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Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as 
the development of computer systems to perform tasks that require human 
intelligence. It has the capacity to revolutionize medicine by increasing efficiency, 
expediting data and image analysis and identifying patterns, trends and associ-
ations in large datasets. Within gastroenterology, recent research efforts have 
focused on using AI in esophagogastroduodenoscopy, wireless capsule 
endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, 
lesion detection and therapeutic intervention. The main objective of this narrative 
review is to provide a comprehensive overview of the research being performed 
within gastroenterology on AI in esophagogastroduodenoscopy, WCE and 
colonoscopy.

Key Words: Artificial intelligence; Colonoscopy; Computer-aided detection; Deep learn-
ing; Endoscopy; Machine learning
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Core Tip: Artificial intelligence (AI) is a complex concept that has the capacity to 
revolutionize medicine. Within gastroenterology, recent research efforts have focused 
on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and 
colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic 
intervention. This narrative review provides a comprehensive overview of the research 
being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE 
and colonoscopy.
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INTRODUCTION
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of 
computer systems to perform tasks that require human intelligence[1]. Since its inception in the 1950s, 
the field of AI has grown considerably (Figure 1)[2]. Often AI is accompanied by the terms machine 
learning (ML) and deep learning (DL), techniques used within the field of AI to develop systems that 
can learn and adapt without explicit instructions. Machine learning uses self-learning algorithms that 
derive knowledge from data to predict outcomes[1]. There are two main categories within ML: 
Supervised and unsupervised learning. In supervised learning, the AI is trained on a dataset in which 
human intervention has previously assigned a hierarchy of features which allows the algorithm to 
understand differences between data inputs and classify or predict outcomes[3]. In unsupervised 
learning, the system is provided a dataset that has not been categorized by human intervention. The 
algorithm then analyzes the data with the goal of identifying labels or patterns[3].

Deep learning is a subfield of ML that utilizes artificial neural networks (ANN) to analyze data. In 
DL, the system is able to analyze raw data and determine features that distinguish between data inputs. 
ANN systems are composed of interconnected nodes in a layered structure similar to how neurons are 
organized in the human brain. The weight of the connections between each node influences how the 
system can recognize, classify, and describe objects within data[3,4]. ANNs with multiple layers of 
nodes are classified as deep neural networks which form the backbone of deep learning.

Artificial intelligence has the capacity to revolutionize medicine. It can be used to increase efficiency 
by aiding in appointment scheduling, reviewing insurance eligibility, or tracking patient history. AI can 
also expedite data and image analysis and detect patterns, trends and associations[5]. Within gastroen-
terology, AI’s prominence stems from its utility in image analysis[5,6]. Many gastrointestinal diseases 
rely on endoscopic evaluation for diagnosis, disease monitoring, lesion detection and therapeutic 
intervention. However, endoscopic evaluation is heavily operator dependent and thus subject to 
operator bias and human error. As such, recent efforts have focused on using AI in esophagogastroduo-
denoscopy, wireless capsule endoscopy (WCE) and colonoscopy to mitigate these issues, serving as an 
additional objective observer of the intestinal tract. The main objective of this narrative review is to 
provide a comprehensive overview of the research being performed within gastroenterology on 
artificial intelligence in esophagogastroduodenoscopy, WCE and colonoscopy. While other narrative 
reviews have been published regarding the use of artificial intelligence in esophagogastroduoden-
oscopy, WCE and colonoscopy, this narrative review goes a step further by providing a granular and 
more technical assessment of the literature. As such, this narrative review is intended for medical 
providers and researchers who are familiar with the use of artificial intelligence in esophagogastroduo-
denoscopy, WCE and colonoscopy and are interested in obtaining an in-depth review in a specific area.

LITERATURE REVIEW
Electronic databases Embase, Ovid Medicine, and PubMed were searched from inception to September 
2022 using multiple search queries. Combinations of the terms “artificial intelligence”, “AI”, “computer 
aided”, “computer aided detection”, “CADe”, “convolutional neural network”, “deep learning”, 
“DCNN”, “machine learning”, “colonoscopy”, “endoscopy”, “wireless capsule endoscopy”, “capsule 
endoscopy”, “WCE”, “esophageal cancer”, esophageal adenocarcinoma”, “esophageal squamous cell 
carcinoma”, “gastric cancer”, “gastric neoplasia”, “gastric lesions”, “Barrett’s esophagus”, “celiac 
disease”, “Helicobacter pylori”, “Helicobacter pylori infection”, “H pylori”, “H pylori infection”, 
“gastric ulcers”, “duodenal ulcers”, “inflammatory bowel disease”, “IBD”, “ulcerative colitis”, “Crohn’s 
disease”, “parasitic infections”, “hookworms”, “bleeding”, “gastrointestinal bleeding”, “vascular 
lesions”, “angioectasias”, “polyp”, “polyp detection”, “tumor”, “gastrointestinal tumor”, “small bowel 
tumor”, “bowel preparation”, “Boston bowel preparation scale”, “BBPS”, “adenoma”, “adenoma 
detection”, “adenoma detection rate”, “sessile serrated lesion”, and “sessile serrated lesion rate” were 
used. We subsequently narrowed the results to clinical trials in human published within the last 10 
years.

https://www.wjgnet.com/2644-3236/full/v3/i5/117.htm
https://dx.doi.org/10.35712/aig.v3.i5.117
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Figure 1 Timeline of the development and use of artificial intelligence in medicine. AI: Artificial intelligence; DL: Deep learning; FDA: U.S. Food and 
Drug Administration; CAD: Computer-aided diagnosis. Reprinted with permission from Elsevier Science & Technology Journals[2].

ESOPHAGOGASTRODUODENOSCOPY
Barrett’s esophagus and esophageal adenocarcinoma
Barrett’s esophagus (BE) is a premalignant condition associated with esophageal adenocarcinoma (EAC)
[7-9]. It is caused by chronic inflammation and tissue injury of the lower esophagus as a result of gastric 
reflux[7-9]. Early detection and diagnosis can prevent the progression of BE to EAC[7-9]. Patients with 
BE should undergo routine surveillance endoscopies to monitor for progression. However, even with 
surveillance, dysplastic changes can be easily missed[7]. To improve the detection of dysplastic changes 
in BE, researchers have focused on developing AI systems to assist with the identification of dysplasia 
and early neoplasia during endoscopic evaluation.

Since 2016, a group of researchers from the Netherlands have developed numerous AI systems to 
identify neoplastic lesions in BE[10-16]. Their first publication detailed their experience using a support 
vector machine (SVM), a ML method, to identify early neoplastic lesions from white light endoscopy 
(WLE) images[10]. Their SVM achieved a sensitivity and specificity of 83% with respect to per-image 
detection and sensitivity of 86% and specificity of 87% with respect to per-patient detection[10]. In their 
next study, the group trialed several different feature extraction and ML methods using volumetric laser 
endomicroscopy (VLE) images[11]. They received the best results with the feature extraction module 
“layering and signal decay statistics”, achieving high sensitivity (90%) and specificity (93%) with area 
under the curve (AUC) 0.95 for neoplastic lesion detection[11]. Following this, they conducted a second 
studying again using ML in VLE to identify neoplastic lesions in BE, however, they used a multiframe 
analysis approach, including frames neighboring the region of interest in the analysis[12]. With this 
approach, they found that multiframe analysis resulted in a significantly higher median AUC when 
compared to single frame analysis (0.91 vs 0.83; P < 0.001)[12]. Continuing to use ML methods, the 
group published their finding from the ARGOS project – a consortium of three international tertiary 
referral centers for Barrett’s neoplasia[13]. In this study, de Groof et al[13] created a computer-aided 
detection (CADe) system that used SVM to classify images. The group tested the CADe with 60 images 
– 40 images from patients with a neoplastic lesion, 20 images from patients with non-dysplastic Barrett’s 
esophagus. The CADe achieved an AUC of 0.92 and a sensitivity, specificity and accuracy of 95%, 85% 
and 92% respectively for detecting neoplastic lesions[13].

Following their successes creating ML systems for neoplastic lesion detection, the group of 
researchers from the Netherlands shifted their focus to DL methods. In their first foray into DL, they 
developed a hybrid CADe system using architecture from ResNet and U-Net models. The CADe was 
trained with 494364 labeled endoscopic images and subsequently refined with a data set comprised of 
1247 WLE images. It was finally tested on a set of 297 images (129 images with early neoplasia, 168 with 
non-dysplastic BE) where the hybrid CADe system attained a sensitivity of 87.6%, specificity of 88.6% 
and accuracy of 88.2% for identifying early neoplasia[14]. The system was also tested in two external 
validation sets where it achieved similar results. A secondary outcome of the study was to see if within 
the images classified as having neoplasia if the CADe could delineate the neoplasia and recommend a 
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site for biopsy. The ground truth was determined by expert endoscopists. In two external data sets 
(external validation data set 4 and 5), the CADe identified the optimal biopsy site in 97.2% of cases and 
91.9% of cases respectively[14]. Using a similar hybrid CADe, the group performed a pilot study testing 
the CADe during live endoscopic procedures[15]. Overall, the CADe achieved a sensitivity of 75.8%, 
specificity of 86.5% and accuracy of 84% in per-image analyses[15]. Their most recent study again used 
their hybrid ResNet and U-Net CADe to identify neoplastic lesions in narrow-band imaging (NBI)[16]. 
With respect to NBI images, the CADe was found to have sensitivity of 88% (95%CI 86%-94%), 
specificity of 78% (95%CI 72%-84%), and accuracy of 84% (95%CI 81%-88%) for identifying BE neoplasia
[16]. In per frame and per video analyses, the CADe achieved sensitivities of 75% and 85%, specificities 
of 90% and 83% and accuracies of 85% and 83% respectively[16].

