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Abstract
Early gastrointestinal (GI) cancer has been the core of clinical endoscopic work. Its 
early detection and treatment are tightly associated with patients’ prognoses. As a 
novel technology, artificial intelligence has been improved and applied in the field 
of endoscopy. Studies on detection, diagnosis, risk, and prognosis evaluation of 
diseases in the GI tract have been in development, including precancerous lesions, 
adenoma, early GI cancers, and advanced GI cancers. In this review, research on 
esophagus, stomach, and colon was concluded, and associated with the process 
from precancerous lesions to early GI cancer, such as from Barrett’s esophagus to 
early esophageal cancer, from dysplasia to early gastric cancer, and from 
adenoma to early colonic cancer. A status quo of research on early GI cancers and 
artificial intelligence was provided.

Key Words: Artificial intelligence; Early esophageal cancer; Early gastric cancer; Early 
colonic cancer
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Core Tip: Diagnosis and management of early gastrointestinal (GI) cancer is one of the 
cores of clinical practice. Endoscopy is the indispensable tool for standard surveillance 
and management. Artificial intelligence is a novel technology used in some fields of 
cancer including early GI cancer. Therefore, we provide an overview and introduce 
how artificial intelligence can be applied to endoscopy on early GI cancer mainly 
including esophagus, stomach, and colon from the point of view of the clinical 
diagnosis and management guidelines. Studies with quality control on the diagnosis 
and management of early GI cancer and their precancerous lesions have also been 
concluded.
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INTRODUCTION
Artificial intelligence (AI) is essentially a process of learning human thinking and 
transferring human experience. Recognizing images based on artificial neural 
networks/convolutional neural networks (CNNs) is one of the novel and main fields 
of AI. Computer-aided diagnosis (CAD) systems are designed to interpret medical 
images using advances in AI from method learning to deep learning (DL) and includes 
mainly three groups (CADe, CADx, and CADm)[1].

AI has been widely involved in cancer[2]. In regard to digestive cancer, it has been 
utilized to find more intelligent ways to facilitate detection, diagnosis, risk evaluation, 
and prognosis. For instance, radiomics machine learning signature for diagnosing 
hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules was 
also validated in a multicenter retrospective cohort, which could enhance clinicians’ 
decisions[3].

In the aspect of pancreatic cancer, it continues to be one of the deadliest 
malignancies with less than 10% overall survival rate. Survival rates will increase if 
pancreatic cancer can be detected at an early stage[4]. Intraductal papillary mucinous 
neoplasms are precursor lesions of pancreatic adenocarcinoma. A DL model was 
shown to be a more accurate and objective method to diagnose malignancies of 
intraductal papillary mucinous neoplasms in comparison to human diagnosis and 
conventional endoscopic ultrasonography (EUS) images[5]. Pancreatic cystic lesions 
are also precursors of pancreatic cancer. Radiomics utilizing quantitative image 
analysis to extract features in conjunction with machine learning and AI methods 
helped differentiate benign pancreatic cystic lesions from malignant ones[6]. An 
artificial neural network was trained to help predict pancreatic ductal adenocarcinoma 
based on gene expression[7]. An AI-assisted CAD system using DL analysis of EUS 
images was efficient to help detect pancreatic ductal carcinoma[8]. The artificial neural 
network model could accurately predict the survival of pancreatic adenocarcinoma 
patients as a useful objective decision tool in complex treatment decisions[9].

In this review, we concluded the application and research of AI based on 
endoscopic examination related to early gastrointestinal (GI) cancer mainly including 
esophagus, stomach, and colon. The progression of carcinogenesis from Barrett’s 
esophagus (BE) to early esophageal cancer (EEC), from dysplasia to early gastric 
cancer (EGC), and from adenoma to early colonic cancer (ECC) were reviewed in 
detailed as well as related AI research on the histopathology and invasion depth 
detection of these GI cancer.

