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Abstract
Artificial intelligence (AI) allows machines to provide disruptive value in several 
industries and applications. Applications of AI techniques, specifically machine 
learning and more recently deep learning, are arising in gastroenterology. 
Computer-aided diagnosis for upper gastrointestinal endoscopy has growing 
attention for automated and accurate identification of dysplasia in Barrett’s 
esophagus, as well as for the detection of early gastric cancers (GCs), therefore 
preventing esophageal and gastric malignancies. Besides, convoluted neural 
network technology can accurately assess Helicobacter pylori (H. pylori) infection 
during standard endoscopy without the need for biopsies, thus, reducing gastric 
cancer risk. AI can potentially be applied during colonoscopy to automatically 
discover colorectal polyps and differentiate between neoplastic and non-
neoplastic ones, with the possible ability to improve adenoma detection rate, 
which changes broadly among endoscopists performing screening colonoscopies. 
In addition, AI permits to establish the feasibility of curative endoscopic resection 
of large colonic lesions based on the pit pattern characteristics. The aim of this 
review is to analyze current evidence from the literature, supporting recent 
technologies of AI both in upper and lower gastrointestinal diseases, including 
Barrett's esophagus, GC, H. pylori infection, colonic polyps and colon cancer.
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Core tip: Artificial intelligence (AI) allows machines to provide disruptive value in a 
multitude of industries and knowledge domains. Applications of artificial intelligence 
techniques, specifically machine learning and more recently deep learning, are arising in 
gastrointestinal endoscopy. Computer-aided diagnosis has been performed during upper 
gastrointestinal endoscopy for the automated identification of dysplastic lesions in 
Barrett’s esophagus for preventing esophageal cancer, as well as in lower gastrointestinal 
endoscopy for detecting colorectal polyps to prevent colorectal cancer. The aim of this 
review is to investigate current data from the literature, supporting recent technologies of 
AI both in upper and lower gastrointestinal diseases, including Barrett's esophagus, gastric 
cancer, Helicobacter pylori infection, colonic polyps and colon cancer.

Citation: Morreale GC, Sinagra E, Vitello A, Shahini E, Shahini E, Maida M. Emerging 
artificial intelligence applications in gastroenterology: A review of the literature. Artif Intell 
Gastrointest Endosc 2020; 1(1): 6-18
URL: https://www.wjgnet.com/2689-7164/full/v1/i1/6.htm
DOI: https://dx.doi.org/10.37126/aige.v1.i1.6

INTRODUCTION
Artificial intelligence (AI) is based on intelligent agents performing functions 
associated with human mind, such as learning and problem solving[1,2].

In endoscopy, AI has begun to assist the improvement of colonic polyp detection 
and adenoma detection rate (ADR), to discriminate between benign and precancerous 
lesions based on the interpretation of their superficial patterns.

Machine learning (ML) and deep learning (DL) can be considered subfields of AI. 
ML is a form of AI that can support decision process allowing the improvement, 
without any Programmation, of the algorithms applied, including data testing and the 
implementation of descriptive and predictive models (Figure 1).

ML is distinguished into supervised and unsupervised methods. An instance of 
supervised ML, artificial neural networks (ANN), mirror the scheme function of the 
brain. Each neuron is a computing unit and all neurons are connected to produce a 
network. ML and convoluted neural network (CNN) algorithms have been created to 
train software to discriminate normal from abnormal regions in the lumen of the gut. 
For polyp detection, ML uses a fixed number of characteristics, such as polyp size, 
shape, and mucosal patterns.

A variety of deep learning neural network architectures are included in DL-based 
methods that automatically extract relevant imaging features without the human 
perceptual biases[3].

AI, BARRETT’S ESOPHAGUS AND ESOPHAGEAL CANCER
Barrett's esophagus (BE) is characterized by an unusual (metaplastic) transformation of 
the mucosal cells, lining the lower part of the esophagus, from normal stratified 
squamous epithelium to columnar one and associated with interspersed goblet cells[4]. 
This condition represents a risk factor for esophageal adenocarcinoma (EAC) whose 
most serious prognosis is related to the late diagnosis[4]. Moreover, 93% of patients can 
achieve a complete disease remission after a regular surveillance during 10 years and 
treatment[5-7]. Promising techniques for the management of BE with the potential of 
reducing the cancer risk by an accurate diagnosis of dysplasia, are being developed.

