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Abstract
Artificial intelligence is a groundbreaking tool to learn and analyse higher 
features extracted from any dataset at large scale. This ability makes it ideal to 
facing any complex problem that may generally arise in the biomedical domain or 
oncology in particular. In this work, we envisage to provide a global vision of this 
mathematical discipline outgrowth by linking some other related subdomains 
such as transfer, reinforcement or federated learning. Complementary, we also 
introduce the recently popular method of topological data analysis that improves 
the performance of learning models.
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Core Tip: In this review, we explore powerful artificial intelligence based models 
enabling the comprehensive analysis of related problems on oncology. To this end, we 
described an asserted set of machine learning architectures that goes from the most 
classical multiple perceptron or neural networks to the novel federated and 
reinforcement learning designs. Overall, we point out the outgrowth of this mathem-
atical discipline in cancer research and how computational biology and topological 
features can boost the general performances of these learning models.
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INTRODUCTION
The flourishing proliferation of artificial intelligence (AI) worldwide over the last 
decade has disrupted the way oncologists face cancer. More and more every day, the 
contribution of AI-based models to different axes of cancer research is not only 
improving their ability to stratify patients early on or discover new drugs but also 
influences its fundamentals. By integrating novel structures of data organisation, 
exploitation, and sharing of clinical data among health institutions, AI is achieving in 
the short-term to successfully accelerate cancer research. Medical practitioners are 
becoming familiar with some few mathematical concepts, such as machine learning 
(ML) or (un/semi) supervised learning. The former is a collection of data-driven 
techniques with the goal of building predictive models from high-dimensional 
datasets[1,2], while the latter refers to the grade of human intervention that these 
models require to make predictions.

These methods are being successfully used in cancer at many levels by simply 
analysing clinical data, biological indicators, or whole slide images[3-5]. Their 
application has revealed themselves as an effective way to tackle multiple clinical 
questions, from diagnosis to prediction of treatment outcomes. For instance, in Morilla 
et al[3], a minimal signature composed of seven miRNAs and two biological indicators 
was identified using general linear models trained at the base of a deep learning model 
to predict treatment outcomes in gastrointestinal cancer. In Schmauch et al[4], 2020, the 
authors predicted the RNA-Seq expression of tumours from whole slide images using 
a deep learning model as well.

Indeed, in this particular discipline, ML algorithms have evolved faster. Several 
approaches have succeeded in the classification of cancer subtypes using medical 
imaging[6-8]. Mammography and digital breast tomosynthesis have enabled a robust 
breast cancer detection by means of annotation-efficient deep learning approaches[9]. 
Epigenetic patterns of chromatin opening across the stem and differentiated cells 
across the immune system have also been predicted by deep neural networks in 
ATAC-seq analysis. In Maslova et al[10], solely from the DNA sequence of regulatory 
regions, the authors discovered ab initio binding motifs for known and unknown 
master regulators, along with their combinatorial operation.

Another domain where the application of AI-based models has largely been used is 
single-cell RNA sequencing (sc-RNAseq) analysis. In Lotfollahi et al[11] (2020), a new 
method based on transfer learning (TL) and parameter optimisation is introduced to 
enable efficient, decentralised, iterative reference building, and the contextualization of 
new datasets with existing single-cell references without sharing raw data. In addition, 
few methods have emerged around genetic perturbations of outcomes at the single-
cell level in cancer treatments[12,13].

Finally, some computational topology techniques grouped under the heading of 
“topological data analysis” (TDA) have also been successfully proven as efficient tools 
in some cancer subtype classifications[14].

Thus, AI has turned the oncologists and co-workers’ lives around providing them 
with a new perspective, which was once developed by only a bulk of specialists and is 
rapidly becoming a reference in the domain. This work revisits, then, most of those 
techniques and provides a quick overview of their applications in cancer research.

AI OR ML
ML or AI models, sometimes a philosophical matter, is a branch of mathematics 
concerned by numerically mimicking the human brain reasoning as it resolves a given 
problem. There are many examples of this practice; from those most classic techniques 
of regression or classification of dataset[15] to the current ground-breaking algorithms 
as “Deep-Mind, Alpha Fold” for protein-folding prediction[16]. In any case, all of these 
methods share a common objective: the ML problem. This problem can be mathemat-
ically expressed as: $$\hat{C}=\underset{C\in\mathcal{M}}{argmin}\math-
bb{E}_{x,y\in\mathcal{X}\times\mathcal{Y}} [\mathcal{B}_{l} (C(x),y)]$$.