LITERATURE SEARCH
This review was aimed to make a qualitative only review of the application of AI on 
early GI cancer. We searched the PubMed database for articles that were published in 
the last 5 years using the term combinations of AI/DL and EEC, esophageal squamous 
cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), EGC, and ECC for early GI 
cancer, and term combinations of AI/DL and precancerous lesions [BE/ 
dysplasia/chronic atrophic gastritis (CAG)/gastric intestinal metaplasia/Helicobacter 
pylori/adenoma/polyp/inflammatory bowel diseases] for precancerous lesions of 
early GI cancer. Endoscopic-related results were qualitatively concluded in Table 1.

SEARCH RESULTS
Initially, a total of 424 articles were identified. After manually screening and reading, 
22 studies were tabulated in Table 1, and 2 prospective studies on detecting adenoma 
were also added in Table 1. Meanwhile, 13 studies on precancerous lesions of early GI 
cancer were showed in the review. The flowchart was presented in Figure 1.

https://www.wjgnet.com/2689-7164/full/v2/i4/185.htm
https://dx.doi.org/10.37126/aige.v2.i4.185


Yang H et al. AI and early GI cancer

AIGE https://www.wjgnet.com 187 August 28, 2021 Volume 2 Issue 4

Table 1 Early gastrointestinal cancer and artificial intelligence

Ref. Target 
disease 

Prospective/ 
retrospective AI Endoscopy 

image
Training 
dataset

Validation 
dataset Sensitivity Specificity

Accuracy1

/AUC

[1] Diagnosing 
ESCC and 
EAC

Retrospective CNNs 
(SSD)

WLI and NBI 8428 
images

1118 images 98% 95% 98%1

[2] Diagnosing 
ESCC

Retrospective CAD 
(SegNet)

NBI/videos 6473 
images

6671 images 98.04% 95.03% 0.989

[3] Detecting 
EEC and BE

Retrospective CAD 
(ResNet-
UNet)

WLI 494364 
images

1704 images 90% 88% 89%1

[4] Detecting 
E/J cancers

Retrospective CNNs 
(SSD)

WLI and NBI 3443 
images

232 images 94% 42% 66%1

[5] Detecting 
ESCC

Retrospective DCNNs-
CAD

NBI 2428 
images

187 images 97.80% 85.40% 91.4%1

[6] Diagnosing 
BE and EAC

Retrospective CAD 
(ResNet)

WLI and NBI 148/100 Leave-one 
patient-out 
cross 
validation

97%(WLI)/94%(NBI) 88% 
(WLI)/80%(NBI)

[7] Diagnosing 
ESCC

Retrospective CAD (FCN) ME-NBI 3-fold cross-
validation

[8] Detecting 
EAC

Retrospective CNNs 
(SSD)

WLI 100 images 96% 92%

[9] Detecting 
EGC

Retrospective CNNs WLI 348943 
images

9650 images 80.00% 94.80%

[10] Diagnosing 
EGC

Retrospective CNNs WLI 21217 
images

1091 images 36.8 91.20%

[11] Diagnosing 
EGC

Retrospective CNNs 
(Inception-
v3)

ME-NBI 1702 
images

170 images 91.18% 90.64% 90.91%1

Detection 
(0.981)

[12] Diagnosing 
EGC

Retrospective CNNs 
(VGG16)

WLI 896 t1a-
EGC and 
809 t1b-
EGC

5-fold cross-
validation

Depth 
prediction 
(0.851)

[13] Detecting 
EGC

Retrospective CNNs 
(VGG16 
and 
ResNet-50)

WLI/NBI/BLI 3170 
images 

94.00% 91.00% 92.5%1

[14] Diagnosing 
EGC

Retrospective CNNs 
(ResNet-50)

WLI 790 
images

203 images 76.47% 95.56% 89.16%1

[15] Detecting 
EGC

Retrospective CNNs 
(SSD)

WLI 13584 
images

2940 images 58.40% 87.30% 0.76

[16] Classifying 
EGC

Retrospective CNNs 
(Inception-
ResNet-v2)