However, despite some limitations in interventional therapies, such as endoscopic 
resection (ER) and ablation techniques (radiofrequency ablation or cryoablation) they 
can help preventing the evolution into malignancy[8-11].

The recognition of neoplastic changes in BE patients is crucial and innovations in 
endoscopic imaging have worked for early detection of minimal epithelial neoplastic 
lesions based on distinct mucosal features.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://www.wjgnet.com/2689-7164/full/v1/i1/6.htm
https://dx.doi.org/10.37126/aige.v1.i1.6
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Figure 1  Schematic model of the deep learning algorithm in endoscopy.

In a first study, Mendel et al[12], introduced a useful method for generating an 
automatic classification based on endoscopic white light images through the learning 
of specific features helped by a pretrained deep residual network, instead of 
handcrafted texture features. The study used a data set of 100 high-resolution 
endoscopic images from 39 patients supplied by the Endoscopic Vision Challenge 
Medical Image Computing and Computer-Assisted Intervention (MICCAI). While 22 
BE patients had cancerous lesions, 17 had non-cancerous BE.

The endoscopic images were independently evaluated by five experts and then 
compared with probability maps provided by AI, showing a strong correspondence. 
Since the significant of manual segmentations vary significantly, their intersection was 
considered as a cancerous region (C1-region) within each C1-image.

Ebigbo et al[13], employed two data sets to train and validate a computer-aided 
diagnosis (CAD) system relying on a deep CNN with a residual net (ResNet) 
architecture. Images consisted of 148 high-definition white light endoscopy (WLE) and 
narrowband imaging (NBI) images regarding 33 EAC and 41 areas of non-neoplastic 
BE in the Augsburg data set, while the MICCAI data set comprised 100 high-definition 
WLE images, 17 early EAC and 22 areas of non-neoplastic BE. CAD-DL system 
diagnosed EAC with a sensitivity of 97% and a specificity of 88% for WLE images, 
whereas a sensitivity and specificity of 94% and 80% for NBI images, respectively. 
CAD-DL reached a sensitivity and specificity of 92% and 100%, respectively, for the 
MICCAI images.

In these beginning studies, the authors developed a CAD model and displayed 
promising performance scores in the classification/segmentation areas during BE 
assessment.

However, these results were achieved using high-quality endoscopic imaging that 
cannot always be obtained during daily clinical practice. This system was previously 
developed to further increase the speed of image analysis for classification and the 
resolution of the dense prediction, displaying the color-coded spatial distribution of 
cancer probabilities.

Still based on deep CNNs and a ResNet architecture with DeepLab V.3+, a state-of-
the-art encoder-decoder network was readjusted. To transfer the endoscopic 
Livestream to our AI system, a capture card (Avermedia, Taiwan) for image aquisition 
was incorporated into the endoscopic monitor[14] and the AI system was trained by 
using 129 endoscopic images. All AI-image outcomes were confirmed by pathological 
examination of resection specimens (EAC), as well as forceps biopsies (i.e., normal BE). 
The AI system showed high performance scores in the categorization task with a 
sensitivity and specificity of 83.7% and 100%, respectively.

CNN was also used by Horie et al[15], that retrospectively collected 8428 training 
images from esophageal cancer of 384 patients through CNNs. CNN took 27 seconds 
to analyze 1118 test images and correctly detected esophageal cancer cases with a 
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sensitivity of 98%. CNN detected every 7 small cancer lesions lower than 10 mm in 
size. This system facilitated early and rapid malignancy detection leading to a better 
prognosis of these patients.

AI can assist endoscopists to make targeted biopsies with high-accuracy, saving 
work/time-intensive random sampling, with a low sensitivity (64%) for the detection 
of dysplasia. An international, randomized, crossover trial[16], compared high-
definition white-light endoscopy (HD-WLE) and NBI for detecting IM and malignancy 
in 123 patients with BE (mean circumferential and maximal sizes, 1.8 and 3.6 cm, 
respectively).

