
haemochromatosis, autoimmune liver diseases and actually 
any disease that results in chronic inflammation of  the 
liver. In order to understand how chronic inflammation 
and cirrhosis lead to initiation and progression of  
HCC extensive research on molecular events has been 
undertaken. Several intracellular signaling pathways 
have been closely associated with HCC: p53 pathway 
and DNA alteration, retinoblastoma (Rb) pathway and 
regulation of  cell cycle, transforming growth factor-beta 
(TGF-β) and inhibition of  cellular growth, and Wnt/
beta-catenin pathway and cellular adhesion and signal 
transduction[1]. Deregulation in these different pathways 
favors the development of  liver tumor. Conceptually, 
hepatocarcinogenesis is based on two main principles: 
(1) the activation of  genes such as oncogenes (c-myc, 
β-catenin), growth factor (IGF-Ⅱ, TGF-α) and telomerase 
enzyme inducing cellular immortalization and (2) the 
inactivation of  genes called tumor suppressor genes (for 
example p53 and Rb) Their expressions can be affected 
by different modifications such as promoter methylation, 
mutations, biallelic loss and loss of  heterozygosity (LOH). 
In liver cancer, chromosomal aberrations are frequently 
observed on chromosome 1, 4, 5, 6, 8, 9, 10, 11, 13, 16, 17, 
20 and 22 sharing the complexity of  hepatocarcinogenesis. 
Moreover, if  some mutations are associated with initiation 
of  carcinogenesis, other genetic alterations promote 
progression and clone divergence in tumors[2,3]. 

This review addresses the various tumor suppressors, 
which have been implicated in HCC (Table 1). Specifically, 
we discuss their function and involvement in the initiation 
or progression of  HCC as well as their mechanisms of  
inactivation.  

p53 AND ITS PATHWAY
p53
TP 53 gene, located on chromosome 17p13.1, encodes a 
53 kDa DNA-binding transcription factor. The protein 
p53 is implicated in the control of  cell cycle, apoptosis, 
DNA repair and angiogenesis. p53 activation has been 
related to various cellular and environmental changes 
including: (1) DNA damage (induced by UV light, gamma 
rays, X rays, and inhibition of  topoisomerases), (2) cellular 
stress (hypoxia, disruption of  cell adhesion) independent 
of  DNA damage and (3) activation of  growth signaling 
pathways[4,5]. p53 gene is a haploinsufficient tumor 
suppressor gene[6,7]. The loss of  p53 activity has been 
described in many types of  human tumors, particularly 
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Abstract
A few signaling pathways are driving the growth of 
hepatocellular carcinoma. Each of these pathways 
possesses negative regulators. These enzymes, which 
normally suppress unchecked cell proliferation, are 
circumvented in the oncogenic process, either the over-
activity of oncogenes is sufficient to annihilate the 
activity of tumor suppressors or tumor suppressors 
have been rendered ineffective. The loss of several key 
tumor suppressors has been described in hepatocellular 
carcinoma. Here, we systematically review the evidence 
implicating tumor suppressors in the development of 
hepatocellular carcinoma.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common 
form of  primary hepatic tumor and is one of  the most 
common cancers worldwide. HCC usually develops in 
patients with cirrhosis. Cirrhosis may be caused by viral 
hepatitis (primarily hepatitis B and C), alcohol, hereditary 
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in 30%-60% of  HCC. In many cases, these alterations 
contribute to progression and not to initiation of  HCC[8]. 
In terms of  prognosis, p53 alterations are generally 
associated with larger, less differentiated tumors and poor 
survival[9]. Recently, Lowe and its team observed that 
senescence program in correlation with the innate immune 
system turn off  the tumor development after restoration 
of  p53 expression in liver tumor cells[10]. Different studies 
described that p53 is regulated by methylation of  its CpG 
islands in HCC[11,12] but its expression is mainly regulated 
by genetic mutations. Mutations affecting p53 are diverse 
by their nature and position. The p53 gene is altered 
by allelic deletion and punctual mutation concentrated 
between exons 4 and 9 of  the coding region containing 
the DNA binding domain. Amongst these mutations, 
the transversion in codon 249 (G→T), which causes an 

