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Abstract
Recent research has provided a wealth of data supporting the application of 
artificial intelligence (AI)-based applications in routine pathology practice. 
Indeed, it is clear that these methods can significantly support an accurate and 
rapid diagnosis by eliminating errors, increasing reliability, and improving 
workflow. In addition, the effectiveness of AI in the pathological evaluation of 
prognostic parameters associated with behavior, course, and treatment in many 
types of tumors has also been noted. Regarding gastrointestinal system (GIS) 
cancers, the contribution of AI methods to pathological diagnosis has been invest-
igated in many studies. On the other hand, studies focusing on AI applications in 
evaluating parameters to determine tumor behavior are relatively few. For this 
purpose, the potential of AI models has been studied over a broad spectrum, from 
tumor subtyping to the identification of new digital biomarkers. The capacity of 
AI to infer genetic alterations of cancer tissues from digital slides has been 
demonstrated. Although current data suggest the merit of AI-based approaches in 
assessing tumor behavior in GIS cancers, a wide range of challenges still need to 
be solved, from laboratory infrastructure to improving the robustness of 
algorithms, before incorporating AI applications into real-life GIS pathology 
practice. This review aims to present data from AI applications in evaluating 
pathological parameters related to the behavior of GIS cancer with an overview of 
the opportunities and challenges encountered in implementing AI in pathology.

Key Words: Digital pathology; Colorectal cancer; Gastric cancer; Machine learning; Deep 
learning; Prognosis
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Core Tip: This review outlines the potential of artificial intelligence applications for evaluating 
pathological parameters related to the behavior of gastrointestinal cancers. The role of these methods in 
determining the behavior of esophageal cancers remains to be investigated. On the other hand, the results 
are promising, supporting that these models can assist in the determination of conventional pathological 
parameters and perform molecular subtyping in gastric and colorectal cancers. Furthermore, these applic-
ations encourage digital prognostic biomarker discovery by revealing predictions that are impossible when 
using traditional visual methods. However, further studies are needed to overcome the obstacles to 
implementing these applications into pathology practice.

Citation: Yavuz A, Alpsoy A, Gedik EO, Celik MY, Bassorgun CI, Unal B, Elpek GO. Artificial intelligence 
applications in predicting the behavior of gastrointestinal cancers in pathology. Artif Intell Gastroenterol 2022; 
3(5): 142-162
URL: https://www.wjgnet.com/2644-3236/full/v3/i5/142.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i5.142

INTRODUCTION
Gastrointestinal (GIS) cancers, including tumors of the esophagus, stomach, colon, and rectum, are an 
important health problem worldwide. Although the incidence of esophageal cancer (EC) is relatively 
low, gastric cancer (GC) and colorectal cancer (CRC) are among the most common types of cancer (fifth 
and third, respectively)[1]. They are also responsible for a substantial proportion of cancer mortality, 
with GC being the third and CRC the second most common cause of cancer-related death[2]. Although 
various predictive and prognostic parameters are currently available, the mortality rates for patients 
with GIS cancer are, unfortunately, still very high[2]. It has been shown that rectifying this situation 
may depend on paving the way for more personalized treatment strategies that lead to a better 
prognosis and/or fewer treatment side effects[3,4]. Therefore, the meticulous and complete evaluation 
of patients to determine the appropriate treatment is critical.

In this context, in addition to providing a definitive diagnosis, the role of an accurate evaluation of 
pathological parameters related to the behavior and proper treatment of GIS tumors cannot be ignored. 
However, pathology, a morphology-based specialty, is susceptible to subjectivity regarding intraob-
server and interobserver variations, particularly in oncology. That is why, in recent years, the search for 
more objective criteria to eliminate bias, as well as to reduce the growing workload and to contribute 
time-saving, has allowed the improvement of image analysis-based digital pathology (DP), which has 
an important place in modern pathological applications[5,6].

In particular, significant advances in slide scanner technology, which can rapidly digitize all 
pathological slides at high resolution whole slide images (WSIs), has enabled not only the analysis of a 
wide range of morphological parameters but also the detection of biomarkers/genetic changes in many 
types of tumors[7-9]. The ability of computer-based analysis to detect prognostic and predictive markers 
from these images, depending on the fact that they are composed of number matrices containing a large 
amount of information that is not accessible to the human eye, has led to the adoption of artificial 
intelligence (AI) for DP[10,11]. Accordingly, the number of studies on AI applications associated with 
the diagnosis, follow-up, and treatment of many tumors has increased significantly over time. 
Regarding GIS, data from previous studies evaluating pathological prognostic parameters with various 
AI models suggest that using these methods may be beneficial. Unfortunately, these encouraging results 
have not overcome the wide range of challenges to be solved, from laboratory infrastructure to 
improving the robustness of algorithms, before incorporating AI applications into real-life pathology 
practice.

This review presented the applications of AI in the evaluation of pathological parameters related to 
the behavior of GIS cancer, along with a brief overview of the opportunities and challenges encountered 
in its implementation in pathology.

GENERAL VIEW OF AI IN PATHOLOGY LABORATORIES
In parallel with technological developments, the evolution of whole slide imaging (WSI) has provided 
remote diagnosis, consultation, and education[12-14]. In the recent past, it was suggested that the use of 
WSI is comparable to, or even better than, conventional microscopic examination for decision-making in 
pathology[15-17]. On the other hand, WSIs are also crucial in applying AI methods in pathological 
practice. They not only provide quick access to the archive without loss of image quality, but they can 
also render gigabit images, which are very difficult to process, suitable for processing by "tessellation"

https://www.wjgnet.com/2644-3236/full/v3/i5/142.htm
https://dx.doi.org/10.35712/aig.v3.i5.142
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[18]. This preprocessing is based on cutting a large image into nonoverlapping smaller patches called 
"tiles," making them amenable to computational analysis. It should be noted that although some 
pathological studies use selected images captured manually with a camera, WSI is currently 
recommended as a standard for AI applications, especially in tumors where heterogeneity is frequent, 
such as those of the GIS[19].

To achieve reliable results with WSIs, many steps, from preserving the structure of the tissue to the 
preparation of sections, must be carried out with care in the pathological laboratory. In particular, it is 
imperative to evaluate and check slides for artifacts (tears, floating contamination, thickness) that have 
the potential to adversely affect digitization and, thus, AI applications[20,21]. However, it should be 
noted that even with optimal protocols and slide scanner standardization, the importance of color 
normalization to ensure consistency in WSI databases should not be overlooked, as it can affect the 
robustness of deep learning (DL) models. Accordingly, histogram-matching color transfer and spectral 
matching methods can be applied[22-24]. However, as these methods depend on the expertise of 
pathologists and are impractical for manual adjustment, various algorithms have been proposed by 
researchers capable of performing this normalization. Although promising results have been obtained, 
there is a need for future studies on the performance of AI models using color normalization systems[25,
26].

The gradual evolution of traditional pathology into DP has led to the development of powerful and 
user-friendly WSI analysis software tools with the ability to manage substantial WSIs and metadata 
from different hardware manufacturers, as well as interactive drawing annotation capabilities to 
facilitate decision-making and reporting. Moreover, a significant proportion of them is freely available
[27-29]. In addition, the high costs of hardware required for high-performance computation in software 
development have become more affordable, leading to the implementation of DP in major medical 
centers[16,30-32]. Increasing the number of centers capable of using DP will allow for the generation of 
large and high-quality WSI databases, enabling the acquisition of large datasets and the design of 
algorithms for AI. However, the requirement of a significant investment is still an obstacle to overcome 
for the widespread application of these technologies[33]. In addition, the problem of proprietary 
datasets persists, limiting the repeatability of the proposed methodologies and hindering advancement 
in this field.

