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Abstract
Each year, hepatocellular carcinoma is diagnosed in more than half a million 
people worldwide. It is the fifth most common cancer in men and the seventh 
most common cancer in women. Its diagnosis is currently made using imaging 
techniques, such as computed tomography and magnetic resonance imaging. For 
most cirrhotic patients, these methods are enough for diagnosis, foregoing the 
necessity of a liver biopsy. In order to improve outcomes and bypass obstacles, 
many companies and clinical centers have been trying to develop deep learning 
systems that could be able to diagnose and classify liver nodules in the cirrhotic 
liver, in which the neural networks are one of the most efficient approaches to 
accurately diagnose liver nodules. Despite the advances in deep learning systems 
for the diagnosis of imaging techniques, there are many issues that need better 
development in order to make such technologies more useful in daily practice.
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cirrhotic liver. Neural networks have become one of the most efficient approaches to 
accurately diagnose liver nodules using deep learning systems. Therefore, with the 
improvement of these techniques in the long term, they could be applicable in daily 
practice, modifying outcomes.
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INTRODUCTION
Each year, hepatocellular carcinoma (HCC) is diagnosed in more than half a million 
people worldwide, and it is the fifth most common cancer in men and the seventh 
most common cancer in women[1]. The greatest burden of this disease is in developing 
countries, such as Southeast Asia and Sub-Saharan Africa, where hepatitis B is 
endemic[2,3].

The incidence of HCC has been rising, unlike many other types of neoplasms[4]. 
This is expected to change, as the worldwide incidence of viral hepatitis B and C is 
expected to subdue in the next generation via vaccination and treatment, respectively. 
Nevertheless, the acute rise in the prevalence of nonalcoholic steatohepatitis in the last 
couple of decades might become a key risk factor for HCC and could become solely 
responsible for sustaining its incidence, both in the Western and Eastern population[5,
6].

Therefore, understanding the diagnostic and therapeutic approaches to this disease 
is essential, especially if we keep in mind the quintessential basics of prevention and 
early detection to improve results[7,8].

DIAGNOSIS OF HCC
HCC diagnosis is currently made using imaging techniques, such as computed 
tomography and magnetic resonance imaging (MRI). For most cirrhotic patients, these 
methods are enough for diagnosis, foregoing the necessity of a liver biopsy[9-11]. 
Nevertheless, the precise diagnosis of a liver nodule via imaging techniques is a rather 
challenging task, requiring a highly trained and specialized multidisciplinary team of 
radiologists, hepatologists and oncologists.

In order to facilitate communication between professionals of such a team, a system 
for reporting imaging of liver nodules has been developed and adopted world-
wide–the Liver Imaging Reporting And Data System (LI-RADS)[12]. The LI-RADS 
classification[13] can be found in Table 1. Although this was an attempt into standard-
ization, a high discordance rate among radiologists has been described[14]. Inter-rater 
reliability has varied greatly in studies, with Cohen’s kappa coefficients ranging from 
0.35 to 0.73[15-19]. This is expected, since this classification requires high-quality 
imaging and radiologists with vast experience[19,20]. Another very important 
argument is that where HCC incidence is higher (developing countries), highly 
specialized radiologists are scarcest despite a high volume of patients[21]. In order to 
improve outcomes and bypass these obstacles, many companies and clinical centers 
have been trying to develop deep learning systems (DLS) intended to accurately 
diagnose liver nodules in the cirrhotic liver[22].