arginine to serine (R→S) substitution is present in 50% 
of  HCCs. This genetic alteration can be a consequence 
of  exposure to aflatoxin B1 (AFB1) which is a mycotoxin 
found in contaminated foods (like corn, rice, and peanuts) 
particularly in African and Asian countries[13,14]. Kirk have 
proposed the use of  p53 mutant DNA as a biomarker for 
AFB1 exposure[15]. Mutated R249S p53 protein expression 
may induce (1) an inhibition of  apoptosis[16], (2) inhibition 
of  p53 mediated transcription[17] and (3) stimulation of  
liver cell growth in vitro[18-20]. Like AFB1, the hepatitis B 
virus (HBV) affects the activity of  p53 by inducing DNA 
damage and mutating the p53 gene. Synergism between 
AFB1 and HBV has been described[21,22]. The X gene of  
HBV (HBx) encodes a protein of  154 amino acids, which 
is a viral transcriptional co-activator capable of  activating 
the expression of  several proteins such as oncogenes 

Table 1  Summary of tumor suppressor regulated in HCC

Symbol Name Location
Haplo-

insufficiency
Downregulation 

in HCC Mechanism of regulation Etiology

Mutation Methylation Chromosome 
change

Protein 
overcrossing

p53[3,12-14,21,23,29,31-33,180] Tumor protein p53 17p13.1 Yes Yes √ √ AFB1
HBV
HCV
Cirrhosis

p21[51-53] Cyclin-dependent 
kinase inhibitor 1A

6p21.2 Yes Yes p53 HBV
HCV

p27[60] Cyclin-dependent 
kinase inhibitor 1B

12p13.1-12p Yes Yes √ cirrhosis

p16[38, 66-68] Cyclin-dependent 
kinase inhibitor 2A

9p21 Yes √ √ AFB1

p14ARF[38] Cyclin-dependent 
kinase inhibitor 2A

9p21 Yes √ √ HCV
Cirrhosis

E-cadherin[70-73] E-cadherin 16q22.1 Yes √ HBV
HCV

Axin 1[74-76,78,79] Axis inhibitor 1 16p13.3 Yes √ √ HBV
HCV

Axin 2[75,78,79] Axis inhibitor 2 17q23-q24 Yes √ √
APC[81-84] Adenomatosis 

polyposis coli
5q21-q22 Yes √ √ √ HBV

HCV
SOCS1[89-90] Suppressor of 

cytokine signaling 1
16p13.13 Yes √ √ HCV 

Cirrhosis
SOCS3[93,94] Suppressor of 

cytokine signaling 3
17q25.3 Yes √

RASSF1A[83,104,105] Ras association 
(ralGDS/AF-6) 
domain family 1

3p21.3 Yes √ √ AFB1
HBV
HCV

NORE1[94-108] Ras association 
(ralGDS/AF-6) 
domain family 5

1q32.1 Yes √ HBV
HCV
Cirrhosis

KLF6[116,119] Kruppel-like factor 6 10p15 Yes √ √ √ HBV
HCV
Cirrhosis

PTEN[123,127,128,130] Phosphatase and 
tensin homolog

10q23.3 Yes Yes √ mTOR AFB1
HBV

Hint1 Histidine triad nucleotide 
binding protein

5q31.2 Yes n.d n.d n.d n.d n.d

Hint2[144] Histidine triad nucleotide 
binding protein 2

9p13.3 Yes n.d n.d n.d n.d

FHIT[149-151,154,157] Fragile histidine 
triad gene

3p14.2 Yes Yes √ √ HBV
HCV
Cirrhosis

WWOX[160] WW domain containing 
oxidoreductase

16q23.3-q24 Yes √ AFB1

PARK2[173] Parkin 6q25.2-q27 Yes
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(c-myc, c-fos), cellular growth factors and cytokines. 
Protein X inactivates various functions of  p53[3,23] such 
as apoptosis[17,24-27] and transcriptional activation[28]. 
Concerning HCV, the non-structural protein NS2-5 
seems to deregulate the actions of  factors controlling 
hepatocellular proliferation by inhibiting p21WAF and 
sequestering p53[29]. In transgenic mice, HCV core 
protein has been found in vivo to stimulate the initiation 
and development of  tumor with the same histological 
characteristics of  human HCC[30]. HCV core protein may 
interact directly with p53 and p73[31-33]. 