WLI 5017 
images

5-fold cross-
validation

0.85

[17] Diagnosing 
EGC

Retrospective CNNs 
(ResNet-50)

ME-NBI 4460 
images 

1114 images 98% 100% 98.7%1

[18] Detecting 
and 
localizing 
colonic 
adenoma

Representative CNNs 
(VGG16,19, 
ResNet50)

WLI and NBI 8641 
images/9 
videos, 11 
videos

Cross-
validation

[19] Detecting 
ECC

Representative CNNs WLI 190 
images

3-fold cross-
validation 

67.50% 89.00% 81.2%1

/0.871

[20] Classifying 
ECC

Representative CNNs 
(ResNet-
152)

WLI 3-fold cross-
validation

95.40% 30.10%

Detecting 
colonic 

[21] Prospective Cade 1058 patients ADR (29.1% vs 20.3%)
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adenoma

[22] Detecting 
colonic 
adenoma

Prospective Cade 962 patients ADR (34% vs 28%)

1Accuracy is with “1” and AUC is without “1”, e.g., 100%1 means accuracy is 100%.
ADR: Adenoma detection rates; AI: Artificial intelligence; AUC: Area under the curve; BE: Barrett’s esophagus; BLI: Bright light imaging; CAD: Computer-
aided diagnosis; CNN: Convolutional neural network; DCNN: Deep convolutional neural network; EAC: Esophageal adenocarcinoma; ECC: Early colonic 
cancer; EEC: Early esophageal cancer; EGC: Early gastric cancer; E/J: Esophagogastric junctional; ESCC: Esophageal squamous cell carcinoma; ME-NBI: 
Magnifying narrow band imaging; NBI: Narrow-band imaging; SSD: Single-Shot Multibox Detector; WLI: White-light imaging.

Figure 1 Flow chart of study selection and logic arrangement of review. BE: Barrett’s esophagus; CAG: Chronic atrophic gastritis; EAC: Esophageal 
adenocarcinoma; ECC: Early colonic cancer; EEC: Early esophageal cancer; EGC: Early gastric cancer; ESCC: Esophageal squamous cell carcinoma; GI: 
Gastrointestinal; GIM: Gastric intestinal metaplasia; H. pylori: Helicobacter pylori; IBD: Inflammatory bowel diseases.

AI AND EEC FROM PRECANCEROUS LESIONS TO EEC
Esophageal cancer is one of most common cancers related to a considerable decline in 
health-related quality of life and a reduction in survival rate. ESCC and EAC are two 
main histological types. Many patients with ESCC have a history of heavy tobacco and 
alcohol use[10] as well as other risk factors including polycyclic aromatic hydro-
carbons, high-temperature foods, diet, oral health, microbiome, and genetic factors
[11]. Some risk factors for EAC have been considered mainly as gastroesophageal 
reflux disease, BE, obesity, and tobacco smoking as well as genetic variants[12]. 
Chronic gastroesophageal reflux disease can cause metaplasia from the native 
squamous cell mucosa to a specialized columnar epithelium[13]. BE and dysplasia in 
squamous epithelium are precancerous lesions to EAC and ESCC, respectively, and 
they are supposed to be as one of the main aims of early diagnosis. Endoscopic 
diagnosis of EEC, white-light imaging (WLI), iodine staining, narrow-band imaging 
(NBI), and biopsy have been widely used clinically[14].

There is also study on AI being involved in preclinical stage. For instance, the 
diagnostic ability of AI using DL to detect esophageal cancer including superficial and 
advanced squamous cell carcinoma and adenocarcinoma was characterized as highly 
sensitive (98%) and efficient based on WLI images. Small cancer lesions less than 10 
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mm in size could be detected[15].
In terms of EAC, AI using DL to diagnose superficial esophagogastric junctional 

adenocarcinoma showed favorable sensitivity (94%) and acceptable specificity (42%) of 
WLI images compared with experts[16]. A CAD using DL (CAD-DL) model was 
trained by two datasets based on two different kinds of images (WLI and NBI images) 
used to detect early EAC. The diagnosis of EAC by CAD-DL reached sensiti-
vities/specificities of 97%/88% for WLI images and sensitivities/specificities of 
94%/80% for NBI images, respectively (Augsburg dataset) and 92%/100% (another 
dataset) for WLI images[17]. Additionally, one research compared several AI methods 
including regional-based CNN (R-CNN), Fast R-CNN, Faster R-CNN, and Single-Shot 
Multibox Detector. Single-Shot Multibox Detector outperformed other methods 
achieving a sensitivity of 96% in automatically identify EAC[18].

