise with AI guidance using image recognition [19]. Deep learning algorithms for image recognition can lead to more precise endoscopic diagnosis with improved sensitivity and specificity in upper GI tract diseases such as gastric cancer and Barrett's esophagus[20]. Convolutional neural networks (CNNs) have generated liver imaging features and shown promise in

Table 1 Classification of systems in artificial intelligence-oriented disease management									
Disease of interest	Purpose of Al	User	Limitation of use	Ref.					
Acute appendicitis	Diagnosis	Specialist	The study is designed in retrospective nature	Reismann <i>et al</i> [<mark>5</mark>]					
Colon cancer	Diagnosis	Specialist	The design of the analysis is post hoc and the number of patients is limited	Reichling <i>et al</i> [<mark>6</mark>]					
Ulcerative colitis	Diagnosis	Specialist	Long-term clinical prognosis is not clear	Maeda et al[7]					
Spinal stenosis in degenerative lumbar kyphoscoliosis	Surgery navigation	Specialist	The number of patients is limited. Long-term follow- up data is needed	Ho et al <mark>[9]</mark>					
Coronavirus infectious disease (COVID-19)	Screening, diagnosis	Specialist	Privacy of the patient data should be considered	Bhattacharya <i>et</i> al[<mark>10</mark>]					
Diseases in general	Diagnosis	Specialist	The burden on specialists may increase	Karako et al[11]					
Diseases in general	Screening	Specialist	Careful and thorough investigation is necessary	Shiyam Sundar et al <mark>[12</mark>]					
Gastrointestinal disease	Diagnosis	Specialist	There is a difference in the definition of anomaly detection between the area of computer science and medical domain	de Lange <i>et al</i> [<mark>13</mark>]					
Gastrointestinal disease, hepatic diseases	Diagnosis	Specialist	High-quality datasets are needed	Le Berre <i>et al</i> [14]					
Colorectal cancer	Diagnosis	Specialist	The quality of previous study designs is limited, and practical usefulness of computer-associated diagnosis systems is unknown	Kudo et al[<mark>15</mark>]					
Colorectal cancer, bladder cancer	Prediction of anti-cancer drug efficacy	Specialist	Further molecular layer profiling in organoids may be needed	Kong <i>et al</i> [<mark>17</mark>]					
Hypopharyngeal squamous cell carcinoma, esophageal squamous cell carcinoma	Identification of diagnostic and therapeutic targets	Specialist	Further studies are needed to validate the findings of the study	Zhou et al[<mark>18</mark>]					
Arterial stenosis, coronary arterial diseases, stricture of the gastrointestinal tract	Guiding of balloon catheter	Specialist	The systemic performance needs to be improved	Kim et al[19]					
Gastrointestinal disease	Diagnosis	Specialist	Further studies are needed to improve the performance	Marlicz <i>et al</i> [20]					
Colorectal cancer	Prediction of liver metastasis	Specialist	The investigation of another dataset is needed	Lee et al[21]					
Colon cancer	Diagnosis		The change of protein expression level needs to be investigated	Xue <i>et a</i> l[22]					
Gastrointestinal disease	Diagnosis	Specialist	Investigation and development of newly improved methods are encouraged	Borgli <i>et al</i> [23]					
Gastrointestinal disease	Diagnosis	Specialist	Further development is needed	Adler and Bjarnason[<mark>24</mark>]					
Upper gastrointestinal cancer	Diagnosis	Specialist	Only high-quality endoscopic images for the training and validation analyses were used	Luo <i>et al</i> [<mark>25</mark>]					
Gastric cancer	Diagnosis	Specialist	The associations of the quality or the number of training images and the CNN accuracy needs to be examined	Hirasawa et al [<mark>26</mark>]					
Gastrointestinal disease	Diagnosis	Specialist	The possibilities to improve the medical performance, to reduce the medical cost, and to improve the satisfaction of the patient and medical staff are unknown	Min et al[<mark>27</mark>]					
Functional gastrointestinal disorder	Diagnosis	Specialist	Evaluation of the feasibility of AI on studies on the gut-brain-microbiome axis is needed	Mukhtar <i>et al</i> [28]					
Colorectal cancer	Diagnosis	Specialist	The uncertainty about the true efficacy of CAD in "real-world" practice remains	Ahmad et al[29]					
Colorectal cancer	Diagnosis	Specialist	Further accumulation of lesion images for training is needed	Yamada et al [<mark>30]</mark>					
Small-bowel disease	Diagnosis	Specialist	Further multicenter, prospective studies and external validation are needed	Yang[<mark>31</mark>]					