In HCC, p53 level and activity are modulated by 
different proteins such as MDM2 (murine double minute 2) 
and p14ARF (Alternative Reading Frame). Oncogenic MDM2 
protein contains a p53-DNA binding site and induces 
p53 degradation by ubiquitination and proteolysis[34,35]. 
However, auto-regulatory feedback loop of  MDM2-p53 
controls the function and expression of  p53 and MDM2, 
respectively[36]. However, the activity of  MDM2 is inhibited 
by ARF tumor suppressor protein[37]. This protein is 
encoded by INK4a/ARF locus on chromosome 9p21, 
which is frequently affected by hypermethylation and 
mutations in HCC[38]. In the clinical treatment strategy 
of  HCC, the reactivation of  p53 protein is focused on 
stabilization of  p53 activity, over-expression of  ARF protein 
and inactivation of  MDM2-p53 interaction[39]. In animals, 
different small molecules such as nutlins and PRIMA-1 
inactivate MDM2 and increase p53 activity[40,41]. Loss of  
cell cycle check-point control by mutation of  p53 has been 
suggested to stimulate the metastasic potential of  HCC via 
over-expression of  L2DTL[42]. Ubiquitination and protein 
stability of  p53 are regulated by a complex regrouping 
L2DLT, CDT2 and PCNA[43]. In contrast, TIP30, which is 
known to inhibit cell proliferation and tumorigenesis, may 
act as a hepatocarcinogenetic tumour suppressor[44]. This 
protein diminishes Bcl2/Bcl-x expression and augments 
p53 expression[45]. TIP30 mutants inhibited the expression 
of  tumor suppressor genes such as p53 and E-cadherin 
whereas they induced positive regulation of  oncogenic 
genes expression such as N-cadherin and c-Myc[46]. 
Immunohistochemical analysis of  HCC and normal liver 
showed that a 33 kDa protein called ING1 (inhibitor of  
growth-1, p33 (ING1)) is expressed at a lower level in HCC. 
Lower ING1 protein level was associated with enhanced 
cyclin E kinase activity[47]. Recently, Zhu and co-workers 
proposed that p33 (ING1b) and p53 work in tandem to 
enhance apoptosis, cell cycle arrest and to inhibit cell growth 
in HCC. Combined expression of  p33 and p53 augments 
p21 (WAF1/CIP1) protein causing an arrest of  cell cycle at 
stage G0/G1 and enhancing apoptosis[48]. The p53 pathway 
is intercrossing with other tumor suppressors as p21, p27 
and p16, which are described below. 

p21
p53 directly controls a gene encoding for a protein 
named p21WAF/CIP1 (p21). This protein, whose gene is 
located on chromosome 6p21.2, acts as haploinsufficient 
tumor suppressor gene[49]. It functions as an inhibitor 
of  cyclin-dependent kinases (cyclin-CDK2, CDK4) 
and interacts with proliferating cell nuclear antigen 