As mentioned above, the ability of AI to extract meaningful information from images that the naked 
human eye cannot discriminate makes it an attractive tool in the field of image processing and analysis 
in pathology. Therefore, contemporary AI models have evolved from expert systems to different types, 
such as machine learning (ML) and DL (Table 1). In brief, ML is a subtype of AI that provides a 
computer system to automatically learn and develop from datasets on its own and solve problems 
without explicit programming[34-36]. DL is a subeld of ML that employs sophisticated algorithmic 
structures inspired by the neural network of the human brain (artificial neural network, ANN) in which 
statistical models are established from input training data[37-39]. Therefore, DL requires large, 
annotated datasets to develop its algorithms. At present, the annotation of datasets is a complex task in 
model development[9,40]. In practice, the time-consuming and challenging nature of annotation, 
especially in systems where heterogeneous lesions are common, such as GIS, may affect the accuracy of 
the model being trained[41]. Another limitation is that the dataset obtained by a study group does not 
show the same performance when compared to external validation sets from other institutions. 
Recently, studies have been conducted to overcome the hindering properties of annotation[42-44]. It has 
also been suggested that the adoption of DP for diagnosis could indirectly facilitate the generation of 
valuable datasets for future algorithm development by enabling pathologists to describe areas of 
interest during evaluation and reporting[45].

It has often been emphasized that the validation of AI-based technologies requires an evidence-based 
approach[42,46]. This should also be considered in a laboratory-based medical specialty such as 
pathology. On the other hand, analyzing the performance of AI techniques to that of pathologists is a 
significant challenge regarding interobserver and interobserver heterogeneity. Currently, the problems 
related to establishing "ground truth" in AI methods should not be overlooked[40,47]. It should be noted 
that this requires repeated testing of the effectiveness and consistency of AI applications in many 
different patient populations. The relative lack of a validation cohort in developing AI-powered DP 
applications is also related to the possible drawbacks of sharing histopathological slides. Despite 
interobserver heterogeneity and variability in pathological assessment also demonstrating the 
uncertainty of "ground truth" in this regard, multi center assessments involving multiple pathologists 
and datasets may be the best way to overcome this obstacle.

Before the integration of AI into the pathology workflow, the need to validate its benefits and address 
ethical recommendations increases the importance of AI-based tools being transparent and 
interpretable, resulting in an increasing demand for more explainable AI models. In this respect, there is 
a dilemma about the application of AI. Because most algorithms developed use DL, ensemble methods 
called "black box" models to tackle multidimensional problems are very complex. However, more 
straightforward methods that are not complex are not powerful enough to achieve the expected results
[48]. For this reason, model interpretability, ethical concerns, and potential regulatory barriers should 
also be considered in newly developed AI tools to meet these expectations.
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Table 1 General features of machine learning methods in the development of artificial intelligence models in gastrointestinal pathology

AI models Strengths Weaknesses

ML, Traditional, 
Supervised

Data output can be produced from the previously labeled 
training set 

Labeling big data takes a considerable amount of time and can be 
challenging

Allows users to reflect domain knowledge features Feature extraction quality significantly affects the accuracy

ML, Traditional, 
Supervised

Users do not supervise the model or label any data Input data is unknown and not labeled

Patterns are detected automatically Precise information related to data sorting is not provided

Save time Interpretation is challenging

SVM Suitable for more efficient regression and classification 
analysis with high-dimensional data

Not suitable for large data sets. Requires more time for training; 
Low performance in overlapping  classes

No labeling is required for important information and 
features

Lack of interpretability due to black boxesCNN

The performance capacity in image recognition is high

FCN Provides computational speed A large amount of labeled data for training is required

The background noise is automatically eliminated The labeling cost is high

RNN Able to decide which information to remember from past 
experiences

The model is hard to train

A suitable deep learning model for sequential data The computational cost is high

MIL A detailed annotation is not required A large amount of training data is required

Suitable to be performed on large datasets The computational cost is high

GAN The potential to produce new realistic data that resembles 
the original data

The model is hard to train 

AI: Artificial intelligence; ML: Machine learning; SVM: Support Vector Machine; CNN: Convolutional neural networks; FCN: Fully convolutional neural 
networks; RNN: Recurrent neural networks; MIL: Multi-instance learning; GAN: Generative adversarial networks.

AI IN THE PATHOLOGICAL DETERMINATION OF PRENEOPLASTIC LESIONS IN GIS
Barrett’s esophagus
The majority of AI studies in EC consist of imaging studies. In pathology, there have been recent studies 
on the diagnosis of Barrett's esophagus (BE) and the evaluation of dysplasia in these lesions to predict 
the risk of EC[49,50]. A proposed attention-based deep NN framework for detecting BE and adenocar-
cinoma (ADC) was found to be reliable with a mean accuracy of 0.83[49]. Unlike existing methods based 
on the region of interest, this model is based on tissue-level annotations, suggesting that it may provide 
a new approach for applying DL in pathology. On the other hand, the fact that the study was performed 
in a single center and on a relatively small data set necessitates the development of the proposed model 
with further studies. Since trefoil factor 3 expression is the key finding of BE, a DL model (VGG16) using 
immunohistochemically stained sections showed significant adaptability, with an area under the curve 
(AUC) of 0.88[50]. Although the proposed approach reduced the pathologist workload by 57%, the 
underlying ML model still needs further optimization.

Colorectal polyp classification
In CRC, unlike GC, the classification of polyps is an important task to determine the risk of CRC and the 
future surveillance needs of patients[51]. In routine examinations, high-risk polyps are evaluated based 
on their histopathological features with considerable interobserver variability among pathologists[52,
53]. However, a precise diagnosis of high-risk polyps is required for efficient and early detection of 
cancer. In addition, the recommendation for endoscopic screening of these lesions for an early diagnosis 
of CRC, especially in elderly individuals, increases the workload of daily pathology practice[54].

Therefore, AI applications have been developed to classify high-risk colorectal polyps and/or 
adenomas with high-grade dysplasia. In studies on the classification of these lesions and the identi-
fication of CRC, datasets of three to six specific categories and five models were used[55-62] (Table 2). 
Although most studies showed good performance with generally high AUCs and accuracies, because of 
the following restrictions, the evidence level of each model needed to be improved. The number of 
patches and WSIs that make up the datasets are different. Accordingly, in some studies, the number of 
datasets may affect the reliability of the results. In various studies, the annotation process is not 
delineated in detail. In addition, the fact that each model has a different focus and characteristics makes 
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Table 2 AI-based applications in pathology for the determination of tumor behavior in colorectal carcinomas

Ref. Task Data sets Algorithm/Model Performance Comments

Xu et al[55] NL/ADC/MC/SC/PC/CCTA 717 patches AlexNet Accuracy: 97% The model provides 
the classifications of 
tumor subtypes

Korbar et al[56] NL/HP/SSP/TSA/TA/TVA-VA Training set: 458 
WSIs; Test set: 239 
WSıs