Outside of this group from the Netherlands, several other researchers have created DL systems for 
the detection of BE neoplasia[17-21]. Hong et al[17] created a CNN that could distinguish between 
intestinal metaplasia, gastric metaplasia and neoplasia from images obtained by endomicroscopy in 
patients with Barrett’s esophagus with accuracy of 80.8%. Ebigbo et al[18] created a DL-CADe capable of 
detecting BE neoplasia with sensitivity 83.7%, specificity of 100.0% and accuracy of 89.9%. Two other 
groups achieved similar results to Ebigbo et al[18]: Hashimoto et al’s CNN detected early neoplasia with 
sensitivity of 96.4%, specificity of 94.2%, and accuracy of 95.4% and Hussein et al’s CNN detected early 
neoplasia with sensitivity 91%, specificity 79%, area under the receiver operating characteristic 
(AUROC) of 93%[19,20]. An overview of these studies is provided in Table 1.

In addition to neoplasia detection, some groups started to use AI to grade BE and predict submucosal 
invasion of lesions. Ali et al[22] recently published the results from a pilot study using a DL system to 
quantitatively assess BE area (BEA), circumference and maximal length (C&M). They tested their DL 
system on 3D printed phantom esophagus models with different BE patterns and 194 videos from 131 
patients with BE. In the phantom esophagus models, the DL system achieved an accuracy of 98.4% for 
BEA and 97.2% for C&M[22]. In the patient videos, the DL system differed from expert endoscopists by 
8% and 7% for C&M respectively[22]. Ebigbo et al[23], building upon their earlier success using a DL 
CADe to detect neoplasia, performed a pilot study using a 101-layer CNN to differentiate T1a (mucosal) 
and T1b (submucosal) BE related cancers. Using 230 WLE images obtained from three tertiary care 
centers in Germany, their CNN was capable of discerning T1a lesions from T1b lesions with sensitivity, 
specificity and accuracy of 77%, 64% and 71% respectively, comparable to the expert endoscopists 
enrolled in the study[23].

Despite BE’s potential progression to EAC if left unmanaged, few studies have explicitly looked at 
using AI to detect EAC. Ghatwary et al[24] tested several DL models on 100 WLE images (50 featuring 
EAC, 50 featuring normal mucosa) to determine which was best at identifying EAC. They found that the 
Single-Shot Multibox Detector (SSD) method achieved the best results, attaining a sensitivity of 96% and 
specificity of 92%[24]. In 2021, Iwagami et al[25] focused on developing an AI system to identify 
esophagogastric junctional adenocarcinomas. They used SSD for their CNN, achieving a sensitivity, 
specificity and accuracy of 94%, 42% and 66% for detecting esophagogastric junctional adenocar-
cinomas. Their CNN performed similarly to endoscopists enrolled in the study (sensitivity 88%, 
specificity 43%, accuracy 66%)[25].

Esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC) is the most common histologic type of esophageal cancer 
in the world[26]. While certain imaging modalities such as Lugol’s chromoendoscopy and confocal 
microendoscopy are effective at improving the accuracy, sensitivity and specificity of targeted biopsies, 
they are expensive and not universally available[27]. In recent years, efforts have focused on developing 
AI systems to support lower cost imaging modalities in order to improve their ability to detect ESCC.

Shin et al[27] and Quang et al[28] created ML algorithms which they tested on high-resolution 
microendoscope images, obtaining comparable sensitivities for the detection of ESCC (98% and 95% 
respectively). Following these studies, several groups created DL systems to detect ESCC[29-38]. In Cai 
et al’s study, their deep neural network-CADe was tested on 187 images obtained from WLE. The 
system obtained good sensitivity (97.8%), specificity (85.4%) and accuracy (91.4%) for identifying ESCC
[29]. Similar findings occurred in three separate studies that used deep convolutional neural networks 
(DCNNs) to detect ESCC in WLE[30-32]. Using NBI, Guo et al[33] created a CADe that achieved high 
sensitivity (98.0%), specificity (95.0%) and an AUC of 0.99 for detecting ESCC in still images. Similar 
results were obtained in Li et al’s study[35]. For detecting ESCC in NBI video clips, Fukuda et al[34] 
obtained different results, finding similar sensitivity (91%) to Guo et al[33] however substantially lower 
specificity (51%). Three studies compared a DL-CADe with WLE to DL-CADe with NBI for the 
detection of ESCC[32,35,36]. The results from these three studies were quite discordant and as such a 
statement regarding whether a DL-CADe with WLE or DL-CADe with NBI is better for the detection of 
ESCC cannot be made at this time.

Interestingly, several studies used DL algorithms to assess ESCC invasion depth[39,40]. Everson et al
[39] and Zhao et al[40] created CNNs to detect intrapapillary capillary loops, a feature of ESCC that 
correlates with invasion depth, in images obtained from magnification endoscopy with NBI. They 
achieved similar findings with Everson et al’s CNN achieving an accuracy of 93.7% and Zhao et al’s 
achieving an accuracy of 89.2%[39,40]. Using DL, two groups created DCNNs to directly detect ESCC 
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Table 1 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for Barrett’s esophagus-
related neoplasia

Ref. Country Study 
design

AI 
Classifier Lesions Training 

dataset Test dataset Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUROC

Swager et al
[11], 2017

Netherlands Retrospective ML2 
methods

NPL - 60 VLE images 90 93 - 0.95

van der 
Sommen et al
[10], 2016

Netherlands Retrospective SVM NPL - 100 WLE 
images

83 83 - -

Hong et al
[17], 2017

South Korea Retrospective CNN NPL, 
IM, GM

236 endomic-
roscopy images

26 endomic-
roscopy images

- - 80.77 -

de Groof et al
[13], 2019

Netherlands, 
Germany, 
Belgium

Prospective SVM NPL - 60 WLE images 95 85 91.7 0.92

Ebigbo et al
[21], 2019

Germany, 
Brazil

Retrospective CNN EAC Augsburg dataset: 148 WLE 
images and NBI; MICCAI dataset: 
100 WLE images

97; 94a; 92 88; 80a; 100 - -

Ghatwary et 
al[24], 2019

England, 
Egypt

Retrospective Multiple 
CNNs

EAC Images from 21 
patients

Images from 9 
patients

96 92 - -

de Groof et al
[14], 2020

Netherlands, 
France, 
Sweden, 
Germany, 
Belgium, 
Australia

Ambispective CNN NPL Dataset 1: 
494364 images; 
Dataset 2:1; 247 
images; Dataset 
3: 297 images

Dataset 3: 297 
images; Dataset 
4: 80 images; 
Dataset 5: 80 
images

90b 87.5b 88.8b -

de Groof et al
[15], 2020

Netherlands, 
Belgium

Prospective CNN NPL 495611 images 20 patients; 144 
WLE images

75.8 86.5 84 -

Ebigbo et al
[18], 2020

Germany, 
Brazil

Prospective CNN EAC 129 images 62 images 83.7 100 89.9 -

Hashimoto et 
al[19], 2020

United 
States

Retrospective CNN NPL 1374 images 458 images 96.4 94.2 95.4 -

Struyvenberg 
et al[12], 2020

Netherlands Prospective ML2 
methods

NPL - 3060 VLE 
frames

- - - 0.91

Iwagami et al
[25], 2021

Japan Retrospective CNN EJC 3443 images 232 images 94 42 66 -

Struyvenberg 
et al[16], 2021

Netherlands, 
Sweden, 
Belgium

Retrospective CNN NPL 495611 images 157 NBI zoom 
videos; 30021 
frames

851; 75 831; 90 831; 85 -

Hussein et al
[20], 2022

England, 
Spain, 
Belgium, 
Austria

Prospective CNN DPL 148936 frames 264 iscan-1 
images

91 79 - 0.93

aSensitivity and specificity reported by white light endoscopy images from the Augsburg dataset, narrow band images from the Augsburg dataset, and from 
the MICCAI dataset respectively.
bResults found from convolutional neural network analyzing dataset 4.
1Sensitivity, specificity and accuracy obtained from per-video analysis and from per-frame analysis respectively.
2Multiple machine learning (ML) methods tested. Results from best performing ML method reported.
AI: Artificial intelligence; AUROC: Area under the receiver operating characteristic; CNN: Convolutional neural network; DPL: Dysplasia; EAC: Esophageal 
adenocarcinoma; EJC: Esophagogastric junctional adenocarcinoma; GM: Gastric metaplasia; IM: Intestinal metaplasia; ML: Machine learning; NBI: Narrow 
band images; NPL: Neoplasia; SVM: Support vector machine; VLE: Volumetric laser endomicroscopy; WLE: White light endoscopy.