(PCNA), a DNA polymerase accessory factor. This 
protein has a regulatory role in the cell cycle, S phase 
DNA replication and DNA damage repair. p21 has also 
been described to activate the caspase 3 protein and thus 
induce apoptosis. A reduction of  p21 expression was 
observed in HCC[50]. Moreover, tumor progression and 
poor outcome of  HCC were associated at disruption 
of  p53-p21/WAF1 cell cycle pathways[51]. In a study 
addressing p53 expression and apoptosis, high p53 
expression was associated with cell cycle arrest and 
apoptosis whilst a lower level of  p53 induced only cell 
cycle arrest. However, p21 expression could activate 
only cycle arrest but not apoptosis in HCC as well as in 
the presence of  high p53 as low p53 expression[52]. The 
transcription of  p21 gene was found to be repressed 
by HBV X protein (HBx) and HCV core protein[53]. In 
addition, the stress due to the inflammation and fibrosis 
of  HCV-associated chronic liver diseases induced up-
regulation of  p21[54]. Huether and co-workers analyzed the 
effect of  cetuximab (Erbitux), a chimeric human/mouse 
antibody directed against the Epidermal Growth Factor 
Receptor (EGFR), with or not in combination with other 
drugs on human hepatocellular carcinoma cell lines. The 
expression of  the cyclin-dependent kinase inhibitors p21 
and p27 (Kip1) was increased whereas the expression 
of  cyclin D1 was decreased by cetuximab treatment. A 
synergistic antiproliferative effect was observed following 
a treatment with cetuximab combined with doxorubicin, 
tyrosine kinase inhibitors (erlotinib or AG1024) or 
the HMG-CoA-reductase inhibitor fluvastatin[55]. The 
expression of  different proteins such as p53, p21 cyclin 
D implicated in enhancement of  the apoptosis pathway 
and cell proliferation have been analyzed after treatment 
with antiangiogenic agent TNP-470 in a rat model of  
hepatocellular carcinoma. The augmentation in these 
angiogenic factors induced by HCC was prevented whereas 
a cell-cycle inhibition was generated by activation of  p21 
and reduction of  the cyclin D-Cdk4 and cyclin E-Cdk 2 
expression following animals’ treatment with TNP-470. 
These results suggest that TNP-470 may be efficient for 
anti-angiogenic therapy and treatment of  human HCC[56].

p27 
The p27 (p27 Kip1) , whose g ene, a member of  
haploinsufficient tumor suppressor gene family[57], locates 
on chromosome 12p13.1-p12, is a cyclin-dependent 
kinase inhibitor. Cell cycle progression at G1 and cyclin 
E-CDK2 and cyclin D-CDK4 complexes are regulated by 
p27. Different studies have been executed to understand 
the role of  p27 in development of  tumor and particularly 
in HCC. The comparison of  hepatocellular HCC with 
adjacent non-tumoral and normal liver tissues found that 
the weak expression of  p27 was strongly associated with 
infiltration, metastasis and poor prognosis in patients 
affected by HCC. Moreover, cytoplasmic sequestration 
of  p27 was observed more in HCC leading a diminution 
of  p27 expression and was particularly characterized in 
early steps of  hepatocarcinoma development[58]. Philipp-
Staheli and co-workers have already suggested that the p27 
protein might be a check point for tumor suppression and 
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an important prognostic marker because its loss favors 
tumor growth[59]. Expression of  p27 was lower in patients 
having liver cirrhosis and HCC in comparison to those 
without HCC level[60]. This group explained the loss of  p27 
expression by high level of  methylation of  its promoter. 
The high and low levels of  p27 expression have been 
associated with prolonged survival and poor prognosis, 
respectively[61,62]. A study proposed that functional 
inactivation of  p27 is strongly associated with methylation 
of  p16 and loss of  its expression[63]. 

p16 
The p16 (P16INK4) gene, located on chromosome 
9p21, encodes a protein that inhibits proliferation of  
normal cells by binding strongly with cdk4 and cdk6. 
This binding prevents cdk4 and cdk6 from interacting 
with cyclin D and inactivation by phosphorylation of  the 
retinoblastoma protein (Rb). In 1998, post-transcriptional 
regulation was found to inactivate the p16 activity in 
HCC and this inactivation appeared to take place during 
the early-stage of  hepatocarcinogenesis[50]. The loss of  
expression of  p16 and inactivation of  Rb represent 
major events in hepatocarcinogenesis[64]. Analysis of  
different hepatocyte cell lines revealed that increased p16 
expression is associated with decreased phosphorylation 
of  pRB. Reciprocally, phosphorylation of  Rb and increase 
of  cell growth were associated with silencing of  p16 by 
promoter methylation[65]. The p16 gene is silenced by 
hypermethylation of  5’CpG islands in its promoter[66,67]. 
In addition to hypermethylation-induced transcriptional 
repression of  the p16 gene, expression is also affected by 
mutation and deletion, although these modifications are 
less common[38]. As described above, aflatoxin inactivates 
p53. The concentration of  aflatoxin B1 albumin adducts 
has been correlated not only with p53 mutation but 
also with p16 methylation stressing the importance of  
environmental factors in the development of  HCC[68].

