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Abstract
Cancer is a major public health problem worldwide. Current predictions suggest 
that 13 million people will die each year from cancer by 2030. Thus, new ideas are 
urgently needed to change paradigms in the global fight against cancer. Over the 
last decades, artificial intelligence (AI) emerged in the field of cancer research as a 
new and promising discipline. Although emerging, a great potential is 
appreciated in AI to improve cancer diagnosis and prognosis, as well as to 
identify relevant therapeutics in the current era of personalized medicine. 
Developing pipelines connecting patient-generated health data easily translatable 
into clinical practice to assist clinicians in decision making represents a 
challenging but fascinating task. AI algorithms are mainly fueled by multi omics 
data which, in the case of cancer research, have been largely derived from 
international cancer programs, including The Cancer Genome Atlas (TCGA). 
Here, I briefly review some examples of supervised and unsupervised big data 
derived from TCGA programs and comment on how AI algorithms have been 
applied to improve the management of patients with cancer. In this context, 
Artificial Intelligence in Cancer journal was specifically launched to promote the 
development of this discipline, by serving as a forum to publish high-quality basic 
and clinical research articles in various fields of AI in oncology.

Key words: Omics; Big data; Artificial intelligence; Deep learning; Precision medicine

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Artificial intelligence (AI) emerged in the field of cancer research as a new and 
promising discipline to improve the management of patients with cancer, including more 
accurate and fastest diagnosis to facilitate the therapeutic decision. AI models are mainly 
fueled by multi omics data. Integrating omics data and clinical data of patients represents a 
challenging but fascinating task.
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INTRODUCTION
Cancer is a public health problem worldwide[1]. Predictions suggest that 13 million 
people will die each year from cancer by 2030[2]. Tumor heterogeneity represents an 
important obstacle to establish efficient therapeutic strategies. Over the last decades, 
large-scale pan-genomic studies allowed to address tumor heterogeneity in multiple 
cancers and to provide a landscape of alterations occurring at multiple levels in tumor 
cells (e.g. at DNA, RNA and protein levels). Thus, international consortia have been 
initiated, including The Cancer Genome Atlas (TCGA) and its landmark cancer 
genomics program, which molecularly characterized over 84000 cases from 67 primary 
sites so far (https://portal.gdc.cancer.gov). Accordingly, TCGA and other cancer 
programs generated over 2.5 petabytes of genomic, epigenomic, transcriptomic, and 
proteomic data. This explosive growth of data represented a major driving force to 
develop innovative artificial intelligence (AI) methods, including deep learning 
algorithms, capable of analyzing large and multifaceted datasets in an integrated and 
comprehensive way[3]. By using algorithms that imitate the thinking process, deep 
learning allows computational models that are composed of multiple processing layers 
to learn representations of data with multiple levels of abstraction and to discover 
intricate structure in large data sets[4]. These automated methods, popularized in the 
society by image or speech recognition algorithms, are now moving into the field of 
health, including cancer research. Indeed, innovative algorithms are developed to 
extract meaningful genomic patterns and to translate this conceptual basic information 
into clinical applications, notably to improve cancer diagnosis, prognosis prediction 
and treatment efficacy (Figure 1). Here, I briefly review some examples of supervised 
and unsupervised big data derived from TCGA programs and comment on how AI 
algorithms have been applied to improve the management of patients with cancer.

BIG DATA FROM TCGA
TCGA programs represented a major advance in the field of cancer research, allowing 
both supervised analysis of specific cancers and unsupervised analysis of pan-cancer 
datasets. Thus, supervised comparative and comprehensive analyses that 
distinguished clinically relevant molecular subtypes were reported in several cancers, 
including gastrointestinal (GI) cancers[5], gynecologic and breast cancers[6], pancreatic[7] 
or liver[8] cancers. Unsupervised analyses have been also performed using pan-cancer 
datasets. By analyzing mutation profiles, copy-number changes, gene fusions, mRNA 
expression, and DNA methylation in 9125 tumors profiled by TCGA, a detailed 
landscape of oncogenic pathway alterations was notably charted in 33 cancer types. 
Tumors were stratified into 64 subtypes, and patterns of co-occurrence and mutual 
exclusivity alterations were identified using SELECT, a method that infers conditional 
selection dependencies between alterations from occurrence patterns[9]. Importantly, 
using dedicated knowledge base of clinically actionable alterations, it was shown that 
57% of tumors had at least one alteration potentially targetable and 30% of tumors had 
multiple targetable alterations, indicating opportunities for combination therapy[9]. 
This type of information will be crucial in the current area of cancer precision medicine 
to develop effective combination therapies that address or prevent resistance to 
initially successful single agent therapies. Pan-cancer supervised analyses were also 
performed to highlight frequent alterations in key signaling pathways involved in 
cancer progression. transforming growth factor beta (TGFβ) is a pleiotropic cytokine 
that harbors a functional duality in cancer, i.e. exhibiting tumor suppressive features at 
early stages but switching toward pro-metastatic activities at late tumor stages[10]. 
Interestingly, genetic alterations in TGFβ signaling, affecting mostly metastatic-
associated genes, were observed in 39% of pan-cancer TCGA cases, and were 
particularly enriched in GI cancers[11]. Specific algorithms have been also used to 
characterize the immune tumor microenvironment across 33 cancer types analyzed by 
TCGA. By integrating major immunogenomics methods, including analysis of 
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Figure 1  Artificial intelligence and omics to improve the management of patients with cancer. Actual artificial intelligence algorithms are mainly 
fueled with clinical data (e.g. clinical records, computed tomography scan, magnetic resonance imaging) and omics data, as exemplified by those from The Cancer 
Genome Atlas consortium (e.g. genetic, epigenetic, transcriptomic, proteomic, metabolomics profiles). They pave the way for future models that will integrate 
personalized clinical information related to lifestyle of each patient, including exposome and microbiome, in order to improve cancer diagnosis, prognosis prediction 
and treatment efficacy. AI: Artificial intelligence; TCGA: The Cancer Genome Atlas.