Both HD-WLE and NBI detected 104/113 (92%) patients with IM, but NBI required 
fewer biopsies per-patient and exhibited a significantly higher dysplasia detection rate 
(30% vs 21%). During endoscopic examination with NBI, all areas of HGD and cancer 
presented an irregular mucosal or vascular pattern. Regular NBI surface patterns did 
not harbor HGD or cancer, suggesting that biopsies could be potentially avoided in the 
latter cases. Besides, in a multicenter, randomized crossover study[17], using endoscopic 
trimodal imaging (ETMI) for detection of early neoplasia in BE, ETMI showed no 
improvement in overall dysplasia detection than standard video endoscopy. The 
diagnosis of dysplasia was still made in a significant number of patients by random 
biopsies, and patients with a confirmed diagnosis of LGIN had a significant risk of 
HGIN/carcinoma.

Van der Sommen et al[18] used a computer algorithm to detect early neoplastic lesions 
in BE and employed specific texture, color filters, and ML-based on 100 images from 
44 patients with BE. This system identified early neoplastic lesions on a patient-level 
with a sensitivity and specificity of 86% and 87%, respectively. The author assumed 
that the automated computer algorithm implemented for this study was able to 
identify early neoplastic lesions with reasonable accuracy.

De Groof et al[19] developed a CAD system using endoscopic images of Barrett's 
neoplasm based on the endoscopic images of 40 Barrett's neoplastic lesions and 20 
non-dysplastic BE, reaching a sensitivity and specificity for the detection of such 
lesions of 95% and 85%, respectively.

AI technology was applied for volumetric laser endomicroscopy (VLE) in 2017. VLE 
with laser marking is a broad field of advanced imaging technology that was 
commercially available in the United States in 2013 to facilitate dysplasia detection.

VLE can enhance the detection of neoplastic lesions in BE by performing a 
circumferential scan of the esophageal wall layers. Sixteen patients with BE were 
included in the study and a total of 222 laser markers (LMs) were placed, 97% of them 
were visible on WLE. All LMs were evident on VLE directly after marking, and 86% 
were confirmed during the post hoc analysis. LM targeting held an accuracy of 85% of 
cautery marks. This original study applied to humans showed that VLE-guided LM 
can be a possible and secure procedure[20].

In another study[21] the same authors used a database of VLE images from BE 
endoscopic resection specimens with/without neoplasia, precisely correlated them 
with histology to develop a VLE prediction score. The receiving operating 
characteristic curve of this prediction score showed an area under the curve (AUC) of 
0.81. A value ≥ 8 correlated with an 83% sensitivity and 71% specificity.

Optical coherence tomography (OCT) is a technique that produces high-resolution 
esophageal images through endoscopy. OCT can recognize specialized IM from 
epithelial squamous cells, but image criteria for distinguishing intramucosal carcinoma 
(IMC) and HGD from LGD, indeterminate-grade dysplasia (IGD), and specialized IM 
without dysplasia have not been approved yet.

Evans et al[22], examined 177 OCT images from patients with a histological diagnosis 
of BE. The histopathology analysis was IMC/HGD in 49 cases, LGD in 15, IGD in 8, 
specialized IM in 100, whereas gastric mucosa in 5 patients. A meaningful correlation 
was found between the MC/HGD histopathologic result and scores for each image 
feature, surface maturation, and gland architecture. When a dysplasia index 
determination of ≥ 2 was used, an 83% sensitivity and 75% specificity were determined 
for diagnosing IMC/HGD.

In a tertiary-care center, 27 BE patients underwent 50 EMRs imaged by VLE and 
pCLE, and were classified into neoplastic/non-neoplastic on the basis of histology 
result. The sensitivity and specificity of pCLE for detecting BE dysplasia, was 76% and 
79%, respectively. The OCT-SI showed a sensitivity of 70% and a specificity of 60%. 
Moreover, the novel VLE-DA showed a sensitivity of 86%, specificity of 88% and a 
diagnostic accuracy of 87%[23].

Esophageal squamous cell carcinoma (SCC) is the sixth malignant cause of mortality 
worldwide and a greater percentage affect developing countries due to a delayed 
diagnosis[24]. Lugol's chromoendoscopy currently represents the gold standard 
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technique for identifying SCC during gastroscopy, despite a low specificity (about 
70%) but a higher sensitivity (over 90%).