For example, if we select the particular loss function binary cross entropy, –Bl–, this 
equation describes the parameter misapplication of the neural network C by 
diminishing the expected value of the loss function between the output of this network 
C(x) and the true label y.
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INTERPRETABLE AI MODELS
Frequently, the intricate design of models based on any ML technique (i.e., neural 
networks) makes them more difficult to interpret than simpler traditional models. 
Hence, if we want to fully exploit the potential of these models, a deeper 
understanding of their predictions would be advisable in practice. Thus, the predicted 
efficacy of a personal therapy on a cancer must be well explained, since its decisions 
directly influence human health. From a methodological point of view, we need to 
ensure model development with proper interpretations of their partial outputs in 
order to prevent undesirable effects of the models[17,18]. The two main streams of this 
discipline are the so-called “feature attribution” and “feature interaction” methods. 
The former[19-22] individually rewards input features depending on its local causal 
effect in the model output, whereas the latter examines those features with large 
second-order derivatives at the input or weight matrices of feed-forward and convolu-
tional architectures[23,24]. However, the robustness of all these approaches may be 
compromised by the presence of specific types of architecture.

DEEP LEARNING
One class of ML models broadly used in current computational cancer research is deep 
neural networks. Overall, they have succeeded over other non-linear models[25] in the 
analysis of pathologic image recognition and later patient stratification based on the 
learned models[26,27]. In brief, deep neural models work in a large number of layers 
of information that is progressively passing by from one layer to another (i.e., the 
backpropagation algorithms) to extract relevant features from the original data 
according to a non-linear model, which is associated with the selected optimisation 
problem. Their designs can encompass a wide range of algorithms from the classic 
multiple perceptron networks[28-30] and convolutional neural networks[31-36] to the 
most recently established long short-term memory (LSTM) recurrent neural networks 
(RNNs) that are put into the spotlight in the next section[37,38].

RNNs: A different and convenient design other than the more classical neural 
networks in which the information flows forward are the RNNs. These are computa-
tionally more complex models with the skill of capturing hidden behaviours other 
methods in cancer studies cannot do[39-41]. Recurrent models exhibit an intrinsic 
representation of the data that allows the exploitation of context information. 
Specifically, a recurrent network is designed to maintain information about earlier 
iterations for a period that depends only on the weights and input data at the model’s 
entrance[42]. In particular, the network’s activation layers take advantage of inputs 
that come from chains of information provided by previous iterations. This influences 
the current prediction and enables the gathering of network flops that can retain 
contextual information on a long-term scale. Thus, by following this reasoning, RNNs 
can dynamically exploit a contextual interval over the input training history[43].

LSTM: An improvement in of RNNs is the construction of LSTM networks. LSTMs 
can learn to sort the interexchange between dependencies in the predictive problems 
addressed by batches. These models have had a major impact on the biomedical 
domain, particularly in cancer research[44-48]. LSTMs have been successfully proven 
in analysis where the intrinsic technical drawbacks associated with RNNs have 
prevented a fair performance of the model[49]. There are two main optimisation 
problems that must be avoided during the training stage when applying LSTM to 
solve a problem, namely: (1) vanishing gradients; and (2) exploding gradients[50]. In 
this sense, LSTM specifically provides an inner structural amelioration concerning the 
units leveraged in the learning model[51]. However, there is an improvement in the 
LSTM network calibration that is increasingly used in biomedical research: LSTM 
bidirectional networks. In these architectures, a bidirectional recurrent neural lattice is 
applied in order to be able to separately pass by two forward and backward recurrent 
nets sharing the same output layer during the training task[51].

TL
Recycling is always a significant issue! In ML, we can also reuse a model that was 
originally envisaged for solving a different task other than the problem that we might 
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be currently facing, but both share a similar structural behaviour. This practice is 
called TL in ML. Its usage has been progressively increasing in problems whose 
architecture can consume huge amounts of time and computational resources. In these 
cases, pre-trained networks are applied as a starting learning point, which largely 
boosts the performance of new models to approach related problems. Then, TL should 
ameliorate the current model in another setting if such a model is available for 
learning features from the first problem in a general way[52,53]. Regarding its benefits 
in oncology, we can outstand its usage in large datasets of piled images to be 
recognised for patient stratification, as previously described in the following works[54-
61].