Tanabe S et al. AI in gastrointestinal diseases

Colorectal cancer	Diagnosis	Specialist	Complaints of system malfunctions and reports of patient injuries could lead to lawsuits against stakeholders	Ciuti et al[<mark>32</mark>]
Cholangiocarcinoma, pancreatic adenocarcinoma	Diagnosis	Specialist	Case-control and single-center design, and the lack of an independent validation cohort should be considered	Urman et al[<mark>33</mark>]
Colorectal cancer	Screening	Specialist	The applicability to other types of cancer needs optimization	Misawa <i>et al</i> [34]
Gastrointestinal disease	Diagnosis	Specialist	Most studies were designed in retrospective manner. Ethical issues on misdiagnosis or misclassification need to be handled	Yang and Bang [<mark>35</mark>]
Gastrointestinal cancer	Prediction of microsatellite instability for immunotherapy	Specialist	Larger training cohorts are needed	Kather <i>et al</i> [36]
Colorectal cancer	Diagnosis	Specialist	The CNN architecture needs to be improved for colonoscopy	Azer[37]
Barrett esophagus cancer	Diagnosis	Specialist	The number of patients is limited. Further optimization is needed	Ebigbo <i>et al</i> [38]
Celiac disease	Diagnosis	Specialist	The preliminary results need to be followed-up with a real clinical setting	Tenório <i>et al</i> [39]
Esophageal squamous cell carcinoma	Prediction of prognosis	Specialist	Further experimental studies to verify the results are needed	Zhang et al[40]
Advanced rectal adenocarcinoma	Prediction of response to neoadjuvant chemoradiotherapy	Specialist	The size of the cohort is limited. The confirmation of the findings with another data set is needed	Ferrando <i>et al</i> [<mark>41</mark>]
Inflammatory bowel disease	Prediction of prognosis	Specialist	Interventional study to confirm the efficacy of the stratifying therapy is needed	Biasci <i>et al</i> [42]
Inflammatory bowel disease	Mapping	Specialist	The application of advanced natural language processing algorithms to the text-mining step may improve the current process	Sarntivijai <i>et al</i> [<mark>43</mark>]

AI: Artificial intelligence; CAD: Computer-aided diagnosis; CNN: Convolutional neural network.

Disease of interest

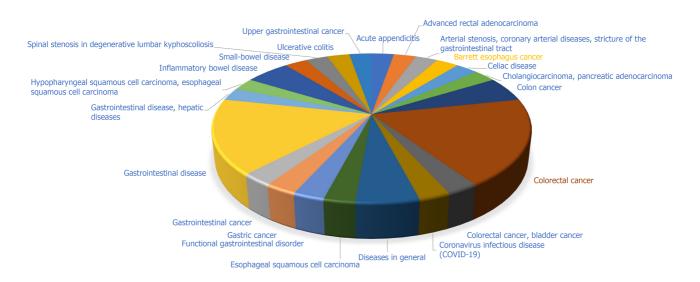


Figure 1 Disease of interest in references surveyed in artificial intelligence-oriented disease management. Al: Artificial intelligence; COVID-19: Coronavirus disease 2019.

predicting the metachronous liver metastasis in stage I-III colorectal cancer patients [21]. Deep learning of immunohistochemistry images of human colon tissues are used to improve the performance in detection of protein subcellular localization[22]. AI is poised to have a greater impact on GI endoscopy with publication of large datasets

Raishideng® AIG | https://www.wjgnet.com

including multi-class images and video datasets that are useful for AI deep learning [23]. It seems that the performance of capsule endoscopy for diagnosing small bowel disease is improved using AI approaches [24]. An AI deep learning algorithm that can diagnose upper GI cancers with clinical endoscopic imaging data has been developed and validated [25]. CNNs in AI deep learning using numerous endoscopic image data have been developed that can detect and diagnose gastric cancer[26].

Al application in other diseases and endoscopy

Min *et al*^[27] pointed out that one drawback of AI approaches is the need for large datasets to train the system; therefore, the quality of CNN-based AI endoscopy is limited by the need for a large number of high-quality endoscopic images. Machine learning and AI are important to diagnose functional GI disorders and aid healthcare professionals and researchers[28]. Ahmad et al[29] suggested that the level of AI and CAD in colonoscopy has reached that of human expert performance. A real-time AI system with deep learning technology has been developed to diagnose colorectal cancer[30]. An AI-oriented automated CAD system can identify histologic inflammation associated with ulcerative colitis[7]. Reismann et al[5] used AI to identify biomarker signatures to diagnose and classify the pediatric acute appendicitis.