invasion depth[41-43]. One group from Osaka International Cancer Institute conducted two studies 
using SSD to create their DCNNs[41,42]. The DCNNs were made to classify images as EP-SM1 or EP-
SM2-3 as this distinction in ESCC bares clinical significance. The studies (Nakagawa et al[41] and 
Shimamoto et al[42]) attained similar accuracies and specificities, however had substantially different 
sensitivities (90.1% vs 50% and 71%)[41,42]. The third study, Tokai et al[43], used SSD as well for their 
DCNN and also programed the DCNN to classify images as EP-SM1 or EP-SM2-3. Their observed 
sensitivity, specificity and accuracy were lower than those found by Nakagawa et al[41] (84.1%, 73.3% 
and 80.9% respectively).
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Gastric cancer
Gastric cancer is the third leading cause of cancer-related mortality in the world[44,45]. Early detection 
of precancerous lesions or early gastric cancer with endoscopy can prevent progression to advanced 
disease[46]. However, a substantial number of upper gastrointestinal cancers are missed placing 
patients at risk for interval development[45]. To mitigate this risk, AI systems are being develop to assist 
with lesion detection.

In 2013, Miyaki et al[47] used a bag-of-features framework with densely sampled scale-invariant 
feature transform descriptors to classify still images obtained from magnifying endoscopy with flexible 
spectral imaging color enhancement as having or not having gastric cancer. Their system, a rudimentary 
version of ML, obtained good sensitivity (84.8%), specificity (87.0%) and accuracy (85.9%) for identifying 
gastric cancer[47]. Using SVM, Kanesaka et al[48] found higher sensitivity (96.7%), specificity (95%) and 
accuracy (96.3%).

Following these successes, several groups began using CNNs for the identification of gastric cancer
[44-46,49-59]. In 2018, Hirasawa et al[44] published one of the first papers to use a CNN (SSD) to detect 
gastric cancer. In a test set of 2296 images, the CNN had a sensitivity of 92.2% for identifying gastric 
cancer lesions[44]. In a larger study, Tang et al[49] created a DCNN to detect gastric cancer in a test set 
of 9417 images and 26 endoscopy videos. With respect to their test set, the DCNN performed well, 
achieving a sensitivity of 95.5% (95%CI 94.8%–96.1%), specificity of 81.7% (95%CI 80.7%–82.8%), 
accuracy of 87.8% (95%CI 87.1%–88.5%) and AUC 0.94[49]. The DCNN continued to perform well in 
external validation sets, achieving sensitivity of 85.9%-92.1%, specificity of 84.4%-90.3%, accuracy of 
85.1%-91.2% and AUC 0.89-0.93[49]. Compared to expert endoscopists, the DCNN attained higher 
sensitivity, specificity and accuracy. In the video set, the DCNN achieved a sensitivity of 88.5% (95%CI 
71.0%-96.0%)[49]. Several studies using DCNN to detect gastric cancer in endoscopy images obtained 
similar sensitivities, specificities and accuracies to Tang et al[49]. While one study reported a sensitivity 
of 58.4% for detecting gastric cancer, the sensitivity for the study’s 67 endoscopists was 31.9%[55].

Recently, several groups from China and Japan have published studies using CNNs with magnified 
endoscopy with NBI (ME-NBI) in an effort to improve early gastric cancer detection[56-59]. Using a 22-
layer CNN, Horiuchi et al[56] achieved a sensitivity, specificity and accuracy of 95.4%, 71.0% and 85.3% 
respectively for identifying early gastric cancer from a set of 258 ME-NBI images (151 gastric cancer, 107 
gastritis). The same group published a similar study the following year however using ME-NBI videos 
instead of still images[57]. They obtained similar results: sensitivity of 87.4% (95%CI 78.8%-92.8%), 
specificity of 82.8% (95%CI 73.5%-89.3%) and accuracy of 85.1% (955 CI 79.0%-89.6%)[57]. Hu et al[58] 
and Ueyama et al[59] in their studies using CNN to identify gastric cancer in ME-NBI achieved similar 
sensitivities, specificities and accuracies as Horiuchi et al[56]. An overview of these studies is provided 
in Table 2.

Of increasing interest to researchers within this field is predicting invasion depth of gastric cancer 
using AI. Few studies have used CNNs to predict invasion depth[60-63]. Yoon et al[60] created a CNN 
to predict gastric cancer lesion depth from standard endoscopy images. The CNN achieved good 
sensitivity (79.2%) and specificity (77.8%) for differentiating T1a (mucosal) from T1b (submucosal) 
gastric cancers (AUC 0.851)[60]. Also using standard endoscopy images, Zhu et al[61] attained similar 
results. They trained their CNN to identify P0 (restricted to the mucosa or < 0.5 mm within the 
muscularis mucosae) vs P1 (≥ 0.5 mm deep into the muscularis mucosae) lesions. The CNN achieved a 
sensitivity of 76.6%, specificity of 95.6%, accuracy of 89.2% and AUROC 0.94 (95%CI 0.90-0.97). Cho et al
[62] using DenseNet-161 as their CNN and Nagao et al[62] using ResNet50 as their CNN obtained 
comparable results to Zhu et al[61] for predicting gastric cancer invasion depth from endoscopy images.

Gastric ulcers
Within recent years, numerous studies have been published regarding the use of AI to assist with the 
detection and classification of gastric lesions. Few of these studies explicitly used AI systems to detect 
duodenal and gastric ulcers, however they report data pertaining to ulcer detection.

Using YOLOv5, a deep learning object detection model, Ku et al[64] created a CADe system capable 
of detecting multiple gastric lesions with good precision (98%) and sensitivity (89%). Also using YOLO 
for their DCNN, Yuan et al[53] achieved an overall system accuracy of 85.7% for gastric lesion identi-
fication. With respect to peptic ulcer detection, their system achieved an accuracy of 95.4% (93.5%-
97.2%), sensitivity of 86.2% (77.5%–94.8%) and specificity of 96.8% (95.1%–98.4%)[53]. Guo et al[54] used 
ResNet50 to construct their CADe designed to detect gastric lesions. Their CADe achieved lower 
sensitivity 71.4% (95%CI 69.5–73.2%) and specificity 70.9% (95%CI 70.3–71.4%) than Yuan et al’s DCNN
[53], however Guo et al[54] combined erosions and ulcers into one category for analysis. With their 
primary outcome being classifying gastric cancers and ulcers, Namikawa et al[52] developed a CNN 
capable of identifying gastric ulcers with high sensitivity (93.3%; 95%CI 87.3%−97.1%) and specificity 
(99.0%; 95%CI 94.6%-100%).

Helicobacter pylori infection
As a risk factor for future development of gastric cancer, early detection and eradication of Helicobacter 
pylori (H. pylori) in infected individuals is important. Endoscopic evaluation for H. pylori is highly 
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Table 2 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for gastric cancer

Ref. Country Study 
design

AI 
classifier Lesions Training 

dataset
Test 
dataset

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUROC

Miyaki et al
[47], 2013 

Japan Prospectivea SVM Gastric cancer 493 FICE-
derived 
magnifying 
endoscopic 
images

92 FICE-
derived 
magnifying 
endoscopic 
images

84.8 97 85.9 -

Kanesaka 
et al[48], 
2018

Japan, 
Taiwan

Retrospective SVM EGC 126 M-NBI 
images

81 M-NBI 
images

96.7 95 96.3 -

Wu et al
[50], 2019

China Retrospective CNN EGC 9151 images 200 images 94 91 92.5 -

Cho et al
[51], 2019

South 
Korea

Ambispective CNN Advanced gastric 
cancer, EGC, high 
grade dysplasia, 
low grade 
dysplasia, non-
neoplasm