REINFORCEMENT LEARNING
Reinforcement learning (RL) is one of the latest ML extensions that ameliorates the 
global performance of learning models when making decisions. In RL, a model learns 
a given objective in an a priori fixed uncertainty by means of trial and error 
computations until a solution is obtained. Then, to guide the model, the AI algorithm 
associates rewards or penalties with the local performance of the model. The final goal 
was to maximise the amount of rewards obtained. Remarkably, the ML architecture 
provides no clues on how to find the final solution, even if it rules the reward 
conditions. Thus, the model must smooth the optimisation problem from a totally 
random scenario to a complex universe of possibilities. However, if the learning 
algorithm is launched into a sufficiently powerful computational environment, the ML 
model will be able to store thousands of trials to effectively achieve the given goal. 
Nevertheless, a major inconvenience is that the simulation environment is highly 
dependent on the problem to be computed.

To sum it up, although RL should not be taken as the definitive algorithm, it 
promises to blow up the current concept of deep learning in oncology[62-64]. An 
example with no precedents is the DeepMind algorithm very famous nowadays by 
performing alpha protein folding[16] predictions at a scale ever done before.

FEDERATED LEARNING
A simple description of federated learning (FL) could be a decentralised approach to 
ML. Thus, FL boosts and accelerates medical discoveries on partnerships with many 
contributors while protecting patient privacy. In FL, we only improve and calibrate the 
results and not the data. Thus, what FL really promises it is a new era in secured AI in 
oncology: Training, testing, or ensuring privacy that way of learning is an efficient 
method of using data from a comprehensive network of resources belonging each time 
to a node of many interconnected hospital institutions[65-68].

TOPOLOGICAL ML
Topological ML (TML) is an interaction that has been recently established between 
TDA and ML. Owing to new advances in computational algorithms, the extraction of 
complex topological features, such as persistence homology or Betti curves, has 
become progressively feasible in large datasets. In particular, TDA is commonly 
referred to as capturing the shape of the data. This method fixes their topological 
invariants as hotspot to look up relevant structural and categorical information. 
Indeed, TDA provides ideal completeness in terms of multi-scalability and global-
isation missed from the rigidness of their geometric characteristics. In that sense, the 
use of this tool has been growing in cancer research until it is considered as contex-
tually informative in the analysis of massive biomedical data[69-74]. Multiple studies 
have exploited the complementary information that emerged from different prisms to 
gain new insights into the datasets. Its association with ML has enhanced both classical 
ML methods and deep learning models[75,76].
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Figure 1 Relational overview of the artificial intelligence-based models introduced in this work. To solve any given complex problem in cancer 
research by means of machine learning models we can use many deep layers. Then, depending on the particular structures of data, we can empower the 
performance of the selected architecture, i.e., multilayer perceptron, convolutional or recurrent networks by adding learning strategies such as transfer, federated or 
topological learning. These strategies are interchangeable (double banded black arrows). As well, we can directly go directly from the selected architecture to the 
problem’s solution using reinforcement learning. AI: Artificial intelligence; MLPs: Multi-layer perceptrons; CNNs: Convolutional neural networks; RNNs: Recurrent 
neural networks.

CONCLUSION
In this work, we summarise the conclusions of some major references of AI in cancer 
research (Figure 1). Overall, we wanted to point out the rapid AI outgrowth in the 
biomedical domain and how AI has systematically become familiar to anyone in the 
domain, expert, or not. This is possibly due to recent advances in learning-oriented 
algorithms, which have enabled the transformation of data analysis to any scale and 
complexity provided a suitable environment is available. We have provided many 
examples of a varied set of learning models (Multi-layer perceptron, convolutional 
neural networks, RNNs, etc.) that have been successfully proven for related cancer 
problems such as patient stratification, image-based classification, or recording-device 
optimisation[77,78]. We have compared different approaches to solve similar 
questions, and we have introduced novel concepts such as TL, FL, or RL that prevent 
some of the most classical constraints regarding network architectures or information 
privacy on high dimensional datasets. Finally, the combination of TDA and ML has 
also been shown to be a promising discipline where to exploit extra topological 
features extracted at a higher level. Such tandem promises to contribute to the 
improvement of the AI algorithm’s performance from a totally different perspective. 
Although data-driven based AI models have the potential to change the world of 
unsupervised learning, some limitations could endanger a promising future. The three 
major issues that hamper a better optimisation and general performance in AI models 
are related to: (1) the high dependency of the model on the data scale; (2) choice of a 
proper computational environment, and (3) practical problems of time or computa-
tional cost should be assumed. Thus, the future challenges in this discipline begin by 
smoothing such obstacles as much as possible, which will ultimately end up with AI as 
the tool of reference in healthcare institutions for a much broader analysis in oncology.
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