DLS AND HCC
There are many DLS approaches available in the literature, where neural networks are 
gaining much attention currently as one of the best approaches to accurately diagnose 
liver nodules. Particularly, a DLS based on convolutional neural networks (CNN) 
could achieve such capacities after machine learning (ML) by using examples of 
images with and without the disease in question[8]. Unlike other DLS, CNN does not 

https://www.wjgnet.com/2689-7164/full/v2/i4/127.htm
https://dx.doi.org/10.37126/aige.v2.i4.127
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Table 1 Liver imaging reporting and data system classification[13]

Category Description

LR-1 Definitely benign

LR-2 Probably benign

LR-3 Intermediate probability of HCC

LR-4 High probability of HCC, not 100%

LR-5 Definitely HCC

LR-5V Definite venous invasion regardless of other imaging features 

LR treated LR-5 lesion status post-locoregional treatment

LR-M Non-HCC malignancies that may occur in cirrhosis: metastases, lymphoma, cholangiocarcinoma, PTLD

HCC: Hepatocellular carcinoma; PTLD: Post-transplant lymphoproliferative disorder.

demand a clear definition of the lesion in order to interpret the images[23], which 
might lead to discovery of additional differential characteristics that are not currently 
known by radiologists[24]. Table 2 summarizes the main characteristics about the 
studies in diagnosis of liver tumors with images and clinical data using DLS.

There are several DLS applied in the recognition of image patterns[25,26], from 
which CNN-based approaches have achieved the highest performance[25]. While 
conventional deep learning algorithms require specific features to be extracted from 
images before the learning process, the application of CNNs requires rather a simpler 
feature representation based on the original image pixel intensities, also allowing to 
use all available image information in the learning process[27]. Moreover, CNNs can 
process extracted image features by several convolution filters, which allow analysis of 
the image at different granularities. Therefore, CNN is one of the most advanced 
techniques for artificial intelligence[25], which has been implemented with success for 
imaging and clinical interpretation in many medical fields. For example, CNN has 
been validated to identify liver tumors[28], the prognosis of esophageal variceal 
bleeding in cirrhotic patients[29], to predict the mortality of liver transplantation[30,
31], to predict the prognosis of HCC[32-37] Helicobacter pylori infection[38], colonic 
polyps[39], to help classify mammary cancer, head and neck cancer and gliomas[36] 
and to focal liver disease detection[40].

In the topic of liver tumors, many studies have shown that CNNs performed the 
same or better when compared to experienced radiologists. Hamm et al[8] developed 
and validated a CNN that classified six types of common hepatic lesions on multi-
phasic MRI, achieving better sensitivity and specificity when compared to board-
certified radiologists[8]. Nevertheless, this study was developed in only one center, 
using local and typical images, with no external validation. In a follow-up to this 
study, Wang et al[41] used a pre-trained CNN in a model-agonistic approach capable 
of distinguishing among several types of lesions and developed a post-hoc algorithm 
with the purpose of standardizing the lesion features used in the diagnosis. Such a tool 
could interact with other standardized scales, such as LI-RADS, validating auxiliary 
resources and improving clinical practicality[41]. This study found a sensitivity of 
82.9% for adequate identification of imaging characteristics when analyzing lesions 
from a databank. It is expected that this type of DLS that can be transparent regarding 
its steps towards the diagnosis will have better clinical acceptance.

Yamashita et al[14] developed a DLS applied to diagnose liver carcinoma by using 
two CNNs: a pre-trained network with an input of triple-phase images (trained with 
transfer learning from other CNNs) and a custom-made network with an input of 
quadruple-phase images (trained from scratch from internal data)[14]. However, by 
using external data from other pre-trained CNNs, Zech et al[42] showed that the 
performance of the DLS worsened when compared to CNNs trained with internal 
data, showing that it is not still proved that CNNs trained on X-rays from one hospital 
or one group of hospitals will work equally well at different hospitals. This has also 
been demonstrated for the detection of pneumonia in chest X-rays, where CNN 
performed worse when exposed to external data with a wide range of diseases and 
radiological findings[42]. Besides, such CNNs could be used for the determination of 
LI-RADS category, which has been shown to be possible[14], even from a small data 
set. Nevertheless, external validation seems to be a major obstacle for the dissem-
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Table 2 Main characteristics of the studies that evaluate deep learning for liver tumor diagnosis throughout images or clinical data