genomic profiles, hematoxylin and eosin stained tumor sections and deconvolution 
analysis of mRNA sequencing (mRNA-seq) data, six immune subtypes were 
characterized, spanning multiple tumor types, with potential therapeutic and 
prognostic implications for cancer management[12]. Interestingly, one so-called TGFβ 
dominant subtype, displayed the highest TGFβ signature and a high lymphocytic 
infiltrate. This observation is particularly relevant with the emergence of effective 
immunotherapies, including the recent development of an innovative immuno-
therapeutic that simultaneously blocks the PD-L1 checkpoint protein and the TGFβ 
signaling pathway[13].

From a basic point of view, several efforts have been made also to integrate multi 
omics data and to provide a better understanding of tumor biology. As an example, a 
deep learning-based predictive model using deep denoising auto-encoder and multi-
layer perceptron was developed to quantitatively capture how genetic and epigenetic 
alterations correlate with directionality of gene expression in liver cancer[14]. Similarly, 
an innovative one-class logistic regression machine-learning algorithm was used to 
identify stemness features associated with oncogenic dedifferentiation[15]. Interestingly, 
an unanticipated correlation of cancer stemness with immune checkpoint expression 
and infiltrating immune cells was highlighted in the tumor microenvironment[15]. The 
analysis of gene regulatory networks from available omics data is a challenging task 
given that biological data is prone to different kinds of noise and ambiguity. Soft 
computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, 
have been found to be helpful in providing low-cost, acceptable solutions in the 
presence of various types of uncertainties[16].

AI AND OMICS FOR CANCER DIAGNOSIS AND PROGNOSIS
Cancer diagnosis using deep learning has been recently reviewed[17]. Soft computing 
techniques also provided solutions for cancer, regarding diagnosis, prediction, 
inference and classification[18,19,20]. The approaches are mainly based on segmentation 
processes using convolutional neural networks (CNN) in clinical images notably 
acquired from computed tomography (CT) and magnetic resonance imaging (MRI). AI 
allows integrating quantitative, multiparametric and functional imaging data to 
automatically recognize complex patterns and to provide quantitative, rather than 
qualitative, assessments of radiographic characteristics[21]. A classification of skin 
lesions using a single CNN, trained end-to-end from images directly, using only pixels 
and disease labels as inputs, nicely illustrates the interest and the power of AI 
algorithms[22]. Indeed, a CNN trained using a dataset of 129450 clinical images (2032 
different cases) was capable of classifying skin lesions with a level of competence 
comparable to dermatologists[22]. By helping clinicians in characterizing early benign 
and/or malignant lesions, AI recently emerged as the next step towards precision 
pathology. Screening programs for early detection of colorectal cancer (CRC) have 
been shown to reduce mortality in multiple studies. Thus, a machine learning-based 
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algorithm (MeScore) was trained to predict the occurrence of CRC and to identify a 
group of individuals at a high risk for CRC. Remarkably, MeScore can help identifying 
individuals in the population who would benefit most from CRC screening, including 
those with no clinical signs or symptoms of CRC[23]. In another study, a total of 1970 
whole slide images of 731 cases of nasopharyngeal carcinoma were divided into 
training, validation and testing sets. A CNN model was trained to classify images into 
three categories: Chronic nasopharyngeal inflammation, lymphoid hyperplasia and 
nasopharyngeal carcinoma. Remarkably, the model equals the senior pathologist when 
considered in terms of accuracy, specificity, sensitivity, area under the curve and 
consistency[24]. Thus, this couple of examples suggests that deep learning algorithms 
could potentially assist pathologists in clinical practice by providing a second opinion 
and thus increasing consistency on the diagnosis.