4205 WLE 
images

812 WLE 
images; 200 
WLE images

- - 86.6b; 76.4 0.877b

Tang et al
[49], 2020

China Retrospective CNN EGC 35823 WLE 
images

Internal: 9417 
WLE images; 
External: 
1514 WLE 
images1

95.51; 85.9-
92.1

81.71; 84.4-
90.3

87.81; 85.1-
91.2

0.941; 
0.887-
0.925

Namikawa 
et al[52], 
2020

Japan Retrospective CNN Gastric cancer 18410 
images

1459 images 99 93.3 99 -

Horiuchi et 
al[56], 2020

Japan Retrospective CNN EGC 2570 M-NBI 
images

258 M-NBI 
images

95.4 71 85.3 0.852

Horiuchi et 
al[57], 2020

Japan Retrospective CNN EGC 2570 M-NBI 
images

174 videos 87.4 82.8 85.1 0.8684

Guo et al
[54], 2021

China Retrospective CNN Gastric cancer, 
erosions/ulcers, 
polyps, varices

293162 WLE 
images

33959 WLE 
images

67.52; 85.1 70.92; 90.3 - -

Ikenoyama 
et al[55], 
2021

Japan Retrospective CNN EGC 13584 WLE 
and NBI 
images

2940 WLE 
and NBI 
images

58.4 87.3 - -

Hu et al
[58], 2021

China Retrospective CNN EGC M-NBI 
images from 
170 patients

Internal: M-
NBI from 73 
patients 
External: M-
NBI images 
from 52 
patients

79.23; 78.2 74.53; 74.1 773; 76.3 0.8083; 
0.813

Ueyama et 
al[59], 2021

Japan Retrospective CNN EGC 5574 M-NBI 
images

2300 M-NBI 98 100 98.7 -

Yuan et al
[53], 2022

China Retrospective CNN EGC, advanced 
gastric cancer, 
submucosal tumor, 
polyp, peptic ulcer, 
erosion, and 
lesion-free gastric 
mucosa

29809 WLE 
images

1579 WLE 
images

59.24; 100 99.34; 98.1 93.54; 98.4 -

aPresumed prospective based on manuscript.
bAccuracy of convolutional neural network (CNN) for detecting the five different lesions and detecting gastric cancer respectively. Area under the receiver 
operating characteristic (AUROC) pertains to detecting gastric cancer.
1The external dataset was comprised of images from 3 external sites. Sensitivity, specificity, accuracy and AUROC for the internal dataset and external 
dataset respectively.
2Sensitivity and specificity of CNN for detecting gastric cancers in a dataset comprised of images without annotations and for detecting gastric cancers in a 
dataset comprised of annotated images respectively.
3Sensitivity, specificity, accuracy and AUROC for the internal dataset and external dataset respectively.
4Sensitivity, specificity and accuracy for detecting early gastric cancer and for detecting advanced gastric cancer respectively.
“Internal” and “External” refer to internal and external datasets respectively.
CNN: Convolutional neural network; AUROC: Area under the receiver operating characteristic; EGC: Early gastric cancer; FICE: Flexible spectral imaging 
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color enhancement; M-NBI: Magnifying endoscopy with narrow band imaging; NBI: Narrow band imaging; SVM: Support vector machine; WLE: White 
light endoscopy.

operator dependent[65]. Pairing artificial intelligence with endoscopy for the detection of H. pylori could 
possibly reduce false results.

Shichijo et al[66] used GoogLeNet, a DCNN consisting of 22 layers, to evaluate 11481 images obtained 
from 397 patients (72 H. pylori positive, 325 negative) for the presence or absence of H. pylori infection. 
GoogLeNet attained a sensitivity of 81.9% (95%CI 71.1%-90.0%), specificity of 83.4% (95%CI 78.9%-
87.3%) and accuracy of 83.1% (95%CI 79.1%-86.7%) with AUROC 0.89 for detecting H. Pylori infection
[66]. When compared to endoscopists enrolled in the study, the sensitivity, specificity and accuracy 
attained by GoogLeNet was comparable to those attained by the endoscopists[66]. This same group 
published a second study in 2019 again using GoogLeNet for their DCNN[67]. However, a different 
optimization technique was used to prepare GoogLeNet. The DCNN was tasked with classifying images 
as H. pylori positive, negative or eradicated. In a set of 23699 images, the DCNN attained an accuracy of 
80% for H. pylori negative, 84% for H. pylori eradicated, and 48% for H. pylori positive[67]. Also using 
GoogLeNet, Itoh et al[68] obtained similar results to Shichijo et al’s 2017 study with respect to sensitivity 
(86.7%) and specificity (86.7%)[66]. Using ResNet-50 as their architectural unit for their DCNN, Zheng et 
al[69] were successful in classifying images as H. pylori positive or negative, achieving a sensitivity, 
specificity, accuracy and AUC of 81.4% (95%CI 79.8%–82.9%), 90.1% (95%CI 88.4%–91.7%), 84.5% 
(95%CI 83.3%–85.7%) and 0.93 (95%CI 0.92–0.94) respectively.

Taking a different approach, Yasuda et al[70] used linked color imaging (LCI) with SVM to identify H. 
pylori infection. The LCI images were classified into high-hue and low-hue images based on redness and 
classified by SVM as H. pylori positive or negative. This method attained a sensitivity, specificity and 
accuracy of 90.4%, 85.7% and 87.6% respectively[70]. Combining LCI with a deep learning CADe 
system, Nakashima et al[71] achieved a sensitivity, specificity and accuracy of 92.5%, 80.0%, 84.2% for 
identifying H. pylori negative images, 62.5%, 92.5%, 82.5% for H pylori positive images, 65%, 86.2%, 
79.2% for H. pylori post-eradication images respectively.

Celiac disease
While immunological tests can support the diagnosis of celiac disease, definitive diagnosis requires 
histological assessment of duodenal biopsies[72]. As such being able to identify changes in the duodenal 
mucosa consistent with celiac disease is important. However, these changes can be subtle and difficult 
to appreciate. Few studies have been published using a CADe system to detect or diagnose celiac 
disease.

In 2016, Gadermayr et al[73] created a system that combined expert knowledge acquisition with 
feature extraction to classify duodenal images obtained from 290 children as Marsh-0 (normal mucosa) 
or Marsh-3 (villous atrophy). Expert knowledge acquisition was achieved by having one of three study 
endoscopists assign a Marsh grade of 0 or 3 to an image. Feature extraction was accomplished using one 
of three methods: (1) multi-resolution local binary patterns; (2) multi-fractal spectrum; and (3) improved 
Fisher vectors. From expert knowledge acquisition and feature extraction, their classification algorithm 
identified images as Marsh-0 or Marsh-3. With optimal settings, the classification algorithm achieved an 
accuracy of 95.6%-99.6%[73]. In 2016, Wimmer et al[74] used CNN to detect celiac disease in a set of 1661 
images (986 images of normal mucosa, 675 images of celiac disease) with varying convolutional blocks. 
Their CNN achieved the best overall classification rate (90.3%) with 4 convolutional blocks[74]. Taking 
their CNN a step further, they combined the CNN with 4 convolutional blocks with SVM which 
increased overall classification rate by 6.7%[74]. While interesting, Gadermayr et al’s method requires 
human intervention and the paper’s methodology is quite complicated[73], largely in part to the 
extensive number of systems tested. Wimmer et al[74] provided a simpler method that attained a good 
overall classification rate.

WIRELESS CAPSULE ENDOSCOPY
Celiac disease
Few studies have assessed the utility of AI in the detection of celiac disease using WCE. In 2017, Zhou et 
al[75] trained GoogLeNet, a DCNN, to identify celiac disease using clips obtained during WCE. Their 
DCCN achieved a sensitivity and specificity of 100% for identifying patients with celiac disease from 10 
WCE videos (5 from patients with celiac disease, 5 from healthy controls)[75]. Similarly, Wang et al[76] 
used DL to diagnose celiac disease from WCE videos, however their CNN utilized a block-wise channel 
squeeze and excitations attenuation module, a newer architectural unit thought to better mimic human 
visual perception[76]. Their system attained an accuracy of 95.9%, sensitivity of 97.2% and specificity of 
95.6% for diagnosing celiac disease.
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Inflammatory bowel disease
WCE is often used in patients with inflammatory bowel disease (IBD) to detect small bowel ulcers and 
erosions. While computed tomography enterography and MRI have been used to detect areas of disease 
activity and inflammation along the gastrointestinal tract in patients with IBD, these imaging modalities 
can miss early or small lesions. While WCE can directly visualize lesions, endoscopists reviewing the 
video may miss lesions or mistakenly identify imaging artifacts as lesions. AI systems could help reduce 
these errors. Several studies have been published using AI in WCE to detect intestinal changes 
consistent with Crohn’s disease[77-83].

To discriminate ulcers from normal mucosa in Crohn’s disease, Charisis et al[78] proposed combining 
bidimensional ensemble empirical mode decomposition and differential lacunarity to pre-process 
images followed by classification using several ML algorithms and a multilayer neural network. Using a 
dataset consisting of 87 ulcer and 87 normal mucosa images, their CADe achieved accuracy 89.0%-
95.4%, sensitivity 88.2%-98.8%, and specificity 84.2%-96.6%[78]. Subsequently, Charisis and Hadjileon-
tiadis published a paper in 2016 combining hybrid adaptive filtering and differential lacunarity (HAF-
DLac) to process images followed by SVM to detect Crohn’s disease related lesions in WCE[79]. In a set 
of 800 WCE images, the HAF-DLac system achieved a sensitivity, specificity and accuracy of 95.2%, 
92.4% and 93.8% respectively for detecting lesions[79]. Using a similar approach to Charisis et al[78], 
Kumar et al[80] used MPEG-7 edge, color and texture features to pre-process images followed by image 
classification using SVM to detect and classify lesions in patients with Crohn’s disease. Their system, 
tested against 533 images (212 normal mucosa, 321 images with lesions), obtained an accuracy of 93.0%-
93.8% for detecting lesions and an accuracy of 78.5% for classifying them based on severity.