ResNET F1 Score: 88.8%; 
Accuracy: 93%; 
Precision: 89.7%; 
Recall: 88.3%

The model may reduce 
the workload of 
pathologists in the 
assessment of 
colorectal polyps

Haj-Hassan et al[57] NL/AD/ADC 30 patients, 
Multispectral 
image patches

CNN Accuracy: 99.2% CNN allows the classi-
fication of CRC tissue 
types using pre-
segmented regions of 
interest

Ponzio et al[58] NL/AD/ADC 27 WSIs VGG16 Accuracy: 96% TL considerably 
outperforms the CNN 
fully trained on CRC 
samples on the same 
test dataset

Sena et al[59] NL/HP/AD/ADC 393 images CNN Accuracy: 80% DL may provide a 
valuable tool to assist 
pathologists in the 
histological classi-
fication of CR tumors

Iizuka et al[60] NL/AD/ADC 4036 WSIs + 
500WSIs

CNN/RNN AUCs: 0.96-0.99 Integrating DL models 
in pathology workflow 
would be of high 
benefit for easing the 
workload of 
pathologists

Wei et al[61] NL//TA/TVA/VA/HP 1182 WSIs ResNet Accuracy: 93.5% 
(Internal test set); 
Accuracy: 87% 
(External test set)

This model may assist 
pathologists by 
improving the accuracy 
of CRC screening

Awan et al[62] NL/Low GR/High GR 139 images CNN Accuracy: 97% (two-
class), 91% (three-
class) 

The model provides 
the classifications of 
tumor subtypes based 
on the shape of glands

Sirinukunwattana et 
al[97]

Prediction of MSTs 510 WSIs 
(FOCUS), 431 
WSIs (TCGA), 265 
WSIs 
(GRAMPIAN 
cohort)

Inception V3 AUCs: 0.9 (FOCUS); 
0.94 (TCGA), 0.85 
(GRAMPIAN 
cohort)

RNA expression 
classifiers can predict 
from H-E stained 
images, opening the 
door to cheap and 
reliable biological 
stratification within 
routine workflows

Echle et al[98] MSI vs MSS 6406 WSIs 
(Training); 771 
WSIs (External 
validation)

ShuffleNet AUC: 0.92 
(Training); AUC: 
0.96 (External 
validation)

The model provides a 
low-cost evaluation of 
MSI without molecular 
testing

Kather et al[80] MSI vs MSS 60894 patches 
(TCGA-CRC-KR); 
93408 patches 
(TCGA-CRC-DX)

ResNet18 AUC: 0.84 (TCGA-
CRC-KR); AUC: 0.77 
(TCGA-CRC-DX)

This method may lead 
to improvements in 
molecular subtype 
screening workload in 
pathology

Kather et al[77] Prediction of molecular Als 426 patients 
(TCGA-CRC); 379 
patients (DACHS) 

ShuffleNet AUROC: 0.76 The algorithm predicts 
a wide range of 
molecular alterations 
from routine, H-E 
stained slides

Kruger et al[99] Prediction of MSTs 919 WSIs ResNet 34 AUCs: Mean: 0.87; 
CMS1: 0.85; CMS2: 
0.92, CMS3: 0.85; 
CMS4: 0.86

The MIL framework 
can identify morpho-
logical features 
indicative of different 
molecular subtypes

Accuracy: 0.84; The image-based Popovici et al[100] Prediction of MSTs 300 WSIs VGG-F
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Recall: 0.85; 
Precision: 0.84

classifier shows a 
significant prognostic 
value similar to the 
molecular counterparts

Cao et al[101] MSI vs MSS 429 patients 
(TCGA-COAD); 
785 patients 
(Asian-CRC)

EPLA AUC: 0.88 (TCGA-
COAD); AUC: 0.85 
(Asian-CRC)

This pathomics-based 
model provides MSI 
estimation directly 
from images without 
molecular testing

Bilal et al[102] Prediction of molecular Als 502 slides (TCGA-
CRC-DX); 47 
slides (PAIP)

ResNet18, ResNet34, 
HoVerNet

AUROCS: HM (0.81 
vs 0.71); MSI (0.86 vs 
0.74); CIN (0.83 vs 
0.73), BRAFmut 
(0.79 vs 0.66), 
TP53mut (0·vs 0.64), 
KRASmut (0.60), 
CIMP (0.79)

This algorithm is based 
on non-annotated 
images and uses only 
slide-level labels to 
predict the status of 
CRC pathways and 
mutations

Kwak et al[110] LNM prediction 164 patients CNN, U-Net AUROC: 67% PTS score is a potential 
prognostic parameter 
for LNM in CRC

Pai et al[111] LNM prediction 230 patients 
(training), (136 
testing)

CNN AUROC: 79% The model allows to 
identify and quantify a 
broad spectrum of 
histological features, 
including LNM in CRC

Kiehl et al[112] LNM prediction 3013 patients ResNET18 AUROC: 74.1% DL-based analysis may 
help predict the LNM 
of patients with CRC 
using routine HE-
stained slides

Weis et al[120] Tumor Budding (Pan-CK) 381 patients CNN Spatial clusters of 
tumor buds 
correlates to N 
status (P: 0.003)

The model is a feasible 
and valid assessment 
tool for tumor budding 
on WSIs and can 
predict prognosis

Kather et al[121] ADI, DEB, LYM, MUC, SM 86 slides 
(Training), 25 
slides (Testing); 
862 slide (TCGA-
COAD) 

VGG19 AUC: 98.7% HR: 
2.29 (OS); 1.92 (RFS); 
Deep stroma score 
HR: 1.99 (P: 0.002), 
Shorter OS

This model can assess 
the human TME and 
predict prognosis 
directly from 
histopathological 
images

Shapcott et al[122] TME (EC/IC/FC/MC) 853 patches, 142 
images (TCGA-
COAD)

CNN Accuracy: 76% 
(detection), 65% 
(classification)

The model provides 
the assessment of TME 
in CRC slides

Sirinukunwattana et 
al[123] 

a-4 tissues classes; b- prediction of 
DM

102 cases Spatially Constrained 
CNN

a-AUROC: 90.4-
99.9%; b-AUROC: 
58.6-63.8%

The algorithm provides 
a digital marker for 
estimating the risk of 
DM

Swiderska-Chadaj et 
al[124]

TME Detection of ICs 28 WSIs FCN/LSM/U-Net F1-score of 0.80; 
Sensitivity: 74%; 
Precision: 86%

DL approaches are 
reliable for automat-
ically detecting 
lymphocytes in IHC-
stained CRC tissue 
sections

Geessink et al[115] TSR 129 slides CNN HR: 2.48 (DSS); 2.05 
(DFS)

CNN defined TSR as 
an independent 
prognosticator

Zhao et al[125] TSR 499 patients 
(Discovery 
cohort); 315 
patients 
(Validation 
cohort:)

CNN TSR, independent 
prognostic 
parameter. HRs: 
2.48 (Discovery 
cohort); 2.08 
(Validation cohort)

CNN allows objective 
evaluation of TSR

Zhao et al[126] Mucus tumor ratio low vs mucus 
tumor ratio high

814 patients CNN  
HRs: 1.88 
(Discovery cohort); 
2.09 (Validation 
cohort)

The DL quantified 
mucus tumor ratio is 
an independent 
prognostic factor in 
CRC

The model extracts Bychkov et al[132] Prognosis LR vs HR 420 TMA VGG-16 HR: 2.3
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more prognostic 
information from the 
tissue morphology 
than the experienced 
human observer