APPLICATION OF AI IN THERAPEUTICS OF GI DISEASES

The application of AI in therapeutics of GI diseases has been expanding. The roles of AI in capsule endoscopy and other recent advanced diagnostic technologies have increased in therapeutics of GI diseases[31,32]. AI analysis was implemented to build neural network models enabling the classification of patients with biliary strictures and identify potential biomarkers in human bile[33]. Machine learning on medical examination records has stimulated the development of preventative measures for colorectal cancer^[34]. Retrospective and prospective clinical studies have been conducted to diagnose and predict the prognosis of GI diseases including gastroesophageal reflux disease, atrophic corpus gastritis, acute pancreatitis, acute lower GI bleeding, esophageal cancer, nonvariceal upper GI bleeding, ulcerative colitis after cytoapheresis therapy, IBD, lymph node metastasis in T1 colorectal cancer and postoperative distant metastasis in esophageal squamous cell carcinoma[35]. Kather et al[36] found that deep learning can be used to predict microsatellite instability from histology in GI cancer. Azer[37] developed CNN models that can detect and classify colorectal polyps, which may increase colonoscopy application in appropriate colorectal cancer therapeutics. AI-guided tissue analysis has been developed that predicts stage III colon cancer outcomes, which may improve patient care with pathologists' assistance[6]. Ebigbo et al[38] found that AI utilization can be used to classify the Barret esophagus cancer. An AI-based clinical decision-support system has been developed to diagnose celiac disease^[39]. Bioinformatics analyses have identified important genes associated with the pathogenesis and prognosis of esophageal squamous cell carcinoma, which may contribute to the molecular-targeted therapy [40]. Long non-coding RNA signature has been identified in locally advanced rectal adenocarcinoma, which may predict the response to neoadjuvant chemoradiotherapy in the patients[41]. Machine learning has been utilized for identifying prognostic biomarkers in the whole blood of IBD patients to support the personalized therapy [42]. Ontology tools such as Experimental Factor Ontology or the Ontology of Biomedical Association may be useful for mining the disease-phenotype associations for IBD[43]. Since the responsiveness toward drug alters in cancer cell phenotypes such as epithelial-mesenchymal transition in diffuse-type gastric cancer, the AI application in the identification of cancer subtype would lead to establish therapeutic strategy^[44,45]. The machine learning algorithms may be applied to the therapy of the GI diseases in terms of gut-brain axis[28,46].

FUTURE PERSPECTIVES OF AI APPLICATION IN GI DISEASES

Despite the rapid advances of the application of AI in GI diseases, there still remains some concern in terms of the precision of AI-based diagnosis and the criteria for the therapeutics. Further evidence is needed to solely rely on CAD in colonoscopy to determine an appropriate endpoint[15]. Some regulatory coordination may be needed to use the combination of an AI-assisted device and CAD software[15]. The differences

AIG | https://www.wjgnet.com

in levels of AI performance would be considered and adjusted for application in clinical situations^[14]. More high-quality datasets are needed to establish deep learning algorithms[14].

CONCLUSION

The area for AI application is rapidly expanding in the diagnosis and therapeutics of GI diseases. AI utilization in image recognition is currently being used to diagnose diseases and assist with personalized therapy. Future studies on disease-phenotype association are needed to maximize the capacity and performance of AI to aide in practical situations.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the colleagues for their support.