With respect to deep learning, few groups have used deep learning algorithms in WCE to identify 
Crohn’s disease related lesions. Recently, Ferreira et al[82] used a DCNN to identify erosions and ulcers 
in patients with Crohn’s disease. Their DCNN achieved a sensitivity of 98.0%, specificity of 99.0%, 
accuracy of 98.8% and AUROC of 1.00. Interestingly, Klang et al[83] developed a DCNN to detect 
intestinal strictures. Overall, their DCNN achieved an accuracy of 93.5% ± 6.7% and AUC of 0.989 for 
detecting strictures.

Hookworm infections
Three studies have used artificial intelligence to detect hookworms using WCE. The first to publish on 
this topic was Wu et al[84] in 2016. Using SVM, they were able to create a system that achieved a 
specificity of 99.0% and accuracy of 98.4% for detecting hookworms in WCE[84]. However, the system’s 
sensitivity was 11.1%. He et al[85] created a DCNN using a novel deep hookworm detection framework 
that modeled the tubular appearance of hookworms. Their DCNN had an accuracy of 88.5% for 
identifying hookworm[85]. Gan et al[86] performed a similar study, finding an AUC of 0.97 (95%CI 
0.967-0.978), sensitivity of 92.2%, specificity of 91.1% and accuracy of 91.2% The concordant findings of 
these three studies suggest a possible utility of using AI to diagnose hookworm infections.

Intestinal bleeding
One of the most common reasons to perform WCE is to evaluate for gastrointestinal bleeding after prior 
endoscopic attempts have failed to localize a source. Since the implementation of WCE in clinical 
practice, many methods, notably AI, have been employed to improve the detection of gastrointestinal 
sources of bleeding.

Several studies have looked at using supervised learning to identify bleeding in WCE. In 2014, Sainju 
et al[87] used an ML algorithm to interpret color quantization images and determine if bleeding was 
present. One of their models achieved a sensitivity, specificity and accuracy of 96%, 90% and 93%, 
respectively[87]. Using SVM, Usman et al[88] achieved similar results - sensitivity, specificity and 
accuracy of 94%, 91% and 92% respectively.

More recently, several groups have created DCNNs to identify bleeding and sources of bleeding in 
WCE. In 2021, Ghosh et al[89] used a system comprised of two CNN systems (CNN-1, CNN-2) to 
classify WCE images as bleeding or non-bleeding and subsequently to identify sources of bleeding 
within the bleeding images. For classifying images as bleeding or non-bleeding, CNN-1 had a 
sensitivity, specificity, accuracy and AUC of 97.5%, 99.9%, 99.4% and 0.99[89]. For identifying sources of 
bleeding within the bleeding images, CNN-2 had an accuracy of 94.4% and intersection over union 
(IoU) of 90.7%[89].

In 2020, Tsuboi et al[90] published the first study to use DCNN to detect small bowel angioectasias 
from WCE images. In their test set which included 488 images of small bowel angioectasias and 10000 
images of normal small bowel mucosa, their DCNN achieved an AUC of 0.99 with sensitivity and 
specificity of 98.8% and 98.4%[90]. Similarly, in 2021 Ribeiro at al[91] developed a DCNN to identify 
vascular lesions, categorizing them by bleeding risk according to Saurin’s classification: P0 – no 
hemorrhagic potential, P1 – uncertain/intermediate hemorrhagic potential and red spots, and P2 – high 
hemorrhagic potential (angioectasias, varices). In their validation set, the DCNN had a sensitivity, 
specificity, accuracy and AUROC of 91.7%, 95.3%, 94.1% and 0.97 respectively for identifying P1 lesions
[91]. Regarding P2 lesions, the network had a sensitivity, specificity, accuracy and AUROC of 94.1%, 
95.1%, 94.8% and 0.98 respectively[91]. This group published a similar study in 2022 however now using 
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their DCNN to detect and differentiate mucosal erosions and ulcers based on bleeding potential[92]. 
Saurin’s classification was again used to classify lesions, additionally labeling P1 lesions as mucosal 
erosions or small ulcers and P2 lesions as large ulcers (> 2 cm)[92]. The DCNN achieved an overall 
sensitivity of 90.8% ± 4.7%, specificity of 97.1% ± 1.7%, and accuracy of 93.4% ± 3.3% in their test set of 
1226 images[92]. For the detection of mucosal erosions (P1), their DCNN achieved a sensitivity of 87.2%, 
specificity of 95.0% and accuracy of 93.3% with AUROC of 0.98 (95%CI 0.97-0.99)[92]. With respect to 
small ulcers (P1), their DCNN achieved a sensitivity of 86.4%, specificity of 96.9% and accuracy of 94.5% 
with AUROC of 0.99 (95%CI 0.97-1.00)[92]. Finally, with respect to large ulcers (P2), their DCNN 
achieved a sensitivity of 95.3%, specificity of 99.2% and AUROC of 1.00 (95%CI 0.98-1.00)[92]. A third 
study published by this group aimed to develop a DCNN to identify colonic lesions and luminal 
blood/hematic vestiges had similar findings. In their training set of 1801 images, the DCNN achieved 
an overall sensitivity, specificity and accuracy of 96.3%, 98.2%, and 97.6% respectively[93]. For detecting 
mucosal lesions, the DCNN achieved a sensitivity of 92.0%, specificity of 98.5% and AUROC of 0.99 
(95%CI 0.98-1.00)[93]. For luminal blood/hematic vestiges, the DCNN achieved a sensitivity of 99.5%, 
specificity of 99.8% and AUROC of 1.00 (95%CI 0.99-1.00)[93].

Polyp and tumor detection
Gastrointestinal tumors can be difficult to discern from normal mucosa and thus pose a higher degree of 
diagnostic difficulty compared to other lesions on traditional WCE[94]. As such, developing an AI 
system to aid with the detection of these easy to miss lesions could be beneficial.

Several groups have developed ML systems to aid with detection. Using SVM, Li et al[95] were able to 
develop a system capable of detecting small bowel tumors with sensitivity, specificity and accuracy of 
88.6%, 96.2% and 92.4%. Similarly, Liu et al[96] and Faghih Dinevari et al[97] used SVM to identify 
tumors in WCE, however they used different image pre-processing algorithms. Liu et al[96] used 
discrete curvelet transform to pre-process images prior to being classified by SVM. Their ML system 
achieved a sensitivity of 97.8% ± 0.5, specificity of 96.7% ± 0.4 and accuracy of 97.3% ± 0.5 for identifying 
small bowel tumors[96]. Faghih Dinevari et al[97] relied on discrete wavelet transform and singular 
value decomposition for image pre-processing prior to classification by SVM. Their system achieved a 
sensitivity of 94.0%, specificity of 93.0% and accuracy of 93.5% for identifying small bowel tumors[97]. 
Sundaram and Santhiyakumari built upon these methodologies, using a region of interest-based color 
histogram to enhance WCE images prior to being classified by two SVM algorithms: SVM1 and SVM2
[98]. SVM1 classified the WCE image as normal or abnormal. If SVM1 classified the image as abnormal, 
it was further classified by SVM2 as benign, malignant or normal[98]. The system attained an overall 
sensitivity of 96.0%, specificity of 95.4% and accuracy of 95.7% for small bowel tumor detection and 
classification[98].

With respect to DL methods, Blanes-Vidal et al[99] created a DCNN to autonomously detect and 
localize colorectal polyps. Their study included 255 patients who underwent WCE and standard 
colonoscopy for positive fecal immunochemical tests. Of the 255 patients, 131 had at least 1 polyp. The 
DCNN obtained a sensitivity of 97.1%, specificity of 93.3% and accuracy of 96.4% for detecting polyps in 
WCE[99]. Saraiva et al[100] and Mascarenhas et al[101] similarly used DCNNs to detect colonic polyps in 
WCE and obtained similar results to Blanes-Vidal et al[99-101]. Using an ANN, Constantinescu et al[102] 
created a DL system able to detect small bowel polyps with sensitivity of 93.6% and specificity of 91.4%. 
For gastric polyps and tumors, Xia et al[103] created a novel CNN – a region-based convolutional neural 
network (RCNN) – to evaluate magnetically controlled capsule endoscopy (MCE) images. Tested on 
201365 MCE images obtained from 100 patients, the RCNN detected gastric polyps with sensitivity of 
96.5%, specificity of 94.8%, accuracy of 94.9% and AUC of 0.898 (95%CI 0.84-0.96)[103]. For submucosal 
tumors, the RCNN achieved a sensitivity of 87.2%, specificity of 95.3%, accuracy of 95.2% and AUC of 
0.88 (95%CI 0.81-0.96)[103]. Taking a different approach, Yuan and Meng used a novel deep learning 
method – stacked sparse autoencoder image manifold constraint – to identify intestinal polyps on WCE, 
finding an accuracy of 98.00% for poly detection[104]. However, sensitivity, specificity and AUC 
analyses were not reported.