Skrede et al[133] Prognosis (CSS) 1122 patients 
(Validation 
cohort)

DoMorev1 HRs: 1.89 (uncertain 
vs good); 3.84 (poor 
vs good)

The digital marker has 
the potential to identify 
patients at LR and HR 
and provides the 
selection of treatment

Jiang et al[134] a-HRR vs LRR b-Poor vs good 
prognosis

101 patients 
(Traning); 67 
patients 
(Validation); 47 
(TCGA-COAD)

InceptionResNetV2 a-HRs: 8.98 
(training); 10.69 
(other 2 test groups); 
b-HRs: 10.687 
(training); 5.03 
(other 2 test groups)

The selected model 
offers an independent 
prognostic predictor 
which allows strati-
fication of stage III 
CRC into risk groups

NL: Normal; ADC: Adenocarcinoma; MC: Mucinous carcinoma; SC: Serrated carcinoma; PC: Papillary carcinoma; CCTA: Cribriform comedo-type 
adenocarcinoma; CRC: Colorectal cancer; HP: Hyperplastic polyp; SSP: Sessile serrated polyp; TSA: Traditional serrated adenoma; TA: Tubular adenoma; 
TVA: Tubulovillous adenoma; VA: Villous adenoma; AD: Adenoma; CNN: Convolutional neural networks; WSIs: Whole slide images; RNN: Recurrent 
neural networks; AUC: Area under the curve; GR: Grade; MSI: Microsatellite instable; MSS: Microsatellite stable; TCGA-CRC: Tumor Cancer Genome 
Atlas-Colorectal cancer; KR: Frozen tissues; DX: Formalin fixed paraffin embedded tissues; COAD: Colon adenocarcinoma; CRC: Colorectal carcinoma; 
EPLA: Ensemble patch likelihood aggregation; MST: Molecular subtype; CMS1: Tumor with MSI; CMS2: Tumors exhibiting epithelial gene expression, 
activated WNT and MYC signaling; CMS3: Tumors with metabolic disregulations; CMS4: Tumors that possess TGF-β; MIL: Multi instance learning; Als: 
Alterations; AUROC: Area under the receiver operating characteristics; PAIP: Pathology artificial intelligence platform; HM: Hypermutation; CIN: 
Chromosomally unstable; CIMP: CpG island methylator phenotype; CK: Cytokeratin; ML: Machine learning; ADI: Adipocyte; DEB: Debris; LYM; 
Lymphocytes; MUC: Mucus; SM: Smooth muscle; HR: Hazard ratio; OS: Overall survival; RFS: Recurrence free-survival; TME: Tumor microenvironment; 
ICs: Immune cells; FCN: Fully convolutional network; LSM: Liquid state machine; IHC: Immunohistochemistry; EC: Epithelial cell; FC: Fibroblast; MC: 
Miscellaneous; TSR: Tumor stroma ratio; LR: Low risk; HR: High risk; TMA: Tissue microarray; CSS: Cancer specific survival; HRR: High recurrence risk; 
LRR: Low recurrence risk; DM: Distant metastasis; LNM: Lymph node metastasis; PTS: The predictive value of the peritumoral stroma score.

their comparison across studies impossible. One of the most striking examples of these studies is Korbar 
et al[56], where a DL model (ResNet-152) trained with over 400 WSIs showed a high overall accuracy in 
subtyping polyps. In another study, Wei et al[61], who ensembled five layers of ResNet, could classify 
these lesions with WSIs from a single institution, even in external datasets with a performance 
comparable to that of histopathological evaluation. This data indicates that further manual annotations 
by various qualified GI pathologists may be required to decrease classification problems in future AI 
systems for colorectal polyp detection.

AI IN THE PATHOLOGICAL DETERMINATION OF TUMOR BEHAVIOR IN GIS
In this section relevant data on GC and CRC will be discussed. Unfortunately, no AI studies have 
identified the parameters that are important in determining tumor behavior and survival in EC. 
Similarly, studies of EC concerning molecular characterization have not been found. Therefore, in EC, a 
tumor with extremely high mortality, it is clear that additional pathology studies are necessary to reveal 
the effectiveness of AI applications in predicting tumor behavior.

TUMOR SUBTYPING
Gastric cancer
Although nearly all GC are ADC, the clinicopathological features and behaviors show considerable 
variation depending on the histopathological diversity of tumor cells[63,64]. In recent years, it has been 
reported that the survival of patients with GC at the same stage differs significantly among the different 
subtypes. Therefore, accurate histopathological classification is critical in determining their prognosis, 
monitoring, and treatment.

GC is often classified based on the ADC differentiation grade, including well-differentiated ADC and 
poorly differentiated ADC. The grading depends on the presence or absence of glandular structure 
formation. ADCs are divided into intestinal and diffuse subtypes based on the Lauren classification[65]. 
While the diffuse form comprises a poorly differentiated type and signet ring cell carcinoma (SRCC), the 
intestinal type exhibits glands with papillae, tubules, or solid regions. Diffuse-type carcinomas are 
commonly confused with other nonneoplastic diseases. Because they usually consist of solitary 
dispersed cells in a desmoplastic stroma and inflammation.
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In most of the reported studies, the adenocarcinoma differentiation grade is judged through manual 
identication by pathologists. Although there have been many studies on AI applications in the 
pathological diagnosis of GC in the recent past, there are few studies regarding tumor subclassification 
(Table 3). Yasuda et al[66] investigated the features and classification of GC tissues by using supervised 
ML algorithms. The results showed that this method reliably identifies morphological changes in 
tumors with different grades. Interestingly, PD-L1 expression levels have been found to serve as a 
morphological classification in hematoxylin and eosin (HE)-stained slides and correlate with histological 
grades. Therefore, quantitative analyses of tissue morphology may reveal molecular alterations in 
malignancies, and molecular analyses may aid in the pathological evaluation of cancer tissues. In 
another study, four different DL models were used to classify GC into diffuse ADC vs other ADC 
subtypes[67]. From biopsy WSIs, the trained model performed well at identifying both poorly differen-
tiated ADC and SRCC cells. The authors pointed out that while higher magnification can reduce the 
false positive rate in classification, applying an RNN model with a more comprehensive dataset yields 
good results even at low magnifications. Hybrid models such as StoHisNet have also distinguished 
tubular, mucinous, and papillary subtypes of GC. This model showed a higher performance for 
multiclassication of pathological images of GC than other CNN-based models[68]. Although the model 
performed well in the four classifications of gastric pathological images, the study group does not 
include SRCC and other types. Also, the inability of the supervised network in the study to use 
unlabeled data and the lack of information on which combination maximizes the performance of the 
model performance warrant further studies. More recently, Su et al[69] demonstrated that DL models 
constructed using a pre-trained ResNet-18 model based on ImageNet27 achieved tumor differentiation 
recognition or poorly differentiated ADC and well-differentiated ADC classes, respectively. Although 
these results suggest that AI may be useful in GC classification, the scarcity of data and the differences 
in classification parameters used in these studies make it difficult to come to any solid conclusions.