REFERENCES

- Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR 1 RNA-guided endonuclease Cas9. Nature 2014; 507: 62-67 [PMID: 24476820 DOI: 10.1038/nature13011]
- Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. 2 Nat Rev Mol Cell Biol 2019; 20: 490-507 [PMID: 31147612 DOI: 10.1038/s41580-019-0131-5]
- Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA 3 repeats in prokaryotes. Mol Microbiol 2002; 43: 1565-1575 [PMID: 11952905 DOI: 10.1046/j.1365-2958.2002.02839.x]
- Chen SC, Lo CM, Wang SH, Su EC. RNA editing-based classification of diffuse gliomas: predicting isocitrate dehydrogenase mutation and chromosome 1p/19q codeletion. BMC Bioinformatics 2019; 20: 659 [PMID: 31870275 DOI: 10.1186/s12859-019-3236-0]
- Reismann J, Romualdi A, Kiss N, Minderjahn MI, Kallarackal J, Schad M, Reismann M. Diagnosis 5 and classification of pediatric acute appendicitis by artificial intelligence methods: An investigatorindependent approach. PLoS One 2019; 14: e0222030 [PMID: 31553729 DOI: 10.1371/journal.pone.0222030]
- 6 Reichling C, Taieb J, Derangere V, Klopfenstein Q, Le Malicot K, Gornet JM, Becheur H, Fein F, Cojocarasu O, Kaminsky MC, Lagasse JP, Luet D, Nguyen S, Etienne PL, Gasmi M, Vanoli A, Perrier H, Puig PL, Emile JF, Lepage C, Ghiringhelli F. Artificial intelligence-guided tissue analysis combined with immune infiltrate assessment predicts stage III colon cancer outcomes in PETACC08 study. Gut 2020; 69: 681-690 [PMID: 31780575 DOI: 10.1136/gutjnl-2019-319292]
- 7 Maeda Y, Kudo SE, Mori Y, Misawa M, Ogata N, Sasanuma S, Wakamura K, Oda M, Mori K, Ohtsuka K. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc 2019; 89: 408-415 [PMID: 30268542 DOI: 10.1016/j.gie.2018.09.024]
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444 [PMID: 26017442 DOI: 8 10.1038/nature145391
- Ho TY, Lin CW, Chang CC, Chen HT, Chen YJ, Lo YS, Hsiao PH, Chen PC, Lin CS, Tsou HK. 9 Percutaneous endoscopic unilateral laminotomy and bilateral decompression under 3D real-time image-guided navigation for spinal stenosis in degenerative lumbar kyphoscoliosis patients: an innovative preliminary study. BMC Musculoskelet Disord 2020; 21: 734 [PMID: 33172435 DOI: 10.1186/s12891-020-03745-w]
- Bhattacharya S, Reddy Maddikunta PK, Pham QV, Gadekallu TR, Krishnan S SR, Chowdhary CL, 10 Alazab M, Jalil Piran M. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustain Cities Soc 2021; 65: 102589 [PMID: 33169099 DOI: 10.1016/j.scs.2020.102589]
- 11 Karako K, Song P, Chen Y, Tang W. Realizing 5G- and AI-based doctor-to-doctor remote diagnosis: opportunities, challenges, and prospects. Biosci Trends 2020; 14: 314-317 [PMID: 33100291 DOI: 10.5582/bst.2020.03364]
- Shiyam Sundar LK, Muzik O, Buvat I, Bidaut L, Beyer T. Potentials and caveats of AI in hybrid 12 imaging. Methods 2021; 188: 4-19 [PMID: 33068741 DOI: 10.1016/j.ymeth.2020.10.004]
- de Lange T, Halvorsen P, Riegler M. Methodology to develop machine learning algorithms to 13 improve performance in gastrointestinal endoscopy. World J Gastroenterol 2018; 24: 5057-5062 [PMID: 30568383 DOI: 10.3748/wjg.v24.i45.5057]
- 14 Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-Biroulet L. Application of Artificial Intelligence to Gastroenterology and Hepatology.

Gastroenterology 2020; 158: 76-94. e2 [PMID: 31593701 DOI: 10.1053/j.gastro.2019.08.058]