Among non-invasive tests, NBI is another approach that has a low diagnostic 
specificity as displayed in a randomized controlled trial (RCT), related to the 
physician’s experience[25].

High-resolution microendoscopy (HRME) has shown the potential to enhance 
esophageal SCC detection during screening. An automated, real-time analysis 
algorithm has been developed and assessed using training tests, and validation images 
derived from a previous in-vivo study including 177 subjects involved for 
screening/surveillance programs. In a post hoc analysis, the algorithm recognized 
malignant tumors with a 95% sensitivity and 91% specificity, in the validation dataset, 
while 84% and 95% in the original study. Therefore, this technology could be applied 
in settings with less expertise operators in interpreting HRME images[26].

Kodashima et al[27] realized a computer system architecture to simplify the 
differentiation among neoplastic features and healthy tissues as a result of analyzing 
images in endocytoscopy of esophageal tissue from histopathological analysis, by 
analyzing the nuclear area of the collected images from 10 patients, to achieve an 
accurate and automatic diagnosis[27].

Shin et al[28] developed a quantitative image analysis algorithm that was able to 
recognize squamous dysplasia from non-neoplastic mucosa. They completed an image 
interpretation of 177 subjects undergoing upper endoscopy for SCC screening or 
surveillance, by using HRME. Quantitative data from the high-resolution images were 
used to create an algorithm to identify high-grade squamous dysplastic lesions or 
invasive SCC on histopathology.

The highest performance was gained using the mean nuclear area as the input for 
classification, resulting in a sensitivity and specificity of 93% and 92% in the training 
set, 87% and 97% in the test set, 84% and 95% in an independent validation set, 
respectively. ER is a technique employed for treating tumors with submucosal 
invasion depth 1 (SM1), whereas surgical removal with/without chemo-radiotherapy 
is usually used for SCC cases with a tumor infiltration deeper than SM2.

Accordingly, the preoperative endoscopic estimation of the ESCC invasion depth is 
critical. Recently, a rapid improvement in the application of AI with DL in medicine 
has been realized. A study by Tokai et al[29], evaluated the efficacy of AI in measuring 
ESCC invasion depth in a set of 1751 ESCC training images. AI recognized 95.5% 
(279/291) of the ESCC in the 10 test images when analyzing the 279 images it correctly 
predicted the invasion depth of the ESCC with an 84.1% sensitivity and an 80.9% 
accuracy in 6 seconds, much more precise for the estimation of ESCC invasion depth 
from endoscopists.

AI AND GASTRIC CANCER
Gastric cancer (GC) ranks third main cause of malignancy mortality worldwide, and 
esophagogastroduodenoscopy (EGD) is considered the best diagnostic tool for 
neoplasms at their early stages. The treatment of gastric tumors depends on the depth 
of the submucosal invasion; indeed, for differentiated intramucosal tumors (M) or 
those that invade the superficial submucosal layer (≤ 500 lm: SM1) ER is provided, 
while those with a deep submucosal invasion (> 500 lm: SM2) should be surgically 
treated for the potential risk of local invasiveness and metastases. Magnifying 
endoscopy combined with NBI or FICE (flexible color enhancement of spectral 
imaging) is clinically useful in discriminating gastric malignant from non-malignant 
areas[30-34]. However, this optical diagnosis strictly depends on the expertise and the 
experience of the operator, which prevents its general use in clinical practice.

Two RCTs examined the performance of endoscopy with/without the support of AI 
algorithms. The first research estimated the performance of a real-time DL system, 
WISENSE, to control the presence of blind spots during EGD. Overall, 324 patients 
randomly performed endoscopy with or without the use of WISENSE that monitored 
blind spots with a 90% average accuracy, and a separate accuracy for each site ranging 
70.2%-100% in the 107 live endoscopic videos.

The average sensitivity and specificity were 87.6% and 95%, ranging between 63.4%-
100% and 75%-100%, respectively. For timing endoscopic procedure, WISENSE 
accurately predicted the start and end times in 93.5% (100/107) and 97.2% (104/107) 
videos, respectively[35].

Miyaki et al[36], developed software allowing a quantitative evaluation of mucosal 
GCs on magnifying gastrointestinal endoscopy images obtained with FICE. They 
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adopted a set of features framework having densely sampled scale-invariant feature 
transform descriptors to magnifying FICE images of 46 intramucosal GCs then 
compared with histologic findings. The CAD system allowed an 86%detection 
accuracy, a sensitivity and specificity of 85% and 87% for a cancer diagnosis, 
respectively.