Wnt PATHWAY
Many different proteins have been described in the Wnt 
pathway which function either as oncogenes (e.g beta-
catenin) or as tumor suppressors (e.g E-cadherin, APC, 
Axin 1 and 2 proteins). About 50% of  the HCC exhibited 
alteration of  the Wnt pathway[69]. 

E-cadherin
E-cadherin protein, encoded by a gene located on 
chromosome 16q22.1, belongs to the cadherin superfamily 
and is a calcium dependent cell-cell adhesion glycoprotein. 
Loss of  function induced by mutations was associated with 
proliferation, invasion and metastasis. Many investigations 
with animal models and human HCC tissues have been 
performed and show that E-cadherin gene expression is 
regulated by promoter methylation. Hypermethylation was 
associated with decreased E-cadherin expression but also 
with microvascular invasion and recurrence of  HCC[70,71]. 
HBV and HCV affect this pathway. The presence of  the 
HBx protein was associated with hypermethylation of  
the E-cadherin promoter, loss of  its expression and beta-

catenin accumulation[72]. In HCV-associated HCC the 
probability of  recurrence could be linked to depressed 
E-cadherin expression[73].

Axin1/ axin2
Axin1 and axin2 proteins, encoded by genes located on 
chromosome 16p13.3 and 17q23-q24, respectively, act as 
negative regulators of  the Wnt signaling pathway and can 
induce apoptosis. Axins interact with different proteins 
such as beta-catenin, adenomatosis polyposis coli (APC) 
and glycogen synthase kinase 3-beta. Mutations in the 
Axin1 gene have been associated with different human 
cancers including HCC and hepatoblastomas. Satoh and 
co-workers identified mutations in the axin1 gene as well 
as in cell lines as in HCCs and they reported that wild 
type protein stimulates apoptosis leading to suppression 
of  tumor growth. The gene coding for Axin1 protein is 
affected by loss of  heterozygosity and small deletions, 
mutations and by missense mutations (1 bp deletion and 
12 bp insertions)[74] which most of  the time target the 
gene in a biallelic manner[75]. Combination of  loss of  
heterozygosity and mutation induced the inactivation 
of  Axin1 in HCC[76]. The loss of  heterozygosity also 
frequently affects  the Axin2 gene due to it chromosomal 
localization and has been associated with different tumors 
like breast cancer and neuroblastoma[77]. The percentage of  
Axin1 and Axin2 mutations in HCC remains controversial. 
In presence of  Axin mutations, the Wnt-signaling 
pathway is the altered leading to the accumulation of  beta-
catenin[78-80]. Beta-catenin mutations were associated with 
over-expression of  G-protein-coupled receptor (GPR) 49, 
glutamate transporter (GLT)-1 and glutamine synthetase 
(GS) while this correlation was not found with Axin1 
mutations. These results suggest that Axin1 function might 
affect other signaling pathway than Wnt pathway[76].

APC
A gene located on chromosome 5q21-q22 encodes a 
tumor suppressor protein named adenomatosis polyposis 
coli (ACP). This protein has many intracellular functions 
including nuclear export and degradation of  beta-catenin. 
A small region designated the mutation cluster region 
regroup mutations associated to diseases. To determine 
the role of  APC protein in hepatocyte carcinogenesis, 
Colnot and co-workers generated a knock-out mouse 
model targeting exon 14 of  the APC gene. They observed 
that 67% of  analyzed mice developed HCC while 
Wnt/beta-catenin pathway activation was demonstrated 
by accumulation of  different genes regulated by beta-
catenin (leukocyte cell-derived chemotaxin 2, ornithine 
aminotransferase and glutamine synthetase, glutamate 
transporter 1)[81]. The disruption of  APC gene in liver 
induces hepatocyte hyperplasia, marked hepatomegaly 
and rapid mortality. Like other tumor suppressor genes, 
APC is hypermethylated in HCC relative to non-tumor 
liver. Hepatitis C virus/hepatitis B virus-negative HCC 
showed less methylation on APC gene than in hepatitis 
C virus-positive HCC[82]. Methylation status of  APC and 
other tumor suppressor genes was associated with the 
epigenetic instability dependent HCCs[83]. Recently, bi-
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allelic inactivation and nonsense mutation at codon 682 
of  APC gene in sporadic nodule-in-nodule-type HCC 
were observed using high-density array-based comparative 
genomic hybridization (aCGH) and direct sequencing, 
respectively. Both alterations lead to inactivation of  APC 
binding to beta-catenin which may enhance the evolution 
of  sporadic HCC[84]. 