In terms of ESCC, the endocytoscopic system (ECS) helps in virtual realization of 
histology. The CNN method was applied to detect ESCC with an overall sensitivity of 
92.6% based on ECS images aimed at replacing biopsy-based histology[19]. NBI is 
currently regarded as the standard modality for diagnosing ESCC. A CNN model was 
applied to detect ESCC based on NBI images and showed significantly higher 
sensitivity (91%), specificity (51%), and accuracy (63%) than those of endoscopic 
experts[20]. Besides NBI and ECS, AI was also applied in magnified endoscopy (ME). 
The accuracy, sensitivity, and specificity of AI based on ME images were 89%, 71%, 
and 95% for the AI system, respectively[21]. Accuracy, sensitivity, and specificity with 
WLI images were 87%, 50%, and 99%, respectively. Furthermore, as endoscopic 
resection (ER) is often used to treat ESCC when invasion depths are diagnosed as 
intraepithelial–submucosal layer (tumor invasion is within 0.5 mm of the muscularis 
mucosae). The invasion depth of superficial ESCC was also calculated by a CNN 
method based on WLI and NBI images, which demonstrated higher accuracy. The 
diagnosis accuracy of the CNN method was higher in the intraepithelial-lamina 
propria and muscularis mucosa groups (91.2% and 91.4%, respectively) than that in 
the submucosal layer group (67.8%)[22].

Recently, there have been some application and research of AI on precursor lesions 
of EEC including BE and dysplasia in squamous epithelium. For instance, AI could 
enhance the image of volumetric laser endomicroscopy to facilitate the surveillance BE
[23]. The CNN method was developed to recognized early esophageal neoplasia in BE. 
It could correctly detect early neoplasia with the sensitivity of 96.4%, the specificity of 
94.2%, and the accuracy of 95.4%. In addition, the object detection algorithm was able 
to draw a localization box around areas of dysplasia with a mean average accuracy of 
75.33% and sensitivity of 95.60%[24]. Another similar research demonstrated that a 
CAD system used five independent endoscopy datasets to detect early neoplasia in 
patients with BE. In dataset 4, the CAD classified images as containing neoplasms or 
non-dysplastic BE with 89% accuracy, 90% sensitivity, and 88% specificity. The CAD 
also identified the optimal site for biopsy of detected neoplasia in 97% of cases in 
dataset 4[25].

Moreover, AI was also applied in esophageal histopathology; attention-based deep 
neural networks were used to detect cancerous and precancerous esophagus tissue on 
histopathological slides. Classification accuracies of the proposed model were 85% for 
the BE-no-dysplasia class, 89% for the BE-with-dysplasia class, and 88% for the 
adenocarcinoma class[26].

AI AND EGC FROM CAG AND DYSPLASIA TO EGC
EGC is dened as a cancer conned to the mucosa or submucosa, regardless of lymph 
node metastasis (LNM). Standard WLI and image enhancement endoscopy, such as 
NBI and ME, have been widely used in screening and surveillance of EGC as well as 
EUS, which can enable the precise assessment of the risk of LNM of EGC[27]. Risk 
factors include Helicobacter pylori infection, age, high salt intake, diets low in fruit and 
vegetables, and genetic factors[28]. ER is a minimally invasive treatment for EGC with 
negligible risk of LNM[29]. Patients with CAG, intestinal metaplasia, or dysplasia are 
at risk for gastric adenocarcinoma and are recommended to accept the regular 
endoscopic surveillance. Virtual chromoendoscopy can guide biopsies for staging 
atrophic and metaplastic changes and can target neoplastic lesions[30]. The 5-year 
survival rate of EGC patients is significantly higher than that of advanced GC patients
[31,32]. Early detection and treatment are always one of the top priorities.