Ref. Country Deep learning 
method Accuracy Sensitivity Specificity AUROC

DLS 
performance 
compared 

Multicenter 
validation Conclusion

Hamm et 
al[8], 2019

United 
States

Proof-of-concept 
validation CNN

92% 92% 98% 0.992 Better than 
radiologists

Not done DLS was feasibility 
for classifying lesions 
with typical imaging 
features from six 
common hepatic 
lesion types

Yamashita 
et al[14], 
2020

United 
States

CNN 
architectures: 
custom-made 
network and 
transfer learning-
based network

60.4% NA NA LR-1/2: 
0.85. LR-3: 
0.90. LR-4: 
0.63. LR-5: 
0.82

Transfer 
learning model 
was better

Performed There is a feasibility 
of CNN for assigning 
LI-RADS categories 
from a relatively 
small dataset but 
highlights the 
challenges of model 
development and 
validation

Shi et al
[23], 2020

China Three CDNs Model-A: 
83.3%, B: 
81.1%, C: 
85.6% 

NA NA Model-A: 
0.925; B: 
0.862; C: 
0.920

Three model 
compared, A 
and C with 
better results

Not done Three-phase CT 
protocol without 
precontrast showed 
similar diagnosis 
accuracy as four-
phase protocol in 
differentiating HCC. 
It can reduce the 
radiation dose

Yasaka et 
al[25], 2018

Japan CNN 84% Category1: 
A: 71%; B: 
33%; C: 94%; 
D: 90%; E: 
100%

NA 0.92 Not applicable Not done Deep learning with 
CNN showed high 
diagnostic 
performance in 
differentiation of 
liver masses at 
dynamic CT

Trivizakis 
et al[28], 
2019

Greece 3D and 2D CNN 83% 93% 67% 0.80 Superior 
compared with 
2D CNN model

Not done 3D CNN architecture 
can bring significant 
benefit in DW-MRI 
liver discrimination 
and potentially in 
numerous other 
tissue classification 
problems based on 
tomographic data, 
especially in size-
limited, disease 
specific clinical 
datasets

Wang et al
[41], 2019

United 
States

Proof-of-concept 
“interpretable” 
CNN

88% 82.9% NA NA Not applicable Not done This interpretable 
deep learning system 
demonstrates proof 
of principle for 
illuminating portions 
of a pre-trained deep 
neural network’s 
decision-making, by 
analyzing inner 
layers and 
automatically 
describing features 
contributing to 
predictions

Frid-Adar 
et al[45], 
2018

Israel GANs Classic 
data: 
78.6%. 
Synthetic 
data: 85.7%

Classic data: 
78.6%. 
Synthetic 
data: 85.7%

Classic data: 
88.4%. 
Synthetic 
data: 92.4%

NA Synthetic data 
augmentation 
is better than 
classic data 
augmentation

Not done This approach to 
synthetic data 
augmentation can 
generalize to other 
medical classification 
applications and thus 
support radiologists’ 
efforts to improve 
diagnosis

Wang et al CNN with Clinical Combined The AUC of the Japan NA NA NA Not done
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[47], 2019 clinical data model: 
0.723. 
Model: A: 
0.788; B: 
0.805; C: 
0825.

model C 
present with 
better results 

combined model is 
about 0.825, which is 
much better than the 
models using clinical 
data only or CT 
image only

Sato et al
[48], 2019

Japan Fully connected 
neural network 
with 4 layers of 
neurons using 
only biomarkers, 
gradient boosting 
(non-linear 
model) and 
others

DLS: 
83.54%. 
Gradient 
boosting: 
87.34%

Gradient 
boosting: 
93.27%

Gradient 
boosting: 
75.93%

DLS: 
0.884. 
Gradient 
boosting: 
0.940

Deep learning 
was not the 
optimal 
classifier in the 
current study

Not done The gradient 
boosting model 
reduced the 
misclassification rate 
by about half 
compared with a 
single tumor marker. 
The model can be 
applied to various 
kinds of data and 
thus could 
potentially become a 
translational 
mechanism between 
academic research 
and clinical practice