In the study by Kanesaka et al[37], a total of 127 patients with EGC contributed to 127 
cancerous M-NBI images, while 20 not-EGC patients provided to 60 not-cancerous M-
NBI images. The authors created software that allowed both the identification of GC 
and outlined the edge between malignant and non-malignant regions. This CAD 
algorithm was designed to investigate grey-level co-occurrence matrix characteristics 
of partitioned pixel slices of magnifying NBI images, and a support vector machine 
was used for the ML method. The models showed a 97% sensitivity and 95% 
specificity in distinguishing cancer, while the performance for area concordance 
displayed a sensitivity and specificity, of 81% and 66% respectively.

In 2018, Hirasawa et al[38], elaborated an AI-based diagnostic system to detect GC, 
using a CNN simulating the human brain.

A total of 714 among 2,296 test image sets (31.1%) confirmed GC presence, and 
84.1% had moderate/severe gastric atrophy. The CNN employed 47 seconds to 
analyze the 2,296 test images, diagnosing overall 232 GCs, 161 as non-malignant 
lesions, 71 of 77 as GC lesions with a sensitivity of 92.2%. The majority of gastric 
lesions (98.6%) with a diameter ≥ 6 mm were precisely identified by CNN, additionally 
to all invasive carcinomas (T1b or deeper). The undiagnosed lesions had a superficial 
depression and were more frequently intramucosal cancers with a differentiated-
histotype, whose discrimination from gastric inflammation was challenging also for 
experienced endoscopists. Another usual reason for misdiagnosis was the anatomical 
sites of the cardia, incisura angularis, and pylorus.

Zhu et al[39] examined the potential of AI to address the prediction of invasion depth 
of early GC. In particular, they developed and validated an AI model CNN-CAD that 
used a deep learning algorithm for determining EGC invasion depth (“M/SM1” vs 
“SM2 or deeper”).

A total of 790 endoscopic images of GCs were employed for ML, while an additional 
203 images, completely autonomous from the learning material, were handled as a test 
set. The AI model exhibited a sensitivity and specificity of 76% and 96%, respectively 
in distinguishing SM2 or deeper cancer invasion, with a higher diagnostic 
performance as compared to the one reached by endoscopists. This high specificity 
could lessen the overestimation of tumoral invasion, which would contribute 
indirectly to reduce avoidable surgeries for M/SM1 malignancies. Moreover, in this 
study, the CNN-CAD system also achieved significantly greater accuracy and 
specificity than both expert and junior trained endoscopists.

AI might assist physicians to predict prognoses of patients with GC. Some crucial 
clinical trials evaluating adjuvant strategies of advanced GC were produced over the 
past decade, but the most suitable therapy for GC is so far uncertain. Besides, two 
contemporary molecular landscape studies proved the presence of various molecular 
GC subtypes[40,41].

A DL-based model (survival recurrent network, SRN) was developed to predict 
survival events for a total of 1190 GC patients, based on clinical/pathology data as 
well as therapy regimens, predicting the outcome at each-time point during a 5-year 
surveillance time.

The SRN showed that the mesenchymal subtype of GC should stimulate a tailored 
postoperative therapeutical strategy as a consequence of its great risk of recurrence 
rate. Conversely, the SRN observed that GCs with microsatellite instability and the 
papillary type displayed significantly more favorable prognosis after chemotherapy 
including capecitabine and cisplatin. SRN reached a survival of 92%, 5 years after 
curative gastrectomy resection[42].