COLONOSCOPY
Bowel preparation assessment
Inadequate bowel preparation, present in 15% to 35% of colonoscopies, is associated with lower rates of 
cecal intubation, lower adenoma detection rate (ADR), and higher rates of procedure-related adverse 
events[105,106]. For patients with inadequate bowel preparation, the United States Multi-Society Task 
Force of Colorectal Cancer (MSTF) which represents the American College of Gastroenterology, the 
American Gastroenterological Association and the American Society for Gastrointestinal Endoscopy 
(ASGE), and the European Society of Gastrointestinal Endoscopy recommend repeating a colonoscopy 
within 1 year[105,107-109]. In addition, the MSTF and ASGE recommend that endoscopists document 
bowel preparation quality at time of colonoscopy[108,109].
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Despite these recommendations and variety of bowel preparation rating scales available, 
documentation of bowel preparation quality remains variable with studies reporting appropriate 
documentation in 20% to 88% of colonoscopies[110-112]. Few studies have been published regarding the 
use of DCNN to assist in the objective assessment of bowel preparation. The first group to do so, Zhou 
et al[113] in 2019, found that their DCNN (ENDOANGEL) was more accurate (93.3%) at grading the 
bowel preparation quality of still images than novice (< 1 year of experience performing colonoscopies; 
75.91%), senior (1-3 years of experience performing colonoscopies; 74.36%) and expert (> 3 years of 
experience performing colonoscopies; 55.11%) endoscopists. When tested on colonoscopy videos, 
ENDOANGEL remained accurate at grading bowel preparation quality (89.04%)[113].

Building upon their experience with ENDOANGEL, Zhou et al[114] created a new system using two 
DCNNs: DCNN1 filtered unqualified frames while DCNN2 classified images by Boston Bowel 
Preparation Scale (BBPS) scores. The BBPS is a validated rating scale for assessing bowel preparation 
quality[115]. Colonic segments are assigned scores on a scale from 0 to 3. Colonic segments unable to be 
evaluated due to the presence of solid, unremovable stool are assigned a score of 0 whereas colonic 
segments that are able to be easily evaluated and contain minimal to no stool are assigned a score of 3
[115]. Zhou et al’s DCNN2 classified images into two categories: well-prepared (BBPS score 2-3) and 
poorly prepared (BPPS score 0-1)[114]. There was no difference between the dual DCNN system and 
study endoscopists when calculating the unqualified image portion (28.35% vs 29.58%, P = 0.285) and e-
BBPS scores (7.81% vs 8.74%, P = 0.088). In addition, a strong inverse relationship between e-BBPS and 
ADR (ρ = -0.976, P = 0.022) was found.

Two other groups developed similar dual DCNN systems as Zhou et al[114] to calculate BBPS and 
obtained concordant findings[116,117]. Lee et al[116] tested their system on colonoscopy videos and 
found the system had an accuracy of 85.3% and AUC of 0.918 for detecting adequate bowel preparation. 
Using still images, Low et al’s system was able to accurately determine bowel preparation adequacy 
(98%) and subclassify by BBPS (91%)[117].

Using a different approach, Wang et al[118] used U-Net to create a DCNN to perform automatic 
segmentation of fecal matter from still images. Compared to images segmented by endoscopists, U-Net 
achieved an accuracy of 94.7%.

Inflammatory bowel disease
Colonoscopy is essential for the assessment of IBD as it allows for real-time evaluation of colonic inflam-
mation[119,120]. Despite there being endoscopic scoring systems available to quantify disease activity, 
assessment is operator-dependent resulting in high interobserver variability[119-121]. Recent efforts 
have focused on using artificial intelligence to objectively grade colonic inflammation[121,122].

Several studies have investigated using DCNNs to classify images obtained from patients with 
ulcerative colitis (UC) by endoscopic inflammation scoring systems. The most commonly used 
endoscopic scoring system in these studies is the Mayo Endoscopic Score (MES). Physicians assign 
scores on a scale from 0 to 3 based on the absence or presence of erythema, friability, erosions, ulceration 
and bleeding[123]. A score of 0 indicates normal or inactive mucosa whereas a score of 3 indicates 
severe disease activity[123]. In 2018, Ozawa et al[121] published the first study to use a DCNN to classify 
still images obtained from patients with UC into MES 0 vs MES 1-3 and MES 0-1 vs MES 2-3. Their 
DCNN had an AUROC of 0.86 (95%CI 0.84-0.87) and AUROC 0.98 (95%CI 0.97-0.98) when differen-
tiating MES 0 vs MES 1-3 and MES 0-1 vs MES 2-3 respectively[121]. Stidham et al[122] performed a 
similar study and found an AUROC of 0.966 (95%CI 0.967-0.972) for differentiating still images into 
MES 0-1 vs MES 2-3. Using a combined deep learning and machine learning system, Huang et al[124] 
were able to achieve an AUC of 0.938 with accuracy of 94.5% for identifying MES 0-1 vs MES 2-3 from 
still images. While the binary classification used in the aforementioned studies can differentiate 
remission/mucosal healing (MES 0-1) and active inflammation (MES 2-3), knowing exact MESs also has 
clinical significance[125,126]. Bhambhvani and Zamora created a DCNN to assign individual MESs to 
still images. The model achieved an AUC of 0.89, 0.86 and 0.96 for classifying images into MES 1, MES 2 
and MES 3 respectively and achieved an average specificity of 85.7%, average sensitivity of 72.4% and 
overall accuracy of 77.2%[127].

In order to simulate how MES is performed in practice, several groups developed systems using DL 
to predict MES from colonoscopy videos. Yao et al’s DCNN had good agreement with MES scoring 
performed by gastroenterologists in their internal video test set (k = 0. 84; 95%CI 0.75-0.92), however 
their DCCN did not perform as well in the external video test set (k = 0.59; 95%CI 0.46-0.71)[128]. 
Gottlieb et al[129] reported similar findings to Yao et al[128], finding that their DCNN had good 
agreement with MES scoring performed by gastroenterologists (quadratic weighted kappa of 0.844; 
95%CI 0.787–0.901). Gutierrez Becker et al[130] created a DL system designed to perform multiple binary 
tasks: discriminating MES < 1 vs MES ≥ 1, MES < 2 vs MES ≥ 2, and MES < 3 vs MES ≥ 3. For these tasks, 
their DL system attained an AUROC of 0.84, 0.85, and 0.85 respectively.

A group from Japan published several studies using AI on endoscopic images to predict histologic 
activity in patients with UC[131-134]. Their first study in 2016 used machine learning to predict 
persistent histologic inflammation[131]. Their system attained a sensitivity of 74% (95%CI 65%-81%), 
specificity of 97% (95%CI 95%-99%) and accuracy of 91% (95%CI 83%-95%) for predicting persistent 
histologic inflammation in still images[131]. Their following studies used a deep neural network labeled 
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DNUC (deep neural network for evaluation of UC) to identify endoscopic remission and histologic 
remission[132,134]. In still images, DNUC had a sensitivity of 93.3% (95%CI 92.2%–94.3%), specificity of 
87.8% (95%CI 87.0%–88.4%) and diagnostic accuracy of 90.1% (95%CI 89.2%–90.9%) for determining 
endoscopic remission[132]. With respect to histologic remission, DNUC had a sensitivity of 92.4% 
(95%CI 91.5%–93.2%), specificity of 93.5% (95%CI 92.6%–94.3%) and diagnostic accuracy of 90.1% 
(92.9%; 95%CI 92.1%–93.7%)[132]. In colonoscopy videos, DNUC showed a sensitivity of 81.5% (95%CI 
78.5%–83.9%) and specificity of 94.7% (95%CI 92.5%–96.4%) for endoscopic remission[134]. For 
histologic remission, DNUC had a sensitivity of 97.9% (95%CI 97.0%–98.5%) and specificity of 94.6% 
(95%CI 91.1%–96.9%) in colonoscopy videos[134].

To date, only one study has been published using an AI system to distinguish normal from inflamed 
colonic mucosa in Crohn’s disease[135]. The group paired a DCNN with a long short-term memory 
(LSTM), a type of neural network that uses previous findings to interpret its current input, and confocal 
laser endomicroscopy. Their DCNN-LSTM system attained an accuracy of 95.3% and AUC of 0.98 for 
differentiating normal from inflamed mucosa[135].