Ras/Jak/stat PATHWAY
SOCS
The suppressor of  cytokine signaling (SOCS), also known 
as STAT-induced STAT inhibitor (SSI) protein family 
comprises several members including SOCS1, SOCS2 and 
SOCS3 which are encodes by genes located in 16p13.13, 
12q, 17q25.3, respectively[85,86]. These proteins function as 
negative regulators of  cytokine signaling. SOCS1 as well 
as SOCS2 and SOCS3 are stimulated by cytokines and act 
in negative feedback loop to regulate cytokine signaling. 
SOCSs inhibit by direct binding the kinase activity of  Janus 
Kinases (JAKs) proteins and so block the JAK/STAT 
pathway[87]. The role of  SOCS1 in negative regulation 
of  interferon-gamma and in T-cell differentiation was 
determined by generating a knock-out mouse model 
lacking the expression of  SOCS1 gene. In the same way, 
SCOS2 and SOCS3 were demonstrated to be involved 
in regulation of  postnatal growth and regulation of  
fetal liver hematopoiesis, respectively[87]. The SOCS1 
gene promoter is enriched with CpG dinucleotides[88]. 
The decrease of  SOCS1 expression was associated with 
aberrant methylation in CpG islands and 5’non-coding 
region of  SOCS1 promoter and loss of  heterozygosity[89,90]. 
A significant relationship between SOCS1 methylation 
level and HCC transformation of  cirrhotic nodules 
was established confirming that SOCS might act as a 
tumor suppressor[91]. The suppression of  cell growth and 
activation of  JAK2 was observed after recovering of  
SOCS1 expression by gene therapy in cells having SOCS1 
silenced by hypermethylation[92]. SOCS3 promoter can 
also be methylated resulting in diminution of  SOCS3 
expression[93,94]. Restoration of  its expression blocks the 
phosphorylation of  STAT3 and inhibits the proliferation. 
Cell growth and migration were negatively regulated by 
inhibition of  JAK/STAT signaling pathway by SOCS3 
protein in HCC[93]. The enhancement of  proliferation 
and development of  hepatic tumor, activation of  STAT3 
and inhibition of  apoptosis were observed in absence of  
SOCS3 expression obtained using a conditional knockout 
mice approach under carcinogenic condition. These results 
confirmed that SOCS3 acts as tumor suppressor gene[95]. 
Leong and co-workers found that SOCS2 and SOCS3 
were both up-regulated in hepatic cells following estrogen 
treatment via estrogen receptor (ER) alpha providing 
a mechanistic explanation for the rare cases of  HCC 
responding to this treatment[96].

RASSF1A/NORE1
Members of  the RAS superfamily are plasma membrane 
GTP binding proteins that modulate intracellular signal 
transduction pathways. A subgroup in this family contains 

a Ras-association domain and takes part in RAS signaling 
pathway[97-101]. A gene located on chromosome 3p21.3 
encodes a protein identified as human RAS effector 
homologue (RASSF1). Alternative splicing and promoter 
usage of  this gene generates three different transcripts: 
RASFF1A, RASSF1B and RASSF1C. RASSF1A contains 
a Ras Association Domain (RA) and binds Ras in a GTP-
dependent manner to affect apoptosis. The presence of  
CpG-islands in the promoter of  the RASSF1 gene was 
associated with high methylation level and the loss of  
expression of  RASSF1A. The reduction of  RASSF1A 
expression was found in lung carcinoma and these results 
indicate that RASSF1A might act as a tumor suppressor[102]. 
Additionally, RASSF1A role is associated with the cell cycle 
given that it blocks the accumulation of  cyclin D1 and G 
(1)/S-phase cell cycle progression[103]. Hypermethylation 
of  RASSF1A induced the inactivation of  RASSF1A but 
also correlated with environmental carcinogens such 
as AFB (1) and with inactivation of  p16INK4a protein 
in hepatocellular carcinoma[104]. The high frequency 
of  hypermethylation of  RASSF1A promoter could be 
detected not only in tumor[83,105] but also in matched plasma 
of  patients affected by HCC[105]. Methylation level of  
RASSF1A was proposed as a potential marker to diagnose 
HCC[100,106,107]. Recently, a strong association was identified 
between CpG island methylation phenotype (CIMP) and 
serum concentration of  alpha-fetoprotein (AFP) and 
inactivation of  many genes involved in process of  tumor 
suppression such as RASSF1A. Thus CIMP might be use 
as molecular marker of  late-stage HCC development[12].