Naeem et 
al[49], 2020

Pakistan MLP, SVM, RF, 
and J48 using 
ten-fold cross-
validation 

MLP: 99% NA NA MLP: 
0.983. 
SVM: 
0.966. RF: 
0.964. J48: 
0.959

MLP model 
present with 
better results

Radiopaedia 
dataset

Our proposed system 
has the capability to 
verify the results on 
different MRI and CT 
scan databases, 
which could help 
radiologists to 
diagnose liver tumors

1Five categories: A: Classic hepatocellular carcinomas; B: Malignant liver tumors other than classic and early hepatocellular carcinomas; C: Indeterminate 
masses or mass like lesions (including early hepatocellular carcinomas and dysplastic nodules) and rare benign liver masses other than hemangiomas and 
cysts; D: Hemangiomas; E: Cysts. AUC: Area under the curve; AUROC: Area under the receiver operating characteristic curve; CDNs: Convolutional dense 
networks CNN: Convolutional neural network; CT: Computed tomography; DLS: Deep learning system; DW-MRI: Diffusion weighted magnetic resonance 
imaging; GANs: Generative adversarial networks; HCC: Hepatocellular carcinoma; LI-RADS: Liver Imaging Reporting and Data System; LR: LI-RADS; 
MLP: Multiplayer perceptron; MRI: Magnetic resonance imaging; NA: Not available; RF: Random forest; SVM: Support vector machine.

ination of ML tools. There are many devices that produce images, and there are many 
ways to store data from these exams.

When compared to other DLS, another advantage of the use of CNNs is that it can 
improve the diagnosis by using less images for ML, reducing the time of exam and the 
amount of exposure to radiation[23,43,44]. Moreover, by generating additional 
training samples through data augmentation, the liver lesion classification sensitivity 
and accuracy are enhanced whilst less images are required in the ML process[45]. 
Moreover, the sensitivity, specificity, and accuracy can be manually calculated with 
the confusion matrix. In Table 3, we compare the best ML algorithms for classification
[46].

A DLS has been proposed for the prediction of HCC recurrence, using data from 
computed tomography combined with clinical information[47]. The triple layer model 
including imaging studies, clinical data and a filtering of this data has had the better 
performance, with an area under the receiver operating characteristic curve (AUROC) 
of 0.825. This is way more precise than the current tools are. Furthermore, Sato et al[48] 
proposed a ML model for predicting HCC using data obtained during clinical practice
[48]. The AUROC of the optimal hyperparameter, gradient boosting model, involving 
multiple laboratories and tumor markets was 0.940. However, when compared with 
single tumor markers the AUROC to the prediction of HCC for alpha-fetoprotein, des-
gamma-carboxy prothrombin and alpha-fetoprotein-L3 were 0.766, 0.644 and 0.683, 
respectively. Accordingly, a combination of multiple data can provide a reliable 
diagnostic tool.

A preliminary study has attempted to diagnose liver masses using a CNN without 
the aid of a radiologist, achieving a high accuracy to differentiate HCC from benign 
liver masses, achieving an AUROC of 0.92[25]. In another study, a CNN was designed 
to differentiate HCC from metastatic liver masses on MRI, but this time the DLS used a 
3-D representation, with higher accuracy (83.0% of the 3-D model vs 65.2% of the 2-D 
model)[28]. Nevertheless, the authors stressed that more studies with larger databanks 
are needed to verify the accuracy of this method. Besides that, Naeem et al[49] 
performed a hybrid-feature analysis between computed tomography scans and MRI 
for differentiation of liver tumors using DLS. The accuracy of multilayer perceptron 
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Table 3 Best machine learning algorithms for classification[36]

Algorithm Pros Cons

Naïve Bayes 
Classifier

Simple, easy and fast. Not sensitive to irrelevant features. Works great in 
practice. Needs less training data. For both multi-class and binary 
classification. Works with continuous and discrete data