In regard to the application of AI in EGC, there are some considerations both related 
on the promise such as the benefits for endoscopists and patients and limitations[33]. 
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To detect and diagnose EGC via ME with NBI (ME-NBI) requires considerable 
experience; AI-assisted CNN CAD system based on ME-NBI images was constructed 
to diagnose EGC, and the overall accuracy, sensitivity, and specificity of the CNN 
were 98.7%, 98.0%, and 100%, respectively, in a short period of time[34]. Different 
deep CNN methods have been designed (such as VGG, Single-Shot Multibox Detector, 
and ResNet) based on different image types (such as WLI, NBI, and chromoen-
doscopy) and mucosal backgrounds (normal mucosa, superficial gastritis, and erosive 
mucosa) (shown in Table 1). There was also research on differentiating EGC from 
gastritis[35] and peptic ulcer[36] achieving reliable accuracy.

Moreover, training with video is considered to improve accuracy in a real clinical 
setting. A CNN model based on videos demonstrated a high detection rate (94.1%) 
with a high processing speed[37]. Furthermore, CNN-CAD was applied to diagnose 
the invasion depth of GC based on WLI images and distinguish EGC from advanced 
GC, with the sensitivity of 76.47%, specificity of 95.56%, and accuracy of 89.16%[38]. 
Another model was also involved in invasion depth. For instance, a CNN method 
(lesion-based VGG-16 model) was used to classify EGC with of sensitivity (91.0%), 
specificity (97.6%), and accuracy (98.1%), respectively. The prediction of invasion 
depth achieved sensitivity (79.2%), specificity (77.8%), and accuracy (85.1%), 
respectively, higher than results of non-lesion-based models, indicating a lesion-based 
CNN was an appropriate training method for AI in EGC[39].

In terms of histopathology, a CNN model trained with pixel-level annotated 
hematoxylin and eosin stained whole slide images achieved a sensitivity near 100% 
and an average specificity of 80.6% in diagnosing GC, aimed at alleviating the 
workload and increasing diagnostic accuracy[40]. Similarly, AI automatically classified 
GC in hematoxylin and eosin stained histopathological whole slide images from 
different groups and demonstrated favorable results[41,42]. Besides endoscopic 
images, machine learning based on radiographic-radiomic images could help predict 
adverse histopathological status of GC[43]. Dual-energy computed tomography based 
DL radiomics could improve LNM risk prediction for GC[44]

In the aspect of gastric precancerous conditions, the application of AI has also been 
focused. For example, atrophic gastritis, as a kind of precancerous condition was 
diagnosed by the pretrained CNN based on WLI images achieved an accuracy of 93% 
in an independent dataset, outperforming expert endoscopists[45]. The CNN method 
was trained by WLI images of gastric antrum in diagnosing CAG, and the diagnostic 
accuracy, sensitivity, and specificity were 94.2%, 94.5%, and 94.0%, respectively, which 
were higher than those of experts. The further detection rates of mild, moderate, and 
severe atrophic gastritis were 93%, 95%, and 99%, respectively[46]. Helicobacter pylori 
infection, as a dominant cause of CAG and GC, has also been detected via AI method 
based on endoscopic images, such as CNN (GoogLeNet) and CNN (ResNet-50 model), 
and achieved the higher accuracy and reliability in a considerably shorter time[47-49].