Recently, GC has also been classified by the Tumor Cancer Genome Atlas (TCGA) into four molecular 
subtypes that are also included in the latest World Health Organization classification: Epstein–Barr-
virus (EBV)-positive (9%), microsatellite unstable (MSI) (22%), genomically stable (GS) (19%) and 
chromosomally unstable (CIN) (50%)[70,71]. The clinical significance of this classification comes from 
the fact that various factors, such as the prognosis and treatment response, differ among these subtypes
[72,73]. In particular, among all subclasses of GC, tumors with MSI and positive EBV are associated with 
a better response to immunotherapy[72]. Consequently, recognizing these subtypes is crucial for 
categorizing patients who benefit from these treatments. Nevertheless, such classification requires the 
application of costly techniques, such as immunohistochemistry, and molecular testing, such as 
polymerase chain reaction, into pathological practice.

On the other hand, these two types have known characteristic histopathological findings. While EBV-
positive GCs show prominent infiltration of lymphocytes into the neoplastic epithelium and the stroma, 
MSI subtype shows significant lymphocytic infiltration, intestinal-type histology, and expanding 
growth characteristics[63,74,75]. Therefore, these morphological features could be used to make 
predictions about the molecular subtype. In recent years, it has been suggested that molecular findings 
can be detected with AI via WSIs from HE-stained sections produced for pathological assessment[76-
78]. Various models have been applied for molecular subtyping of GIS cancers. However, most of these 
studies have been conducted on CRCs (see below), whereas relatively few studies are available for GC 
(Table 3). For the detection of GC subtypes, Muti et al[79] demonstrated that DL could detect MSI and 
EBV positivity independently from each other in GC directly from HE-stained tissues in multi center 
pooled cohorts. They observed a high classification performance for the detection of MSI and EBV 
status. The relatively limited number of cases with positive findings and the fact that the ground truth 
methods for MSI were developed in CRC are presented as potential limitations of this study. On the 
other hand, their findings align with previous observations[69,80,81]. In addition, large-scale and 
multicenter validation broadens their work, which has considerable potential for integration into clinical 
procedures, suggesting that the application of DL could be a substitute for molecular techniques in the 
classification of GC. Furthermore, because these two subtypes share common morphological features 
and they are immunotherapy-sensitive tumors, Hinata et al[82] combined MSI and EBV in DL models 
and found they had a higher detection accuracy. This finding has been interpreted based on the 
possibility that these subtypes have similar distinctive pathological features, such as abundant stromal 
lymphocytic infiltration and intraepithelial lymphocytosis. On the other hand, the use of tissue 
microarray and manual labeling of tumor regions for TCGA presented as sources of bias compared to 
whole tissue slides, given the heterogeneity of tumor tissue. It was also emphasized that manual 
annotation by a pathologist might be a challenge to overcome by some weakly supervised methods (for 
example, attention-based deep multi instance learning) in the field of DL for the broad application of the 
proposed model.

Recently, a DL model called EBVNet that assists pathologists in predicting EBV from HE-stained 
slides has been introduced in GC[83]. The results suggested that human-machine fusion dramatically 
enhances the diagnostic ability of both EBVNet and the pathologist. However, this study has some 
limitations regarding its retrospective evaluation of training and validation. Additionally, the logistic 
regression model applied in the assessment is still an indirect way to interpret the model. More 
importantly, as in many DL models, the EBVNet decision-making procedure by the neural network is 
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Table 3 Artificial intelligence-based applications in pathology for the determination of tumor behavior in gastric cancer

Ref. Task Data sets Algorithm/Model Performance Comments

Yasuda et al[66] NC, GR1, GR2, GR3; 
PDL-1, 
ATF7IP/MCAF1

66 WSIs SV, ML, wndchrm AUCs: 0.98-0.99 The model allows grading 
emphasizing a correlation 
between molecular 
expression and tissue 
structures

Kanavati et al[67] NC, ADC-D, ADC-O 1-stage training: 1950 
WSIs, 2-stage training: 
874 WSIs 

CNN and RNN AUCs: 0.95-0.99 The tool can aid pathologists 
by potentially accelerating 
their diagnostic workflow

Fu et al[68] NC, TC, MC, PC Training 2938 WSIs, 
Testing 980 WSIs 

StoHisNet The accuracy: 94.69%, 
F1 score: 94.96%, 
Recall: 94.95%, 
Precision: 94.97%

The model has high 
performance in the multi-
classification on gastric 
images and shows strong 
generalization ability on 
other pathological datasets

Su et al[69] NC, WD, PD, MSS vs 
MSI

GR: Training 348 WSIs, 
Testing 88 WSIs MSS: 
Training 212 WSIs, 
Testing: 52 WSIs, MSI: 
Training 136 WSIs, 
Testing: 36 WSIs

ResNet-18 PD vs WD, F1 score: 
0.8615, PD vs WD vs 
NC, F1 score: 0.8977; 
MSI vs MSS accuracy: 
0.7727

The proposed system 
integrated the tumor GR and 
MSI status recognition 
problems into the same 
workow and was suitable 
for exploring the 
relationships between 
pathological features and 
molecular status

Muti et al[79] MSI vs MSS; EBV (+) vs 
EBV (-)

2823 patients with 
known MSI status; 2685 
patients with known 
EBV status

CNN, Shufflenet MSI vs MSS, AUROCs: 
0.723-0.863; EBV (+) vs 
EBV (-), AUROCs: 
0.672-0.859 

DL-based classifiers have the 
potential to provide faster 
decisions for pathologists 
and to offer therapeutic 
options tailored to the 
molecular profile of the 
individual patient

Kather et al[80] MSI vs MSS Training 81 patients 
+216 patients (TCGA-
STAD)

ResNet-18 AUC: 0.84 This system provides 
significant improvements in 
molecular alterations 
screening workflow

Kather et al[81] EBV (+) vs. EBV (-) Training 317 patients 
(TCGA-STAD)

CNN, VGG19 AUC: 0.80 This workflow enables a fast 
and low-cost method to 
identify EBV and enables 
pathologists to check the 
plausibility of computer-
based image classification ( 
the black box of DL) 

Hinata et al[82] EBV+MSI/dMMR vs 
EBV- non MSI/dMMR

UTokyo training cohort: 
326 patients; TCGA 
training cohort: 48 
patients

CNNs,VGG16, VGG19, 
ResNet50, 
EfficientNetB0

AUCs: 0.901–0.992 
(Utokyo cohort); 
AUCs: 0.809–0.931 
(TCGA cohort)

The model detects immuno-
therapy-sensitive GC 
subtypes from histological 
images at a lower cost and in 
a shorter time than the 
conventional methods

Zheng et al[83] EBV (+) vs EBV (-) EBV (+) 203 WSIs; EBV 
(-) 803 WSIs 

EBVNet AUROC: 0.969, 
Internal validation; 
AUROC: 0.941, 
External dataset 
AUROC: 0.895, TCGA 
dataset

The human-machine fusion 
signicantly improves the 
diagnostic performance of 
both the EBVNet and the 
pathologist, provides an 
approach for the 
identication of EBV(+) GC, 
and may help effectively 
select patients for immuno-
therapy

Flinner et al[87] EBV, MSI, GS, CIN Training 84 WSIs 
(TCGA-STAD); Testing: 
133 WSIs (TCGA-STAD)

CNN, DenseNet161 AUC: 0.76 for four 
classes

The simplied molecular 
TCGA and GC subclasses 
could be predicted by DL 
directly based on H-E 
staining