ANN model was used to evaluate 452 GC patients, determining survival times with 
approximately 90% accuracy, and focusing on producing an adequate ANN structure 
with the capacity to handle censored data[43]. In detail, 5 sets of single time-point feed-
forward ANN models were generated to predict the outcomes of GC patients at 
regular time intervals (every year) until the fifth year after gastrectomy. Hence, the 
ANN prediction models exhibited accuracy, sensitivity, and specificity ranging as 
follows 88.7%-90.2%, 70.2%-92.5%, and 66.7%-96.2%, respectively.
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AI IN THE IDENTIFICATION OF HELICOBACTER PYLORI INFECTION
Helicobacter pylori (H. pylori) infects the epithelial gastric cells and is associated with 
functional dyspepsia, peptic ulcers, mucosal atrophy, intestinal metaplasia, and GC[44]. 
H. pylori-associated chronic gastritis may also raise the risk of GC[45,46]. CNN technology 
can accurately assess H. pylori infection during conventional endoscopy without 
needing biopsies. In a pilot study by Zheng et al[47], the authors produced a Computer-
Aided Decision Support System that uses CNN to estimate H. pylori infection based on 
endoscopic images. From 1959 patients, 77% were assigned to the derivation cohort 
(1507 patients; 11729 gastric images) and 56% of them had H. pylori infection (847), 
while 23% were selected for the validation cohort (452) and 69% of patients were H. 
pylori infected (310; 3755 total images).

Huang et al[48] applied neural networks (refined feature selection with a neural 
network, RFSNN) to predict H. pylori-related gastric histological hallmarks based on 
standard endoscopic images. The authors trained the model using endoscopic images 
of 30 patients and used image parameters taken from a different cohort of 74 patients 
to generate a model to predict H. pylori infection, showing an 85% sensitivity and a 
91% specificity for identifying H. pylori infection. Moreover, RFSNN revealed an 
accuracy higher than 80% in predicting the presence of gastric atrophy, IM, and H. 
pylori-related gastritis severity.

Shichijo et al[49] produced a 22-layer deep CNN to predict H. pylori infection during 
real-time endoscopy. A dataset including 32208 images of 735 H. pylori-positive and 
1015 H. pylori-negative patients was handled. The sensitivity/specificity/accuracy, 
were 81.9/83.4/83.1%, respectively, for the first CNN, and 88.9/87.4/87.7%, 
respectively, for the secondary CNN, employing in both cases a similar time (198 
seconds and 194 seconds, respectively).

Another study group developed a CNN, preparing 179 endoscopic images obtained 
from 139 patients (65 were H. pylori-positive and 74 H. pylori-negative). One hundred 
and fifty-nine of all images were adopted as training for a standard neural network, 
and the remaining 30 (15 of H. pylori-negative and 15 of H. pylori-positive patients) as 
test images. CAD model showed an 87% sensitivity and specificity to detect H. pylori 
infection with an AUC of 0.96[50].

Nakashima et al[51] used blue laser images (BLI)-bright and linked color imaging 
(LCI) on 162 patients as learning material and those from 60 patients as a test data set. 
From each patient, three white-light images (WLI), three BLI, and three linked color 
images (LCI; Fujifilm Corp.) were obtained, respectively. For WLI, the AUC was 0.66.

AI FOR COLONIC POLYPS AND COLON CANCER
Colorectal cancer (CRC) is the third most frequent malignancy in males and second in 
females, and the fourth most frequent cause of cancer fatality[52]. The National Polyp 
Study registered that 70%-90% of CRCs can be prevented by routine endoscopic 
surveillance and removal of polyps[53], but 7%-9% of CRCs can occur despite these 
measures[54].

Around 85% of “interval cancers” are due to missed polyps or inadequately 
removed polyps[55]. Adenomas are the most common precancerous lesions throughout 
the colon. The ADR measures the endoscopist ability to identify adenomas. The ADR 
ranges between 7%–53% among endoscopists making depending on their training, 
endoscopic removal technique, withdrawal time, quality of bowel preparation, and 
other procedure-dependent determinants[56,57].

Several endoscopic innovations have been promoted to increase the ADR[58,59].
A review including 5 studies on the effect of high-resolution colonoscopes on the 

ADR showed conflicting results; a study concluded that the ADR is raised exclusively 
for endoscopists with an ADR lower than 20%[60].