Gene expression profiling has been extensively used to derive prognostic signatures 
in multiple types of cancers. However, these signatures are usually derived from a 
single type of omics data (e.g. mRNA, miRNA, lncRNA profiling). Integration of 
multifaceted datasets with different levels of information appears relevant to better 
reflect the biology of a specific tumor. Accordingly, integrated genome-wide 
epigenetic and multi omics analyses using AI entered in the era of precision medicine 
with the burst of data generated over the last decades[25]. Thus, a deep learning multi 
omics model integrating RNA-seq, miRNA-seq, and methylation data from TCGA, 
was reported to robustly predict survival of patients with liver cancer[26]. A more 
aggressive subtype was associated with frequent TP53 inactivation mutations, higher 
expression of stemness markers, and activated WNT and AKT signaling pathways[26]. 
Pathway-based biomarker identification with crosstalk analysis has been also reported 
in liver cancer for efficiently differentiating patients into moderate or aggressive risk 
subtypes with significant differences in terms of survival[27]. Besides, deep-learning 
algorithms based on whole slide histological images were reported to predict 
prognosis of patients with liver cancer. By using a training set made of 390 slides from 
206 tumors and a validating set made of 342 slides from 328 patients, a model was 
built for predicting the survival of patients after surgical resection of hepatocellular 
carcinoma[28]. Notably, the study highlights the importance of pathologist/machine 
interactions for the construction of deep-learning algorithms[28]. By processing 5202 
digital pathology images from 13 cancer types, a deep-learning model established 
tumor-infiltrating lymphocytes maps correlated with molecular data, tumor subtypes, 
immune profiles and patient survival[29]. The application of deep learning in cancer 
prognosis has been shown to be equivalent or better than current approaches, as 
recently reviewed[30].

AI AND OMICS FOR CANCER TREATMENT
Deep learning-based analysis of multi omics data finds its natural place for the 
development of personalized therapies in cancer, notably by linking molecular 
actionable alterations with specific drugs already developed for these alterations or 
through a drug repositioning process (also referred to as drug repurposing). Deep 
learning models also enable large scale virtual screening of compound databases for 
predictive activity profiling against targets important for multiple cancers. Such large 
scale screening facilitate the quick and cost-effective repurposing of existing drugs[31]. 
By using a pharmacogenomics database of 1001 cancer cell lines, deep neural networks 
were trained for predicting drug response and their performance was assessed on 
multiple clinical cohorts[32]. By integrating RNA-seq, copy number, and mutations from 
33 different cancer types (TCGA PanCanAtlas project), a deep learning model was 
shown to successfully predict RAS activation across cancer types and to identify 
phenocopying variants (e.g. NF1 loss). The model represents a useful tool to predict 
response to MEK inhibitors and identify the best responders[33]. Specific algorithms for 
drug repurposing have been also developed, based notably on linking gene expression 
profiles of tumors with gene signatures of bioactive molecules. Thus, the L1000 
Connectivity Map is a library of gene expression signatures established in cell lines 
after pharmacologic or genetic (knockdown or over-expression) perturbation 
(approximately 20000 compounds, 4500 knockdowns, and 3000 over-expressions)[34]. 
This approach has been successfully used to propose epigenetic modulators (e.g. 
HDAC inhibitors) as relevant innovative therapeutics to target several hallmarks of 
liver cancer[35]. Using the same approach, anthelminthic drugs were also identified as 
potential therapeutic candidates in liver cancer[36]. Thus, combined with a robust 
stratification of human tumors, AI would help predicting response to individual 
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therapy. Although translation between research and clinical practice requires to fully 
addressing the question of the reproducibility and interpretability of the developed 
algorithms, there is no doubt that AI will positively impact clinical decision-making, 
providing a more personalized management of patients[37]. Another aspect that needs 
to be fully appraised is the regulatory issue for AI technologies, including clinically 
approved algorithms (Software as Medical Devices, SaMD), e.g. in terms of personal 
data sharing[38].

CONCLUSION
Over the last decades, cancer genomic programs generated a large amount of multi 
omics data. This information fueled the development of innovative algorithms to 
extract meaningful information possibly translatable into clinical practices. AI 
emerged only recently in the field of cancer research. However, specific studies 
demonstrated already the possibility of AI to improve diagnosis and prognosis of 
patients with cancer and to develop innovative targeted therapeutics. Although, the 
actual algorithms are fueled mainly with omics data and clinical images (e.g. genetic, 
epigenetic, transcriptomic, proteomic, metabolomics profiles, CT scan, MRI), they pave 
the way for future models that will also integrate personalized clinical information 
related to lifestyle of each patient, including environmental exposure (exposome) or 
microbiome composition that may influence response to treatment[39](Figure 1). As a 
promising future direction, research on exposome, genetic factors, microbiome, 
immunity, and molecular tissue biomarkers is needed using AI and omics 
technologies. This field referred to as molecular pathological epidemiology (MPE) 
aims at investigating those factors in relation to molecular pathologies and clinical 
outcomes by means of computational analyses. Thus, MPE represents a promising area 
of investigation to better understand how a particular exposure influences the 
carcinogenic and pathologic process[40,41].

In this context, Artificial Intelligence in Cancer journal was specifically launched to 
promote the development of this discipline, by serving as a forum to publish high-
quality basic and clinical research articles in various fields of AI in oncology.
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