Jang et al[88] CDH1, ERBB2, KRAS, 
PIK3CA, TP53 
mutations

425 FF slides (TCGA-
STAD); 320 FT slides 
(TCGA-STAD)

CNN, Inception-v3 AUCs (FF-FT): CDH1 
(0.667-0.778), 
ERBB2(0.63-0.833), 
KRAS (0.657-0.838); 
PIK3CA (0.688-0.761), 
TP53 (0.572-0.775)

When trained with 
appropriate tissue data, DL 
could predict genetic 
mutations in H-E-stained 
tissue slides
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Huang et al[109] Metastatic LNs 983 WSIs ESCNN AUC: 0.9936 ESCNN improves the 
accuracy of pathologists in 
identifying metastatic LNs, 
micrometastases, and 
isolated tumor cells, allowing 
for shortening the review 
time

Hu et al[107] Metastatic LNs 222 patients RCNN, Xception and 
DenseNet-121

Accuracy 97.13%; PPV: 
93.53, NPV: 97.99%

The system can be 
implemented into clinical 
workflow to assist 
pathologists in preliminary 
screening for LN metastases 
in GC patients

Matsushima et al
[108]

Metastatic LNs 827 lymph nodes CNN AUROC: 0.9994 This DL-based diagnosis-aid 
system can assist pathologists 
in detecting LN metastasis in 
GC and reduce their 
workload

Wang et al[106] Metastatic LNs, T/LNM 9366 slides (7736 with 
metastasis)

Resnet-50 LNM (+) vs (-): 
Sensitivity 98.5%, 
Specicity 96.1%; 
T/LNM: HR: 2.05 
(univariate analysis); 
1.39 (multivariate 
analysis)

This system can assist 
pathologists in detecting LN 
metastasis in GC and reduce 
their workload. Besides, 
T/LNM is prognostic of OS 
in GC patients

Hong et al[116] dTSR (HE and CK7) Training 13 WSIs; 
Testing 358 WSIs

cGAN Kappa value: 0.623 
(dTSR and vTSR); 
AUROC: 0.907; OS (P: 
0.0024)

By diagnosing TSR in GC, 
this model predicts OS in the 
advanced stage of GC

Meier et al[127] TME + Ki-67 248 patients CNN HRs: Ki67&CD20: 
1.364, CD20&CD68: 
1.338; Ki67&CD68: 
1.473

In combination with a panel 
of IHC markers, this model 
predicts the prognosis of 
patients with GC

Huang et al[128] OS Training: 2261 pictures; 
Internal validation: 960 
pictures

GastroMIL HR: 2.414 (univariate 
analysis), 1.843 
(multivariate analysis)

The risk score computed by 
MIL-GC was proved to be 
the independent prognostic 
value of GC

Jiang et al[129] 5-YS, 5-YDFS 786 patients ML, SVM AUCs: 5-YS: 0.834; 5-
YDFS: 0.828

The classifier can accurately 
distinguishes GC patients 
with different OS and DFS 
and identifies a subgroup of 
patients with stage II and III 
disease who could benet 
from adjuvant chemotherapy

Jiang et al[130] Low SVM vs High SVM, 
5-YS, 5-YDFS

Training: 223 patients; 
Internal validation: 218 
patientsExternal 
validation: 227 patients

ML, SVM AUCs: 5-YS: 0.818; 5-
YDFS: 0.827

SVM signature distinguish 
GC patients with different 
OS and DFS and identifies a 
subgroup of patients with 
stage II and III disease who 
could benet from adjuvant 
chemotherapy

Wang et al[131] TME 172 patients CGSignature powered by 
AI

AUROCs: 0.960 ± 0.01 
(binary classification), 
0.771 ± 0.024 to 0.904 ± 
0.012 (ternary classi-
fication)

Digital grade cancer staging 
produced by CGSignature 
predicts the prognosis of GC 
and significantly 
outperforms the AJCC 8th 
edition Tumor Node 
Metastasis staging system

NC: Non cancer; GR: Grade; ATF7IP/MCAF1: Activating Transcription Factor 7 Interacting Protein; WSIs: Whole slide images; SV: Supervised; ML: 
Machine learning; wndchrm: weighted neighbor distances using a compound hierarchy of algorithms representing morphology; AUC: Area under the 
curve; ADC-D: Diffuse adenocarcinoma; ADC-O: Adenocarcinoma other; DL: Deep learning; CNN: Convolutional neural networks; RNN: Recurrent 
neural network; TC: Tubular carcinoma; MC: Mucinous carcinoma; PC: Papillary carcinoma; WD: Well differentiated; PD: Poorly differentiated; MSI: 
Microsatellite instable; MSS: Microsatellite stable EBV: Epstein-Barr virus; TCGA-STAD: Tumor Cancer Genome Atlas, Stomach adenocarcinoma dMMR: 
Deficient mismatch repair; GC: Gastric cancer; AUROC: Area under the receiver operating characteristics; GS: Genomically stable; CIN: Chromosomally 
unstable; LN: Lymph node; ESCNN: Enhanced streaming CNN; RCNN: Region based CNN; PPV: Positive predictive value; NPV: Negative predictive 
value; T/LNM: Tumor area-to-metastatic LN-area ratio; dTSR: Digital tumor-stroma ratio; HE: Hematoxylin and eosin; CK7: Cytokeratin 7; cGAN: 
Conditional generative adversarial network; vTSR: Visual tumor-stroma ratio; OS: Overall survival; TME: Tumor microenvironment; HR: Hazard ratio; 5-
YS: Five year survival; 5-YDFS: Five year disease free survival; SVM: Support vector machine; AI: Artificial intelligence.
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nontransparent (black boxes). Since various methods have been proposed to solve black boxes in DL in 
the recent past, additional studies applying these methods will contribute to the determination of the 
molecular subtypes of AI models of GC[84-86]. In a more recent study, Flinner et al[87], in their study 
emphasizing the error-proneness of the morphological and staining methods used to determine GC 
subtypes for subclassification, found that DL could be more effective in this regard. On the other hand, 
they also pointed out that image tiles labeled with false ground truth associated with GC heterogeneity 
may reduce the accuracy of DL but this can be overcome by first experimentally defining the test data.

Recently, the feasibility of a DL approach has also been evaluated in the classification of GC for 
mutations in the CDH1, ERBB2, KRAS, PIK3CA, and TP53 genes[88]. High AUCs observed in both 
frozen and formalin-fixed tissues highlight that DL-based classifiers could predict the mutational status 
of these tumors. Although these results are promising for the application of AI to subtyping GC, 
additional studies are necessary, with further refinement of these methods.