AI AND ECC FROM POLYPS AND ADENOMA TO ECC
ECC has been defined as a carcinoma with invasion limited to the submucosa 
regardless of lymph node status and according to the Royal College of Pathologists as 
TNM stage T1NXM0[50]. If the dysplasia is restricted to the layer of epithelium, it is 
defined as low-grade or high-grade intraepithelial neoplasia. Mild or moderate 
dysplasia is the pathological character of low-grade intraepithelial neoplasia, and 
severe dysplasia is the pathological character of high-grade intraepithelial neoplasia or 
preinvasive carcinoma[51]. Colonic precancerous lesions include traditional serrated 
adenoma and sessile serrated adenoma/polyps[52,53]. The submucosal invasion in 
clinical practice is considered as the superficial depth of tumor invasion and further as 
a surrogate for nominal LNM risk. Meanwhile, it can be a general criterion to identify 
whether patients are eligible for local ER or surgery[54]. Curative ER is indicated for 
lesions confined to the mucosal layer or invading less than 1 mm into the submucosal 
layer[50]. Endoscopic screening is proven to decrease the risk of disease-specific 
morbidity and mortality[55]. Current guidelines recommend screening beginning at 
age 50 and continuing until age 75 with fecal immunochemical test every year, flexible 
sigmoidoscopy every 5 years, and/or colonoscopy every 10 years[56]. Early diagnosis 
and treatment are pivotal. When colon carcinoma is detected in a localized stage, the 5-
year relative survival is 91.1%. However, the 5-year relative survival of colon 
carcinoma patients with regional metastasis or distant metastasis were 71.7% and 
13.3%, respectively[57].
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AI has been widely involved in the research of ECC on the aspect of detection, 
diagnosis, classification, invasion depth, and histopathology as well as inflammatory 
bowel diseases associated with inflammation-dysplasia-colon cancer pattern. 
Regarding the detection and diagnosis, a research trained Faster R-CNN with VGG16 
based on WLI images and videos covering ECC (Tis or T1) and precursor lesions 
including hyperplastic polyps, sessile serrated adenoma/polyps, traditional serrated 
adenoma, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, 
and submucosal invasive cancer was conducted. It showed the sensitivity and 
specificity were 97.3% and 99.0%, respectively[58]. Another research used two CNN 
methods trained by WLI images. ResNet-152 showed a higher mean area under the 
curve for detecting tubular adenoma + lesions (0.818), and the mean area under the 
curve for detecting high-grade intraepithelial neoplasia + lesions reached 0.876 by 
ResNet-v2[59]. Regarding the invasion depth, for deeply invasive cT1 (SM) (hereafter, 
cT1b) or deeper colorectal cancer (CRC), there is a 10%–15% or higher risk of lymph 
node metastases. Further surgical resection including lymph node dissection is 
required[60]. For an accurate depth of invasion diagnosis, the CNN method was used 
to assist in cT1b diagnosis and demonstrated that cT1b sensitivity, specificity, and 
accuracy were 67.5%, 89.0%, and 81.2%, respectively[61].

In the research of AI application in precancerous lesions such as polyps, there has 
been some research of AI, especially retrospective research related to polyp detection 
and diagnosis with high accuracy[62,63]. For example, a local-feature-prioritized 
automatic CADe system could detect laterally spreading tumors and sessile serrated 
adenoma/polyps with high sensitivity from 85.71% to 100%[64]. Besides retrospective 
research, AI has been designed into some associated prospective research. For 
instance, a multicenter randomized trial used CAD to detect colorectal neoplasia. It 
showed a significant increase in adenoma detection rates and adenomas detected per 
colonoscopy without increasing withdrawal time (54.8% vs 40.4%). Additionally, the 
detection rate of adenomas 5 mm or smaller was significantly higher in the CAD 
group (33.7%) than in the control group[65]. Another randomized study used CAD to 
detect adenomas and achieved increased adenoma detection rates (29.1% vs 20.3%) 
and the mean number of adenomas per patient (0.53 vs 0.31). Similarly, a higher 
number of diminutive adenomas were found (185 vs 102)[66]. In addition, inflam-
matory bowel diseases including Crohn’s disease and ulcerative colitis are also 
associated precancerous lesions, and some AI methods aiding in scoring have been 
trained, such as DL model in grading endoscopic disease severity of patients with 
ulcerative colitis[67] and in predicting remission in patients with moderate to severe 
Crohn’s disease[68].