CAD analysis has the potential to aid adenoma detection further.
Urban et al[61], used a different and representative set of 8641 hand-labeled images 

from screening colonoscopies handled among over 2000 patients. They tested the 
models on 20 colonoscopy videos with a whole duration of 5 hours. Expert 
colonoscopists were asked to identify all polyps in 9 de-identified colonoscopy videos, 
which were selected from archived video studies, with/without the benefit of the 
CNN overlay. Their findings were correlated with those of the CNN using CNN 
assisted expert review as the reference. The CNN identified polyps with an AUC of 
0.99 and an accuracy of 96.4%. Indeed, in the analysis of colonoscopy videos involving 
the removal of 28 polyps, 4 expert reviewers identified 8 further (missed) polyps 
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without CNN assistance and recognized an additional 17 polyps with CNN support. 
All polyps removed and recognized by the expert review were discovered by CNN, 
which showed a 7% false-positivity rate. This strategy could improve the ADR and 
lower interval cancers but it requires further studies to be adequately implemented.

AI can be used during endoscopic assessment to automatically recognize colorectal 
polyps and distinguish between malignant and non-malignant lesions. CAD is based 
on the latency time between the image acquisition to its processing for the ultimate 
visualization on the screen. This model was able to detect polyps with a 96.5% 
sensitivity[62,63].

A recent RCT estimated the impact of an automatic polyp detection system based on 
DL during real-time endoscopy. This study enrolling 1058 patients demonstrated that 
the AI system enhanced ADR of almost 10%[64].

A prospective study of 55 patients used a prototype of a novel automated polyp 
detection software (APDS) for automated image-based polyp detection and with 
overall real-time polyp detection of 75%[65]. Smaller polyp size and flat polyp 
morphology were associated with insufficient polyp detection by the APDS.

Aside from CADe machinery, CADx has been used for differentiating between 
adenomas and hyperplastic polyps.

Byrne et al[66] suggested the use of computerized image analysis to diminish the 
variability in endoscopic detection and histological prediction. This AI model was 
trained using endoscopic videos and was able to discriminate among diminutive 
adenomas and hyperplastic polyps with high accuracy. Additionally, it predicted 
histology with a 94% accuracy, 98% sensitivity, 83% specificity, a negative and positive 
predictive value of 97% and 90%, respectively.

Moreover, an AI-assisted image classifier, based on non-optical magnified 
endoscopic NBI, has been employed to predict the histology of isolated colonic 
lesions[67], following the evaluation of 3509 colonic lesions. The most prevalent 
histological types were tubular adenoma (47.6%), carcinoma with deep invasion 
(15.9%), carcinomas with superficial invasion (7.9%), hyperplastic polyps (14.3%), 
sessile serrated polyps (7.9%) and tubulovillous adenomas (6.6%). The sensitivity of 
hyperplastic and serrated polyps was 96.6%, although it was lower for tubular 
adenoma and cancer. When investigating only diminutive colonic polyps, the 
correlation of surveillance colonoscopy interval using AI image classifier and histology 
was 0.97. Moreover, this classifier also showed high accuracy (88.2%) in the prediction 
of carcinoma with deep invasion, which is not endoscopically curable, and the HNPV 
and accuracy for carcinoma with deep invasion also suggested that it can assist to 
select treatable lesions.

The same author assessed the use of AI-assisted image classifiers in determining the 
feasibility of ER of large colonic lesions based on non-magnified images. The 
independent testing set included 76 large colonic lesions that fulfilled the indications 
for endoscopic submucosal dissection. Overall, the trained AI image classifier showed 
a 88.2% sensitivity (95%CI: 84.7-91.1%) in differentiating endoscopically curable vs 
incurable lesions with a 77.9% specificity (95%CI: 70.3-84.4%) and 85.5% accuracy 
(95%CI: 82.4-88.3%). This study determined a high accuracy of the trained AI image 
classifier in predicting the feasibility of curative ER of large colonic lesions. While the 
progress of AI using CNN is great for the recognition of specific mucosal patterns and 
image classification, in the next future the prediction performance might outperform 
an expert endoscopist[68].

Hotta et al[69] aimed to validate the effectiveness of endocytoscopy (EC)-CAD in 
diagnosing malignant or non-malignant colorectal lesions, by comparing diagnostic 
ability between expert and non-expert endoscopists, by using web-based tests. A 
validation test was produced using endocytoscopic images of 100 small colorectal 
lesions (< 10 mm). Diagnostic accuracies and sensitivities of EB-01 and non-expert for 
stained endocytoscopic images were 98.0% vs 69.0%, showing a diagnostic accuracy 
and sensitivity significantly higher to non-expert endoscopists when diagnosing small 
colorectal lesions.