Polyp detection
Colorectal cancer is the third most common malignancy and second leading cause of cancer-related 
mortality in the world[136]. While colonoscopy is the gold standard for detection and treatment of 
premalignant and malignant lesions, a substantial number of adenomas are missed[137,138]. As such, 
efforts have focused on using AI to improve ADR and decrease adenoma miss rate (AMR).

At present, numerous pilot, validation and prospective studies[139-161], randomized controlled 
studies[162-174], and systematic reviews and meta-analyses[175-183] have been published regarding the 
use of AI for the detection of colonic polyps. Furthermore, there are commercially available AI systems 
for both polyp detection and interpretation. With respect to the systematic reviews and meta-analyses 
published on this topic, AI-assisted colonoscopy has consistently been shown to have higher ADR, 
polyp detection rate (PDR) and adenoma per colonoscopy (APC) compared to standard colonoscopy
[175-183]. Recently, several large, randomized controlled trials have been published supporting these 
findings. Shaukat et al[162] published their findings from their multicenter, randomized controlled trial 
comparing CADe colonoscopy to standard colonoscopy. Their study included 1359 patients: 677 
randomized to standard colonoscopy, 682 to CADe colonoscopy. They found an increase in ADR (47.8% 
vs 43.9%; P = 0.065) and APC (1.05 vs 0.83; P = 0.002) in the CADe colonoscopy group. However, they 
also found a decrease in the overall sessile serrated lesions per colonoscopy rate (0.20 vs 0.28; P = 0.042) 
and sessile serrated lesion detection rate (12.6% vs 16.0%; P = 0.092) in the CADe colonoscopy group
[162]. Brown et al[163] in their CADeT-CS Trial which was a multicenter, single-blind randomized 
tandem colonoscopy study comparing CADe colonoscopy to high-definition white light colonoscopy 
found similar increases in ADR (50.44% vs 43.64%; P = 0.3091) and APC (1.19 vs 0.90; P = 0.0323) in their 
patients who underwent CADe colonoscopy first[163]. Additionally, polyp miss rate (PMR) (20.70% vs 
33.71%; P = 0.0007), AMR (20.12% vs 31.25%; P = 0.0247), and sessile serrated lesion miss rate (7.14% vs 
42.11%; P = 0.0482) were lower in the CADe colonoscopy first group. In a similarly designed study to 
Brown et al[163], Kamba et al’s multicenter, randomized tandem colonoscopy study comparing CADe 
colonoscopy to standard colonoscopy found lower AMR (13.8% vs 26.7%; P < 0.0001), PMR (14.2% vs 
40.6%; P < 0.0001), and sessile serrated lesion miss rate (13.0% vs 38.5%’ P = 0.03) and higher ADR 
(64.5% vs 53.6%; P = 0.036) and PDR (69.8% vs 60.9%; P = 0.084) in patients who underwent CADe 
colonoscopy first[164]. Similar to Shaukat et al[162], the sessile serrated lesion detection rate was lower 
in the CADe colonoscopy first group compared to standard colonoscopy first (7.6% vs 8.1%; P = 0.866)
[164]. Similar increases in ADR, APC and PDR were appreciated in randomize controlled trials by Xu et 
al[172], Liu et al[173], Repici et al[170], Gong et al[166], Wang et al[167], and Su et al[169] as well[166-172].

The majority of AI-assisted colonoscopy studies focus on adenoma detection. While these studies 
report sessile serrated lesion rates, it is often a secondary outcome despite sessile serrated lesions being 
the precursors of 15%-30% of all colorectal cancers[184]. Few studies have created AI systems optimized 
for dedicating sessile serrated lesions. Recently, Yoon et al[184] used a generative adversarial network 
(GAN) to generate endoscopic images of sessile serrated lesions which were used to train their DCNN 
with the hope of improving sessile serrated lesion detection. In the validation set which was comprised 
of 1141 images of polyps and 1000 normal images, their best performing GAN-DCNN model, GAN-
aug2, achieved a sensitivity of 95.44% (95%CI 93.71%-97.17%), specificity of 90.10% (95%CI 88.38%-
91.77%), accuracy of 92.95% (95%CI 91.86%-94.04%) and AUROC of 0.96 (95%CI 0.9547-0.9709)[184]. In a 
type-separated polyp validation dataset, the GAN-aug2 achieved a sensitivity of 95.24%, 19.1% higher 
than the DCNN without augmentation[184]. Given the small number of sessile serrate lesions present in 
the initial set, Yoon et al[184] collected an additional 130 images depicting 133 sessile serrated lesions to 
create an additional validation set titled SSL temporal validation dataset[184]. The GAN-aug2 continued 
to outperform the DCNN without augmentation (sensitivity 93.98% vs 84.21%). Nemoto et al[185] 
created a DCNN to differentiate (1) tubular adenomas from serrated lesions; and (2) serrated lesions 
from hyperplastic polyps. In their 215-image training set, the DCNN was able to differentiate tubular 
adenomas from sessile serrated lesions with sensitivity of 72% (95%CI 62%-81%), specificity 89% (95%CI 
82%-94%), accuracy 82% (95%CI 77%-87%) and AUC 0.86 (95%CI 0.80-0.91). For differentiating sessile 
serrated lesions from hyperplastic polyps, the DCNN achieved a sensitivity of 17% (95%CI 7%-32%), 
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specificity 85% (95%CI 76%-92%), accuracy 63% (95%CI 54%-72%) and AUC 0.55 (95%CI 0.44-0.66)[185]. 
An overview of studies investigating the detection accuracy of CADe is provided in Table 3. An 
overview of studies investigating ADR and PDR using CADe is provided in Table 4.

FUTURE DIRECTIONS
Artificial intelligence is in its early stages for medicine, especially in gastroenterology and endoscopy. 
AI will help is in the areas of “augmentation” and “automation”. Augmentation like what is happening 
with polyp detection and interpretation. Automation by eliminating electronic paperwork, such as the 
use of natural language processing for procedure documentation. Artificial intelligence systems have 
repeatedly been shown to be effective at identifying gastrointestinal lesions with high sensitivity, 
specificity and accuracy. While lesion detection is important, this is only the beginning of AI’s utility in 
esophagogastroduodenoscopy, WCE and colonoscopy.

After refining their AI systems for lesion detection, several groups discussed in this narrative review 
were able to add additional functions to their AI systems. In BE, ESCC and gastric cancer, several AI 
systems were capable of predicting tumor invasion depth. Within IBD, AI systems were able to generate 
endoscopic disease severity scores. One group was able to train their CADe to recommend neoplasia 
biopsy sites in BE[14]. Additional efforts should be dedicated to developing these functions, testing 
them in real-time and having the AI system provide management recommendations when clinically 
appropriate.

Additional areas in need of future research are using AI systems to make histologic predictions, to 
assist with positioning of the endoscopic ultrasound (EUS) transducer and interpretation of EUS images, 
to detect biliary diseases and make therapeutic recommendations in endoscopic retrograde cholan-
giopancreatography (ERCP), and, in combination with endoscopic mechanical attachments, to improve 
colorectal cancer screening and surveillance. While endoscopists may perform optical biopsies of 
gastrointestinal lesions to predict histology and make real-time management decisions, these 
predictions are highly operator-dependent and often require expensive equipment that is not readily 
available. Thus, developing an AI system capable of performing objective optical biopsies, especially in 
WLE, would preserve the quality of histologic predictions, be cost effective, and avoid the risks 
associated with endoscopic biopsy and resection.

Similarly, EUS is highly operator-dependent, requiring endoscopists to place the transducer in 
specific positions to obtain adequate views of the hepatopancreatobiliary system. Research should focus 
on using AI systems to assist with appropriate transducer positioning and perform real-time EUS image 
analysis[186-194].

Presently, several clinical studies are actively recruiting patients to evaluate the utility of AI systems 
in ERCP. Of particular interest is the diagnosis and management of biliary diseases. Some groups are 
planning to use AI to classify bile duct lesions and provide biopsy site recommendations[195]. One 
group is planning to use an AI system in patients requiring biliary stents to assist with biliary stent 
choice and stent placement[196]. It will be interesting to see how AI performs in these tasks as successes 
could pave the way for future studies investigating the utility of AI systems to make real-time 
management recommendations.

While this narrative review focused on the use of AI in colonoscopy, of growing interest is the use of 
endoscopic mechanical attachments in colonoscopy to assist with polyp detection in colorectal cancer 
screening and surveillance. Independently, AI systems and endoscopic mechanical attachments are 
known to increase ADR and PDR. Few studies have investigated how combining AI with endoscopic 
mechanical attachments impacts ADR and PDR. Future research should examine the impact that 
combining these modalities has on ADR and PDR.