Colorectal cancer
Similar to GC, molecular subtyping of CRC is essential for targeted treatment against critical oncogenic 
signaling pathways. CRCs are divided by molecular consensus into four types (CMS): 1. CMS1: Tumors 
with MSI that have a good prognosis in non metastatic stages; CMS2: Tumors with intermediate 
prognosis exhibiting epithelial gene expression, activated WNT and MYC signaling; CMS3: Tumors 
with intermediate prognosis demonstrating metabolic dysregulations; CMS4: Tumors with a poor 
prognosis that possess transforming growth factor beta (TGF-β) activation[89-91]. The identification of 
CRC with MSI is paramount because this group is susceptible to immunomodulating therapies[92,93]. 
Although some findings, such as tissue architecture, growth pattern, cellular morphology, and distri-
butions of tumor stroma ratio (TSR) and tumor microenvironment (TME) provide some clues about the 
subclassification of these tumors, molecular stratification of patients necessitates RNA analyses that are 
expensive and difficult to standardize[94-96]. Accordingly, some studies have investigated the contri-
bution of AI to tumor subclassification from HE-stained tissue sections by DL models (Table 2). 
Sirinukunwattana et al[97] demonstrated that a CNN-based model could detect CMS subtypes. At the 
same time, they criticized the potential over fitting of the computational model to the training cohort as 
a limitation of the study. In a more recent study, Echle et al[98] developed a DL model in a large series of 
8836 cases of CRC to predict MSI tumors. In the international validation of the study group, the 
algorithm achieved a high performance [area under the receiver operating curve (AUROC) of 0.96][80]. 
Other investigators have also reported similar results, pointing out the potential use of DL models for 
detecting molecular subtypes of CRC[77,99-101]. In a retrospective study, a DL pipeline method was 
developed based on experimental setups similar to previous studies[102]. Three models were used to 
predict mutation density (low vs high), MSI, CIN, and GpG island methylator phenotype. The mutated 
and wild-type BRAF, TP53, and KRAS types were also investigated. This method showed higher 
AUROCs for the prediction of hypermutation, MSI, CIN, BRAF, and TP53 compared to previously 
reported data, suggesting that AI methods may provide the stratification of patients with CRC for 
targeted therapies. However, further large-scale validations with multicenter datasets are required 
before their implementation in pathological practice.

LYMPH NODE METASTASIS
Gastric cancer
Another important parameter that predicts GC behavior and treatment is lymph node metastasis (LNM)
[103]. However, identifying LNM is still a challenging and tedious task in pathological practice, making 
the implementation of AI an attractive tool to reduce the workload[104,105]. Although numerous 
studies have demonstrated that DL-based algorithms can detect metastatic lymph nodes in GC with a 
similar level of accuracy to human specialists, these algorithms have not yet been implemented into 
pathology practice[106-108] (Table 3). The failure to integrate these algorithms is related to the charac-
teristics of WSIs, the excessive effort required to apply the annotation, and the limited associated data. 
Recently, Huang et al[109] developed a weakly supervised end-to-end technique termed enhanced 
streaming CNN (ESCNN). Their results revealed that the routine pathological evaluation benefitted 
from the AI-assisted LN assessment workflow regarding review time, sensitivity, and consistency. On 
the other hand, AI-attributable false alarms that misled the pathologists on negative results led to a 
decrease in specificity from 94% to 84%, which needs more large-scale or multicenter studies to check 
the effectiveness of the workflow.

Colorectal cancer
Recent evidence indicates that features extracted by DL models from routine histologic slides can 
predict LNM in CRC[110-112] (Table 2). For example, Kwak et al[110] detected LNM by generating a 
score based on the ratio of peritumoral stroma to tumor tissue on a test set. In another study, the 
presence of LNM was detected with a model which segmented WSIs into areas such as tumor budding 
or poorly differentiated clusters[111]. More recently, Kiehl et al[112] performed an approach that uses 
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DL-based image analysis (slide-based artificial intelligence predictor) in association with patient data to 
estimate LNM in CRC patients. Their results indicated that LNM could be predicted in patients with 
CRC through AI applications from histological slides to a similar level to using a classifier containing 
clinical data.

THE TUMOR STROMA RATIO, TUMOR MICROENVIRONMENT AND TUMOR BUDDING
Gastric cancer
In recent years, it has been shown that the TSR in many organ tumors is an important clue to the course 
of the disease. In particular, stromal dominance has been observed to be an independent prognostic 
factor in many tumors, including GIS[113,114]. However, TSRs are not included in pathology report 
protocols because of the lack of a standard procedure among different methodologies and a low 
reproducibility related to the high interobserver variation[115]. Recently, a DL pipeline has been 
introduced to facilitate the automated assessment of TSR in GC[116]. Although this model has been 
shown to be effective in detecting survival according to the low and high TSR rates in advanced GC, it 
was emphasized that some limitations, such as the nonautomatic selection of hot spots and the use of a 
single test, should be eliminated. Therefore, there is a need for many studies on the use of AI applic-
ations in TSR determination of GC.

In a recent study, a DL model determined the tumor-to-metastatic lymph node-area ratio in 
metastatic lymph nodes in patients with GC[106]. Statistical analysis also revealed that this ratio is an 
independent prognostic factor warranting further investigation.

Colorectal cancer
In CRC, recent studies have demonstrated that lymphocytes and fibroblasts profoundly shape the TME 
and significantly impact tumor behavior[117-119]. In addition, it has been shown that CRC may have a 
poor prognosis due to tumor budding (1-5 cells in the invasive area)[120]. In the literature, seven studies 
of AI methods have been identified to determine these parameters in a more objective and time-saving 
manner (Table 2). However, many of them used different methods. Three models focused on the classi-
fication of the cell types, such as epithelial, inflammatory, fibroblast, lymphocytes, and others (mucus, 
smooth muscle, normal mucosa, stroma, and cancer epithelium)[121-123]. In an elegant study, a DL 
algorithm was proposed for estimating the risk of distant metastasis by analyzing the TME[123]. Cell 
detection and cell classification were evaluated in two CNNs used to build a cell network. In each 
tumor, a tissue phenotype signature was obtained by proportioning the area of tissue phenotypes to the 
total tissue area. Statistical analysis revealed that the connection frequency (CF) of the smooth muscle 
ratio, the CF of the inflammation ratio, and the appearance (AP) based on inflammation could 
independently estimate the development of distant metastasis. Distant metastasis-free survival analysis 
indicated that CF smooth muscle and AP inflammation ratios were potential prognosticators. Although 
the hazard ratios for CF of the smooth muscle ratio and AP inflammation were 2.11 and 0.39, 
respectively, the AUC values for distant metastasis prediction were 0.59 for the CF of the smooth muscle 
ratio and 0.64 for AP based on inflammation. As emphasized by the authors, specific immunohisto-
chemical staining can improve the prediction of distant metastases by increasing the informative value 
of histological slides. Another limitation of this study is the small number of metastatic cases. Another 
recent study was performed to detect CD3- and CD8-positive immune cells on WSIs of slides stained by 
immunohistochemistry in a multicenter cohort by four different methods[124]. U-Net obtained the 
highest performance and highest agreement with manual evaluation (0.72), which was higher than that 
of pathologists (K = 0.64), supporting that DL models are helpful for automatically detecting 
lymphocytes in immunohistochemically stained tissue sections.

In CRC, the automatic tumor budding evaluation on immunohistochemical pankeratin-stained slides 
revealed that the absolute number of buds per image was significantly correlated with manually 
segmented ground truth (R: 0.86)[120]. Interestingly, the number of spatial clusters of buds in hot spots 
was significantly correlated with the prognosis. In three studies, the impact of detecting the TSR or deep 
stroma score in CRC by DL algorithms was found to be an independent parameter to predict tumor 
behavior[115,121,125] (Table 2).