- Kudo SE, Mori Y, Misawa M, Takeda K, Kudo T, Itoh H, Oda M, Mori K. Artificial intelligence and 15 colonoscopy: Current status and future perspectives. Dig Endosc 2019; 31: 363-371 [PMID: 30624835 DOI: 10.1111/den.13340]
- 16 Wilkins T, Jarvis K, Patel J. Diagnosis and management of Crohn's disease. Am Fam Physician 2011; 84: 1365-1375 [PMID: 22230271]
- 17 Kong J, Lee H, Kim D, Han SK, Ha D, Shin K, Kim S. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 2020; 11: 5485 [PMID: 33127883 DOI: 10.1038/s41467-020-19313-8]
- 18 Zhou R, Liu D, Zhu J, Zhang T. Common gene signatures and key pathways in hypopharyngeal and esophageal squamous cell carcinoma: Evidence from bioinformatic analysis. Medicine (Baltimore) 2020; 99: e22434 [PMID: 33080677 DOI: 10.1097/MD.00000000022434]
- 19 Kim J, Mai TT, Kim JY, Min JJ, Kim C, Lee C. Feasibility Study of Precise Balloon Catheter Tracking and Visualization with Fast Photoacoustic Microscopy. Sensors (Basel) 2020; 20 [PMID: 33003536 DOI: 10.3390/s20195585]
- Marlicz W, Ren X, Robertson A, Skonieczna-Żydecka K, Łoniewski I, Dario P, Wang S, Plevris JN, 20 Koulaouzidis A, Ciuti G, Frontiers of Robotic Gastroscopy: A Comprehensive Review of Robotic Gastroscopes and Technologies. Cancers (Basel) 2020; 12 [PMID: 32998213 DOI: 10.3390/cancers12102775
- Lee S, Choe EK, Kim SY, Kim HS, Park KJ, Kim D. Liver imaging features by convolutional neural 21 network to predict the metachronous liver metastasis in stage I-III colorectal cancer patients based on preoperative abdominal CT scan. BMC Bioinformatics 2020; 21: 382 [PMID: 32938394 DOI: 10.1186/s12859-020-03686-0
- Xue ZZ, Wu Y, Gao QZ, Zhao L, Xu YY. Automated classification of protein subcellular localization 22 in immunohistochemistry images to reveal biomarkers in colon cancer. BMC Bioinformatics 2020; 21: 398 [PMID: 32907537 DOI: 10.1186/s12859-020-03731-v]
- Borgli H, Thambawita V, Smedsrud PH, Hicks S, Jha D, Eskeland SL, Randel KR, Pogorelov K, Lux 23 M, Nguyen DTD, Johansen D, Griwodz C, Stensland HK, Garcia-Ceja E, Schmidt PT, Hammer HL, Riegler MA, Halvorsen P, de Lange T. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci Data 2020; 7: 283 [PMID: 32859981 DOI: 10.1038/s41597-020-00622-y
- 24 Adler SN, Bjarnason I. What we have learned and what to expect from capsule endoscopy. World J Gastrointest Endosc 2012; 4: 448-452 [PMID: 23189215 DOI: 10.4253/wjge.v4.i10.448]
- Luo H, Xu G, Li C, He L, Luo L, Wang Z, Jing B, Deng Y, Jin Y, Li Y, Li B, Tan W, He C, 25 Seeruttun SR, Wu Q, Huang J, Huang DW, Chen B, Lin SB, Chen QM, Yuan CM, Chen HX, Pu HY, Zhou F, He Y, Xu RH. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 2019; 20: 1645-1654 [PMID: 31591062 DOI: 10.1016/S1470-2045(19)30637-0]
- 26 Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J, Tada T. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018; 21: 653-660 [PMID: 29335825 DOI: 10.1007/s10120-018-0793-2]
- Min JK, Kwak MS, Cha JM. Overview of Deep Learning in Gastrointestinal Endoscopy. Gut Liver 27 2019; 13: 388-393 [PMID: 30630221 DOI: 10.5009/gnl18384]
- 28 Mukhtar K, Nawaz H, Abid S. Functional gastrointestinal disorders and gut-brain axis: What does the future hold? World J Gastroenterol 2019; 25: 552-566 [PMID: 30774271 DOI: 10.3748/wjg.v25.i5.552]
- 29 Ahmad OF, Soares AS, Mazomenos E, Brandao P, Vega R, Seward E, Stoyanov D, Chand M, Lovat LB. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions. Lancet Gastroenterol Hepatol 2019; 4: 71-80 [PMID: 30527583 DOI: 10.1016/S2468-1253(18)30282-6]
- Yamada M, Saito Y, Imaoka H, Saiko M, Yamada S, Kondo H, Takamaru H, Sakamoto T, Sese J, 30 Kuchiba A, Shibata T, Hamamoto R. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep 2019; 9: 14465 [PMID: 31594962 DOI: 10.1038/s41598-019-50567-5]
- 31 Yang YJ. The Future of Capsule Endoscopy: The Role of Artificial Intelligence and Other Technical Advancements. Clin Endosc 2020; 53: 387-394 [PMID: 32668529 DOI: 10.5946/ce.2020.133]
- 32 Ciuti G, Skonieczna-Żydecka K, Marlicz W, Iacovacci V, Liu H, Stoyanov D, Arezzo A, Chiurazzi M, Toth E, Thorlacius H, Dario P, Koulaouzidis A. Frontiers of Robotic Colonoscopy: A Comprehensive Review of Robotic Colonoscopes and Technologies. J Clin Med 2020; 9 [PMID: 32486374 DOI: 10.3390/jcm9061648]
- Urman JM, Herranz JM, Uriarte I, Rullán M, Oyón D, González B, Fernandez-Urién I, Carrascosa J, 33 Bolado F, Zabalza L, Arechederra M, Alvarez-Sola G, Colyn L, Latasa MU, Puchades-Carrasco L, Pineda-Lucena A, Iraburu MJ, Iruarrizaga-Lejarreta M, Alonso C, Sangro B, Purroy A, Gil I, Carmona L, Cubero FJ, Martínez-Chantar ML, Banales JM, Romero MR, Macias RIR, Monte MJ, Marín JJG, Vila JJ, Corrales FJ, Berasain C, Fernández-Barrena MG, Avila MA. Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers (Basel) 2020; 12 [PMID: 32575903 DOI: 10.3390/cancers12061644]
- Misawa D, Fukuyoshi J, Sengoku S. Cancer Prevention Using Machine Learning, Nudge Theory and 34