LIMITATIONS
While substantial advances have been made in AI, it is important to note that AI is not without 
limitations. In many of the studies discussed in this narrative review, the authors trained their AI 
systems using internally obtained images labeled by a single endoscopist. Thus, the AI is subject to the 
same operator biases and human error as the labeling endoscopist[1,197]. In addition, by using 
internally obtained data, several of these training sets may have inherent institutional or geographic 
biases resulting in AI systems that are biased and nongeneralizable[197]. As AI continues to progress, 
large datasets comprised of high-quality images should be created and used for training AI systems to 
reduce these biases[1].

With the implementation of AI in clinical practice, medical error accountability must also be 
addressed. While many of the AI systems discussed in this narrative review boast high detection 
accuracies, none are perfect. It is undeniable that errors in detection and diagnosis will arise when using 
these technologies. Regulatory bodies are needed to continually supervise these AI systems and oversee 
problems as they arise[198].



Galati JS et al. Artificial intelligence in gastroenterology

AIG https://www.wjgnet.com 130 December 28, 2022 Volume 3 Issue 5

Table 3 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for colonic polyps

Ref. Country Study 
design Lesions Training 

dataset Test dataset Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUROC

Komeda et 
al[139], 
2017

Japan Retrospective Adenomas 1200 images 10 images 80 60 70 -

Misawa et 
al[140], 
2018

Japan Retrospective Polyps 411 video clips 135 video clips 90 63.3 76.5 0.87

Wang et al
[149], 2018

China, United 
States

Retrospective Polyps 4495 images Dataset A: 27113 
images; Dataset C: 
138 video clips; 
Dataset D: 54 full-
length videos

Dataset A: 
94.38; Dataset 
C: 91.64

Dataset A: 
95.92; Dataset 
D: 95.4

- Dataset 
A: 0.984

Horiuchi et 
al[154], 
2019

Japan Prospective Diminutive 
polyps

- a 80 95.3 91.5 -

Hassan et 
al[141], 
2020

Italy, United 
States

Retrospective Polyps - 338 video clips 99.7 - - -

Guo et al
[142], 2021

Japan Retrospective Polyps 1991 images 100 video clips; 15 
full videos

87b 98.3b - -

Neumann 
et al[143], 
2021

Germany Retrospective
1

Polyps > 500 videos 240 polyps within 
full-length videos

100 0 - -

Li et al
[144], 2021

Singapore Retrospective Polyps 6038 images 2571 images 74.1 85.1 - -

Livovsky et 
al[151], 
2021

Israel Ambispective Polyps 3611 h of 
videos

1393 h of videos 97.1 0 - -

Pfeifer et al
[158], 2021

Germany, 
Italy, 
Netherlands

Retrospective Polyps 10467 images 45 videos 90 80 - 0.92

Ahmad et 
al[145], 
20222

England Prospective Polyps Dataset A: 
58849 frames; 
Dataset B: 
10993 videos 
and still 
images

Dataset C: 110985 
frames; Dataset D: 
8950 frames; 
Dataset E: 542484 
frames

Dataset C: 100, 
84.1; Dataset 
D&E: 98.9, 85.2

Dataset C: 
79.6; Dataset 
D&E: 79.3%

Hori et al
[146], 2022

Japan Prospective Polyps 1456 images 600 images 97 97.7 97.3 -

Pacal et al
[152], 2022

Turkey Retrospective Polyps Used images from 3 publicly 
available datasets (SUN, PICCOLO, 
Etis-Larib) to create training and 
test datasets

91.04 - - -

Yoon et al
[184], 2022

South Korea Retrospective SSL 4397 images Validation Set 
2106; SSL 
Temporal 
Validation set 133

95.44; 93.89 90.1 92.95 0.96

Nemoto et 
al[185], 
2022

Japan Retrospective TA, SSL 1849 images 400 images 72 89 82 0.86

Lux et al
[148], 2022

Germany Retrospective Polyps 506338 images 41 full-length 
videos

- - 95.3 -

aTested CADe in a cohort of 95 patients.
bPer-frame analysis from full-length video dataset.
1Presumed retrospective based on manuscript.
2Sensitivity is reported as per-polyp and per-frame respectively. Specificity is reported as per-frame.
AUROC: Area under the receiver operating characteristic; SSL: Sessile serrate lesion; TA: Tubular adenoma. All studies used a convolutional neural 
network to classify images.
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CONCLUSION
In this narrative review, we provide an objective overview of the AI-related research being performed 
within esophagogastroduodenoscopy, WCE and colonoscopy. We attempted to be comprehensive by 
using several electronic databases including Embase, Ovid Medicine, and PubMed. However, it is 
possible that some publications pertinent to our narrative review were missed.

Undoubtedly, AI within esophagogastroduodenoscopy, WCE and colonoscopy is rapidly evolving, 
moving from retrospectively tested supervised learning algorithms to large, multicenter clinical trials 
using completely autonomous systems within the span of 10 years. The systems developed by these 
researchers show promise for detecting lesions, diagnosing conditions, and monitoring diseases. In fact, 
two of the computer aided detection systems discussed in this narrative review designed to aid with 
colorectal polyp detection were approved by the United States Food and Drug Administration in 2021
[171,199]. Thus, the question is no longer if but when will AI become integrated with clinical practice. 
Medical providers at all levels of training should prepare to incorporate artificial intelligence systems 
into routine practice.

Table 4 Overview of findings from studies evaluating computer-aided detection for adenoma detection rate and polyp detection rate

Patients (n) PDR (%) ADR (%)
Ref. Country Study design

CADe SC CADe SC P value CADe SC P value

Wang et al
[168], 2019

China, United States Randomized 522 536 45.02 29.1 < 0.001 29.12 20.34 < 0.001

Becq et al[155], 
2020

United States, 
Turkey, Costa Rica

Prospective 50b 82 62 Not 
reported

- - -

Gong et al[166], 
2020

China Randomized 355 349 47 34 0.0016 16 8 0.001

Liu et al[171], 
2020

China, United States Randomized 393 397 47.07 33.25 < 0.001 29.01 20.91 0.009

Liu et al[173], 
2020

China Prospective 508 518 43.65 27.81 < 0.001 39.1 23.89 < 0.001

Repici et al
[170], 2020

Italy, Kuwait, 
United States, 
Germany

Randomized 341 344 - - - 54.8 40.4 < 0.001

Su et al[169], 
2020

China Randomized 308 315 38.3 25.4 0.001 28.9 16.5 < 0.001

Wang et al
[156], 2020

China, United States Prospective, 
Tandem1

184 185 65.59 55.14 0.099 42.39 35.68 0.186

Wang et al
[167], 2020

China, United States Randomized 484 478 52 37 < 0.0001 34 28 0.03

Kamba et al
[164], 2021

Japan Randomized, 
Tandem2

172 174 69.8 60.9 0.084 64.5 53.6 0.036

Luo et al[174], 
2021

China Randomized, 
Tandem1

72 78 38.7 34 < 0.001 - - -

Pfeifer et al
[158], 2021

Germany, Italy, 
Netherlands

Prospective, 
Tandem1

42b 50 38 0.023 36 26 0.044

Shaukat et al
[157], 2021

United States, 
England

Prospective 83 283 - - - 54.2 40.6 0.028

Shen et al[150], 
2021

China Ambispective 64 64 78.1 56.3 0.008 53.1 29.7 0.007

Xu et al[172], 
2021

China Randomized 1177 1175 38.8 36.2 0.183 - - -

Glissen Brown 
et al[163], 2022

China, United States Randomized, 
Tandem2

113 110 70.8 65.45 0.3923 50.44 43.64 0.3091

Ishiyama et al
[159], 2022

Japan, Norway Prospective 918 918 59 52.1 0.003 26.4 19.9 0.001

Lux et al[148], 
2022

Germany Retrospective 41 - - - - - 41.5 -
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Quan et al[153], 
2022

United States Prospective 300 300 - - - 43.7a; 66.7 37.8a; 
59.72

0.37a; 0.35

Repici et al
[165], 2022

Italy, Switzerland, 
United States, 
Germany

Randomized 330 330 - - - 53.3 44.5 0.017

Shaukat et al
[162], 2022

United States Randomized 682 677 64.4 61.2 0.242 47.8 43.9 0.065

Zippelius et al
[160], 2022

Germany, United 
States

Prospective 150b - - - 50.7 52 0.5

aQuan et al[153] reported results by indication, screening and surveillance respectively.
bThe same patients were used to compare CADe versus standard colonoscopy; Becq et al[155] recorded 50 colonoscopy videos that were analyzed by CADe 
and reviewed by endoscopists separately; Pfeifer et al[158] performed standard colonoscopy followed by CADe-assisted colonoscopy in all 42 patients; 
Zippelius et al[160] had their CADe analyze their patients while the endoscopists performed their colonoscopies.
1Performed analyses using data obtained from whole process.
2Performed analyses using data obtained from first pass.
ADR: Adenoma detection rate; CADe: Computer-aided detection; PDR: Polyp detection rate; SC: Standard colonoscopy. All studies used a convolutional 
neural network to classify images.
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