Recently, Zhao et al[126]  demonstrated that the ratio of the mucinous component in the tumor area 
(MTR) quantified by AI is an independent prognostic factor in CRC. On the other hand, the most 
invasive part of primary tumors was selected for evaluation. As noted by the authors, measuring the 
exact proportion and prognostic value of mucus in the entire tumor is still worthy of further invest-
igation.
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SURVIVAL OUTCOMES
Gastric cancer
Another continuing research topic is evaluating survival outcomes in GC with AI models[127-129] 
(Table 3). Recently, support vector machine (SVM), one of the popular algorithms in ML, has been 
applied to predict the survival of GC. Jiang et al[129] demonstrated that SVM could be useful in 
predicting the outcome and identifying patients with GC who might benefit from adjuvant therapy. In 
this study, the classier incorporated patient gender, carcinoembryonic antigen levels, LNM, and the 
protein expression level of eight features, composed of CD3 invasive margin (IM), CD3 center of the 
tumor (CT), CD8IM, CD45ROCT, CD57IM, CD66bIM, CD68CT, and CD34. There were significant 
variations between the high- and low-GC-SVM classifiers. Recently, Huang et al[128] designed  MIL-GC 
(a DL-based model) to predict overall survival (OS) in patients with GC. They observed C-indices of 
0.728 and 0.671 in the training and internal validation sets, respectively. The external validation likewise 
exhibited strong prognostic prediction performance (C-index = 0.657), confirming the resilience of the 
two models. Furthermore, univariate and multivariate Cox analyses demonstrated that the risk score 
derived by MIL-GC has independent prognostic significance, indicating the potential of AI approaches 
to predict GC behavior. Additionally, tumor progression includes complex interactions between 
malignant cells and their surrounding microenvironment (TME)[130]. TME targeting and 
reprogramming is, in fact, can be a potential strategy to achieve antitumor effects in many cancers. 
Several AI studies involving the TME have recently demonstrated that these methods can determine the 
prognosis of GIS cancers. Regarding GC, Wang et al[131], suggested a graph NN-based solution, 
CellGraph Signature powered AI, for the digital staging of TME and the exact prediction of patient 
survival by combining and converting multiplexed immunohistochemistry (mIHC) images as Cell-
Graphs. The survival prediction achieved outstanding model performance for both binary and ternary 
classifications. Furthermore, survival analysis revealed that this method outperforms the AJCC 8th 
edition Tumor Node Metastasis staging system in discriminating both binary and ternary classes with 
statistical significance (P value < 0.0001), implying the effectiveness and advantages of such an AI-
powered digital staging system in DP and precision oncology.

These data demonstrate that AI-based models allow prognosis prediction in GC. However, 
developing efficient models requires training on large sets reflecting scanning and staining protocols 
variability.

Colorectal cancer
Regarding prognostic evaluations from HE-stained slides by AI in CRC, some DL models have been 
developed for prognostication (Table 2). Bychkov et al[132] combined a CNN and a recurrent NN model 
to estimate the disease-specific five-year survival from tumor tissue microarray samples without tissue 
classification. The model classified patients into a low- or high-risk group (AUC of 0.69). This result was 
more significant than the AUC of the visual evaluation of the pathologist (AUC of 0.58) or the 
histological grade determined at the time of the original diagnosis (AUC of 0.57). However, an external 
dataset was not included. In another study by Skrede et al[133], diverse data from four different cohorts 
were used to develop an automatic prognostic marker to predict the outcome. The model included a 
CNN used to separate tumor tissue and two other CNN ensembles that identified individuals as having 
a favorable or poor survival. Patients were assigned as uncertain when the two CNN ensembles 
predicted different outcomes. In an external test group, the classifier was a strong predictor of survival. 
In addition, the output of the two CNN ensembles produced a strong predictive score related to patient 
outcome (AUC of 0.71).  A generalization of this approach has been recommended, as an external test 
cohort from more than one medical center demonstrated similar hazard ratios.

Jiang et al[134], to achieve a shorter computational time, developed a hybrid model by synergizing 
ML algorithms with DL (InceptionResNetV2 and gradient boosting decision machine classifier) to 
predict the survival of patients with stage III CRC. While the internal test sets constituted a Chinese 
cohort, external testing was performed on the TCGA cohort. They revealed that the model stratifies 
patients with stage III colon cancer into high- and low-risk recurrence and poor and favorable 
prognostic groups directly from tissue sections. These data suggest that the analysis of H-E-stained 
tissue samples by AI methods could serve as a digital prognostic biomarker in CRC. However, 
additional studies are warranted to support the evaluation of the performance of these methods in 
larger patient series.

OVERALL LIMITATIONS OF AI-BASED APPLICATIONS IN REAL-LIFE PRACTICE
In the literature, there are some frequently discussed topics considering the general challenges of AI 
such as identification of the clinical need, ethical considerations, funding, optimization of data-sets, 
annotation of the dataset, regulation, validation, and implementation[46].
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Recognizing the actual clinical need and defining a potential solution is the first stage in developing 
the AI application. However, there can be an imbalance between the benefits in daily pathological 
practice and the total cost of its implementation. As a result, the market for a particular AI tool may be 
too tiny and it may not be profitable.

Although patients can provide permission for data to be used for studies, constructing AI models 
may have issues if commercial use is not approved[135]. In order to develop a framework for global 
data sharing, patient consent should include the possibility of its commercial use for product 
development[40].

Training on huge datasets is necessary for developing AI systems with high performance in digital 
pathology. Changes related to differences in fixation, tissue thickness, and variations in staining and 
scanning protocols encountered in preanalytical and analytical phases may influence data accuracy[136,
137]. For example, it is difficult to convert a glass slide to WSI, and changing the hue of the slide could 
affect AI accuracy. Many AI algorithms have emerged for this purpose recently, including staining and 
color features[138,139]. In addition, a number of algorithms are presented to optimize WSI quality. 
These algorithms identify areas of the highest quality and exclude areas that are out of focus or affected 
by artifacts[140,141].

Concerning the implementation of AI, to enable users to shift the daily routine practice in the 
pathology laboratory, from glass slides to WSIs, the first step is to install an institutional IT 
infrastructure. In addition to these changes in infrastructure, pathology residency training might need to 
be adjusted in accordance with the availability of this new tool. Preventing residents from relying 
completely on AI while also allowing them to benefit from it as a helping instrument would require fine 
balancing and planning prior to its installation[142].

Similar to other clinical tests, quality assurance is crucial, hence it is urgently necessary to develop a 
plan for external quality assurance for applications. Furthermore, laboratory workers should also be 
familiar with the quality management system.

Although some algorithms and automated AI models are thought to perform better than pathologists, 
pathologists will always be required to audit technology and control mechanisms in AI implementation
[143].

CONCLUSION
In this review, we outlined the potential of AI applications for evaluating pathological parameters 
related to the behavior of GIS cancers. Current data suggest the merit of AI-based approaches in 
assessing tumor grading, subtyping, detection of metastasis, and prognosis in GC and CRC. In addition, 
these methods encourage biomarker discovery by revealing predictions that are impossible when using 
traditional visual methods. Regarding EC, there is still much room for improvement in developing AI 
models to predict the behavior of these tumors in pathology. On the other hand, the enormous potential 
of AI in improving workflows, eliminating simple errors, and increasing objectivity during pathological 
evaluations to determine the behavior of GIS cancers should motivate researchers to overcome the many 
remaining hurdles. In algorithm development, variations in imaging data, interobserver variability 
during interpretations, model transparency, and interpretability are significant challenges to be solved. 
A large number of studies with external validation and quality controls implemented on large datasets 
are essential in meeting the standards of these methods. Thereby, AI applications that are practical, 
interpretable, manageable, and cost-effective can play a crucial role in the development of pathological 
evaluations to be performed in the prognosis and treatment of GIS tumors.
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