Accepts every feature as independent. This is not always 
the truth

Decision 
Trees

Easy to understand. Easy to generate rules. There are almost no 
hyperparameters to be tuned. Complex decision tree models can be 
significantly simplified by its visualizations

Might suffer from overfitting. Does not easily work with 
nonnumerical data. Low prediction accuracy for a dataset 
in comparison with other algorithms. When there are 
many class labels, calculations can be complex

Support 
Vector 
Machines

Fast algorithm. Effective in high dimensional spaces. Great accuracy. Power 
and flexibility from kernels. Works very well with a clear margin of 
separation. Many applications

Does not perform well with large data sets. Not so simple 
to program. Does not perform so well when the data 
comes with more noise i.e. target classes are overlapping

Random 
Forest 
Classifier

The overfitting problem does not exist. Can be used for feature engineering 
i.e. for identifying the most important features among all available features in 
the training dataset. Runs very well on large databases. Extremely flexible 
and have very high accuracy. No need for preparation of the input data

Complexity. Requires a lot of computational resources. 
Time-consuming. Need to choose the number of trees

KNN 
Algorithm

Simple to understand and easy to implement. Zero to little training time. 
Works easily with multi-class data sets. Has good predictive power. Does 
well in practice

Computationally expensive testing phase. Can have 
skewed class distributions. The accuracy can be decreased 
when it comes to high-dimension data. Needs to define a 
value for the parameter k

KNN: K-nearest neighbors.

model for hepatoblastoma, cyst, hemangioma, hepatocellular adenoma, HCC and 
metastasis were 99.67%, 99.33%, 98.33%, 99.67%, 97.33% and 99.67% respectively[49]. 
This method can be helpful to reduce human error.

Therefore, despite the advances in DLS for the diagnosis of imaging techniques, 
there are many points that need better development in order to become useful and 
common tools in daily practice. These techniques currently require comparison with 
trained radiologists and the application for many databanks with atypical images to 
achieve better results and the use of less radiation for HCC diagnosis.

We previously presented several DLS applied to liver nodule diagnosis; however, 
they are not able to segment the nodule from the liver in the analyzed images. 
Moreover, automatic nodule segmentation in an image is a challenging task since this 
kind of lesion may show a high variability in shape, appearance and localization and is 
dependent on the equipment, contrast, lesion type, lesion stage and so on[50].

There are some liver nodule segmentation methods available in the literature, and in 
one of them[50] a fully convolutional network architecture was adopted to determine 
an approximation for where the nodule was located on the image. This CNN works on 
four resolution levels, learning local and global image features. The final nodule 
segmentation is obtained by using post-processing techniques and a random forest 
classifier, achieving a quality comparable to a human expert.

However, this method uses hand-crafted features that need the supervision of an 
expert. There are also automatic approaches that can segment the nodule[51], where a 
CNN is used for ML. To refine the segmentation results, this method applies 
conditional random fields to eliminate the false segmentation points in the seg-
mentation results, improving accuracy. However, liver nodule segmentation in general 
still needs improvements to achieve a better accuracy and practical applicability. 
Furthermore, it is necessary for more research effort in DLS to at the same time detect 
the tumor in the liver and segment it on the image.

CONCLUSION
In conclusion, the goal of statistical methods is to achieve conclusions about a 
population from data that are collected from a representative sample of that 
population, such as linear and logistic regression. Therefore, the objective is to 
comprehend the associations among variables. However, as reported by Sidey-
Gibbons and Sidey-Gibbons[36], the primary concern about DLS is an accurate 
prediction. Moreover, explaining the relationship between predictors and outcomes 
when the relationship is non-linear is difficult. However, in several DLS as improving 
navigation, translating documents or recognizing objects in videos, understanding the 
relationship between features and outcomes is less important[46]. In summary, 
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enhancement of DLS features will allow more accurate diagnosis in the medical field. 
For future research, we recommend to test deep learning methods in other datasets (
e.g., other hospitals), develop an easy usable interface and introduce the tool in daily 
medical practice.
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