A single-group open-label prospective study assessed the performance of real-time 
EC-CAD on 791 consecutive patients undergoing colonoscopy and 23 endoscopists to 
differentiate neoplastic polyps (adenomas) requiring resection from non-neoplastic 
polyps not requiring treatment, potentially reducing cost[70]. The results revealed a 
96.4% negative predictive value of CAD with stained mode in the best-case whereas 
93.7% in the worst-case scenario. Wile by using NBI, 96.5%, and 95.2% in the best and 
worst-case scenario.

Another study developed an automatic quality control system (AQCS) and assessed 
a hypothetical improvement of polyp and adenoma detection in clinical practice based 
on deep CNN. The primary outcome of the study was to assess the ADR in the 308 
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AQCS and 315 control group patients. AQCS significantly increased the ADR than the 
control group. A significant improvement was similarly seen in the polyp detection 
rate and the mean number of polyps identified per-procedure[71].

Finally, in a study including 117 patients with stage IIA CRC after radical surgery, 
an ANN-based scoring system, based on the tumor molecular features, recognized 
those with a high, moderate, and low probability of survival at 10-year surveillance 
interval[72]. The 10-year overall survival rates were 16.7%, 62.9%, and 100% (P < 0.001), 
whereas the 10-year disease-free survival rates were 16.7%, 61.8%, and 98.8%, 
respectively. This study revealed that the scoring system for stage IIA CRC high-risk 
individuals for a more aggressive therapeutic approach.

DL distinguishes patients with a complete response to neoadjuvant 
chemoradiotherapy for locally advanced rectal cancer with an 80% accuracy. This 
technology support might allow to choose patients particularly benefitting the 
conservative treatment than complete surgical resection[73]. This is the first study using 
DL to predict total pathological response after neoadjuvant chemoradiotherapy in 
locally advanced rectal cancer.

DISCUSSION
AI could represent an essential diagnostic method for endoscopists and 
gastroenterologists for the patient's treatments tailoring and prediction of their clinical 
outcomes.

AI seems particularly valuable in gastrointestinal endoscopy, to improve the 
detection of premalignant lesions and malignant, or inflammatory lesions, 
gastrointestinal bleeding, and pancreaticobiliary diseases[74].

However, current limitations of AI include the lack of high-quality datasets for ML 
development. Moreover, a substantial evidence used to elaborate ML algorithms 
comes only from preclinical studies[74]. Potential selection biases cannot be excluded in 
such cases. In this setting, a rigorous validation of AI performance before its 
employment in daily clinical practice is necessary.

A real measure of AI accuracy, should include as a side effect in the performances 
overfitting and spectrum bias[75].

Overfitting occurs when a learning model tailors itself too much on the training 
dataset and predictions are not well generalized to new datasets[75,76]. This effect is in 
open contradiction with the problem-solving principle of Occam’s razor, which states 
that simpler theories have a higher quality of prediction[77]. In worst cases of AI 
algorithm application, underfitting can occur, obtaining models that cannot evidence 
accurately the underlying structure of the dataset, thus obtaining also bad predictivity 
model features[78].

On the other hand, spectrum bias happens when the dataset used for model 
development is not representative of the target population[75,79]. To avoid an 
overestimation of the accuracy and generalization, an external validation dataset 
collected in a way that minimizes the spectrum bias, should be guaranteed. Besides, 
well-designed multicenter observational studies, are required for a stronger validation.

Certainly, it is also noteworthy to acknowledge ethical issues since AI is not aware 
of the patient’s choices or legal liabilities. The privacy issues could be addressed using 
federated datasets that don’t involve centralized servers.

Future randomized studies could directly increase the overall value (quality vs cost) 
of the CNN by examining its effects on surveillance colonoscopy, endoscopic time, 
polyps and ADR, and pathology charges.

Since AI science is in progress, the current limitations must be considered as a 
future challenge, so actually they are inherited also in the medicine applications, 
including difficult predictability of situations characterized by some uncertainty.

In general, AI is revolutionizing the technology and impacting also other ethical 
aspects like human work replacement by machines, but this has always been an open 
question since the industrial revolution.

What can be done is to promote the mutual collaboration through gastrointestinal 
endoscopy applications, to reciprocally benefit from the achievements in both science 
fields.
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