In the aspect of histopathology, AI has been used in ECC and precancerous lesions. 
A systematic review has concluded that AI use in CRC pathology image analysis 
included gland segmentation, tumor classification, tumor microenvironment charac-
terization, and prognosis prediction[69]. A DL approach was developed to recognize 
four different stages of cancerous tissue development, including normal mucosa, early 
preneoplastic lesion, adenoma, and cancer and obtained an overall accuracy more than 
95%[70]. Prediction of LNM for early CRC is critical for determining treatment 
strategies after ER. An LNM prediction algorithm for submucosal invasive (T1) CRC 
based on machine learning showed better LNM predictive ability than the conven-
tional method on some datasets[71-82].

PROSPECTS AND CHALLENGES OF AI APPLICATION ON EARLY GI 
CANCER
Endoscopy is usually the first choice in the diagnosis and management of early GI 
cancer. According to the Clinical Practice Guideline, ER is now a standard treatment 
for early GI cancers without regional LNM. Early GI cancers can completely be 
removed by en bloc fashion (resection of a tumor in one piece without visible residual 
tumor) via endoscopic mucosal resection and/or endoscopic submucosal dissection. 
High-definition white light endoscopy, chromoendoscopy, and image-enhanced 
endoscopy such as ME-NBI can be used to assess the edge and depth of early GI 
cancers for delineation of resection boundaries and prediction of the possibility of 
LNM before the decision of ER. Histopathological evaluation can confirm the depth of 
cancer invasion and lymphovascular invasion[83]. From this review, we can see AI as 
a novel technology has been penetrated in early GI cancer detection, diagnosis, 
boundaries, invasion depth, lymphovascular invasion, and prognosis prediction based 
on endoscopic images and videos and pathological tissue slides obtained after ER.



Yang H et al. AI and early GI cancer

AIGE https://www.wjgnet.com 192 August 28, 2021 Volume 2 Issue 4

Both high-quality endoscopy and high-quality AI model construction research are 
crucial to ensure better health outcomes and benefits of patients. Some AI methods 
have been designed to identify and assure the quality of endoscopy to improve the 
detection rate of early GI cancer. In upper GI tract, missed EGC rates are an important 
measure of quality. A deep CNN model was built to monitor blind spots, time the 
procedure, and automatically generate photo-documentation during esophago-
gastroduodenoscopy[84]. Meanwhile, in colonoscopy, poorer adenoma detection rates 
are associated with poorer outcomes and higher rates of post-colonoscopy colonic 
cancer[85]. A deep CNN model was developed for timing withdrawal phase, 
supervising withdrawal stability, evaluating bowel preparation, and detecting 
colorectal polyps[86].

In the aspect of quality control of AI studies related to endoscopy, some limitations 
should be concerned. Different CNN models have demonstrated high accuracies or 
area under the curve and 7 out of 22 more than 90%/0.9 with high sensitivities and 
specificities in Table 1. These limitations were concentrated on the retrospective 
research, the single center, the small sample number, still images, background images, 
the only use of high-quality images, and not all images with lesions identified by gold 
standard such as pathology. They may discount the reliability of the results. As most 
endoscopic-related algorithms are trained in a supervised manner, labeling data is 
important. Meanwhile, videos and large, heterogenous, and prospectively collected 
data are less prone to biases[87].

CONCLUSION
AI has been widely used in medicine, although most studies have remained at the 
preclinical stage. In this review, we provided an overview of the associated application 
of AI in early GI cancer including EEC, EGC, and ECC as well as their precancerous 
lesions. Detection, diagnosis, classification, invasion depth, and histopathology have 
been involved. Indeed, AI will bring benefits to patients and doctors. It will provide 
useful support during endoscopies to achieve more precise diagnosis of early GI 
cancer after more intelligent detection and biopsy with high efficiency and reduce 
workload to fill the lack of clinical resources in the future.
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