Among the subfamily of  RAS effectors, the NORE1 
proteins encoded by a gene located on chromosome 1q32.1 
were described as a regulator of  Ras dependent apoptosis. 
In the same manner as the RASSF1 gene, three different 
isoforms were identified (NORE1Aalpha, NORE1Abeta 
and NORE1B). NORE1A and NORE1B, which are 
separated by CpG islands spanning their first exons, share 
the Ras-association (RA) domain but the diacylglycerol 
(DAG) binding domain was only present on NORE1A[99]. 
Analysis of  methylation found that NORE1A promoter 
was methylated whereas NORE1B was unmethylated 
in breast, colorectal and kidney tumor cell lines[97,99]. 
Comparative analysis showed that NORE1 gene was not 
altered by methylation whereas RASSF1A gene promoter 
was increasingly methylated from regenerating liver to 
hepatocellular carcinoma nodules[107]. In another study, 
expression of  NORE1A and SOCS 3 was inhibited 
by high methylation level of  their promoters and their 
inactivation associated with a subclass of  poor prognosis 
HCC[94]. It appears that NORE1 could be considered as 
tumor suppressor gene in hepatocarcinogenesis[108].

OTHER PATHWAYS
KLF6
Krüppel-like factors (KLFs) are highly related zinc-
finger proteins that are important components of  the 
eukaryotic cellular transcriptional machinery. Among 
this protein family, Krüppel-like factor 6 (KLF6) is a 
ubiquitously expressed zinc finger transcription factor 
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encoded by a gene located on chromosome 10p15[109]. 
The KLF6 protein binds DNA on guanine-rich core 
promoter elements and regulates the transcriptional 
activation process via its zinc fingers domains and central 
acidic N-terminal domain. Due to its regulatory role in 
transcription, different studies have been conducted to 
define the role of  KLF6 in tumor development and has 
been described as a tumor suppressor in different cancer 
such as colon and prostate[110-112]. Reduction of  KLF6 
expression and methylation of  KLF6 promoter have been 
associated with human cancers[111,113-115] but the incidence 
of  KLF6 variation on HCC has been described for first 
time by Friedman’s group[116]. They determined that loss 
of  heterozygosity induces a loss of  KLF6 expression in 
50% of  analysed HCC samples. In same samples, they 
identified several missense mutation associated with 
presence of  HBV or HCV. Moreover, in vitro analyses 
of  KLF6 mutations showed that only KLF6 wild type 
inhibits the cell growth of  HepG2 cell lines by p21 
protein activation whereas the different mutants did 
not induce any changes indicating regulatory effects of  
mutations on KLF6 activity. The process leading to the 
activation of  p21 and reduction of  cell proliferation by 
KLF6 necessitates the acetylation of  KLF6 by histone 
acetyltransferase activity of  either cyclic AMP-responsive 
element binding protein-binding protein or p300/CBP-
associated factor. This process can be abrogated by a 
single mutation of  lysine-to-arginine (K209R), point 
mutation already described in prostate cancer[117]. In 
recent work carried out on ovarian cancer, E-cadherin 
level variation was found to be mediated by direct action 
of  KLF6 on its promoter[118]. Furthermore, induction of  
cellular differentiation and inhibition of  cell proliferation 
was observed in KLF6 overexpressing HepG2 cell lines 
and associated with augmentation of  E-cadherin and 
albumin expression and reduced cyclinD1 and beta-
catenin expression. In the same study, the authors 
demonstrated also inhibitory effects of  HBV and HCV 
infection on KLF6 expression[119]. The stability of  KLF6 
is modified by ubiquitination after induction of  apoptosis 
by drugs (cisplatin, adriamycin) or UVB irradiation but 
not by apoptotic-dependent extrinsic/death-receptor 
pathway. The effects of  KLF6 on tumor suppression and 
enhancement of  chemotherapeutics response might be 
affected by the speed of  its degradation and deregulation 
of  its stability[120]. Apoptosis induced by upregulation of  
p53 and diminution of  Bcl-xL expression was enhanced 
following KLF6 knockdown. Additionally, the arrest 
of  cell cycle in G1 phase and expression of  cyclin-
dependent kinase 4 and cyclin D1 were weakened or 
suppressed in KLF6 silenced cells. These results bring 
a new perspective for the link between of  KLF6 and 
apoptosis[121].