Social Impact Bond. Int J Environ Res Public Health 2020; 17 [PMID: 32012838 DOI: 10.3390/ijerph17030790]

- Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol 35 2019; 25: 1666-1683 [PMID: 31011253 DOI: 10.3748/wjg.v25.i14.1666]
- 36 Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, Grabsch HI, Yoshikawa T, Brenner H, Chang-Claude J, Hoffmeister M, Trautwein C, Luedde T. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 2019; 25: 1054-1056 [PMID: 31160815 DOI: 10.1038/s41591-019-0462-y]
- 37 Azer SA. Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do? Medicina (Kaunas) 2019; 55 [PMID: 31409050 DOI: 10.3390/medicina55080473]
- Ebigbo A, Mendel R, Probst A, Manzeneder J, Prinz F, de Souza LA Jr, Papa J, Palm C, Messmann 38 H. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus. Gut 2020; 69: 615-616 [PMID: 31541004 DOI: 10.1136/gutjnl-2019-319460]
- Tenório JM, Hummel AD, Cohrs FM, Sdepanian VL, Pisa IT, de Fátima Marin H. Artificial 39 intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease. Int J Med Inform 2011; 80: 793-802 [PMID: 21917512 DOI: 10.1016/j.ijmedinf.2011.08.001]
- 40 Zhang H, Zhong J, Tu Y, Liu B, Chen Z, Luo Y, Tang Y, Xiao F. Integrated Bioinformatics Analysis Identifies Hub Genes Associated with the Pathogenesis and Prognosis of Esophageal Squamous Cell Carcinoma. Biomed Res Int 2019; 2019: 2615921 [PMID: 31950035 DOI: 10.1155/2019/2615921]
- Ferrando L, Cirmena G, Garuti A, Scabini S, Grillo F, Mastracci L, Isnaldi E, Marrone C, Gonella R, 41 Murialdo R, Fiocca R, Romairone E, Ballestrero A, Zoppoli G. Development of a long non-coding RNA signature for prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal adenocarcinoma. PLoS One 2020; 15: e0226595 [PMID: 32023246 DOI: 10.1371/journal.pone.0226595]
- Biasci D, Lee JC, Noor NM, Pombal DR, Hou M, Lewis N, Ahmad T, Hart A, Parkes M, McKinney 42 EF, Lyons PA, Smith KGC. A blood-based prognostic biomarker in IBD. Gut 2019; 68: 1386-1395 [PMID: 31030191 DOI: 10.1136/gutjnl-2019-318343]
- Sarntivijai S, Vasant D, Jupp S, Saunders G, Bento AP, Gonzalez D, Betts J, Hasan S, Koscielny G, 43 Dunham I, Parkinson H, Malone J. Linking rare and common disease: mapping clinical diseasephenotypes to ontologies in therapeutic target validation. J Biomed Semantics 2016; 7: 8 [PMID: 27011785 DOI: 10.1186/s13326-016-0051-7]
- Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential 44 Therapeutic Strategies. Front Pharmacol 2020; 11: 904 [PMID: 32625096 DOI: 10.3389/fphar.2020.00904]
- 45 Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, Hirose A, Yokozaki H, Sasaki H. Molecular Network Profiling in Intestinal- and Diffuse-Type Gastric Cancer. Cancers (Basel) 2020; 12 [PMID: 33353109 DOI: 10.3390/cancers12123833]
- Kano M, Dupont P, Aziz Q, Fukudo S. Understanding Neurogastroenterology From Neuroimaging 46 Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders. J Neurogastroenterol Motil 2018; 24: 512-527 [PMID: 30041284 DOI: 10.5056/jnm18072]

AIG | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