PTEN
This haploinsufficient gene located on chromosome 
10q23.3 encodes a phosphatidylinositol-3,4,5-trisphosphate 
3-phosphatase[122]. This protein dephosphorylates 
phosphoinositide substrates and acts as a negative 
regulator for intracellular levels of  phosphatidylinositol-3, 

4, 5-trisphosphate. PTEN is inactivated in many cases of  
breast, endometrial, prostate cancers. Many mutations affect  
PTEN gene such as missense mutations in exon 5 (K144I) 
and exon 7 (V255A) or silent mutations in exon 5 (P96P) in 
HCC from Taiwan[123]. In HBV infected liver cells, PTEN 
expression is also deleted following the genome integration 
of  HBV[124]. In this Asiatic subset of  HCCs, both mRNA 
and protein levels of  PTEN were weaker in tumor than in 
paired para-carcinoma tissues[125,126]. Moreover, a point of  
mutation induced a weak level of  PTEN which is inversely 
linked with FAK phosphorylation[127]. In 47% of  HCC 
analyzed by Sieghart and co-workers, they observed a 
decrease or absent of  PTEN which is inversely correlated 
with expression of  phosphorylation proteins in mTOR 
pathway[128]. HCC development might be susceptible to 
inhibition of  mTOR[129]. The lessening of  PTEN expression 
was associated with loss of  promoter activity[130]. Wang and 
collaborators confirmed that PTEN inactivation seems 
resulting not only of  mutation and promoter methylation 
but also possible other epigenetic mechanisms which 
remain to be defined[131]. Reduction of  PTEN expression in 
HCC was associated with poor prognosis and progression 
of  HCC[132]. This might be due to the inverse correlation 
between PTEN expression and VEGF expression[133]. 

HINT protein
Hint1: Hint1 is encoded by gene located on chromosome 
5q31.2 and is member of  the The Histidine Triad (HIT) 
protein family characterized the His-X-His-X-His-
XX motif. Hint1 forms homodimers and each subunit 
can bind a nucleotide. Hint1 acts as an adenosine 5’- 
monophosphoramidate (AMP-NH2) hydrolase[134]. 
Spontaneous immortalization and enhancement of  cell 
growth were observed in cells lacking Hint1. Squamous 
tumors (both papi l lomas and carcinomas) of  the 
forestomach developed after treatment with chemical 
carcinogen N-nitrosomethylbenzylamine (NMBA) showed 
a greater volume and a more severe degree of  malignancy 
in Hint1-/- mice[135]. Accordingly, the hypothesis of  
Hint1 role as tumor suppressor was developed and work 
was carried out to elucidate which signaling pathway is 
involved. Weiske and co-workers determined an interaction 
between Hint1 and pontin and reptin[136]. Pontin and reptin 
are often found in complexes and they possessed single-
stranded DNA-stimulated ATPase and ATP-dependent 
DNA helicase activity but with opposite action[137,138]. 
Moreover, both proteins interact with beta-catenin by 
modulating its transcriptional activity in Wnt pathway[139]. 
Hint1 was identified as a part of  the LEF-beta-catenin 
transcription complex and function a as negative regulator 
of  TCF-beta-catenin transcriptional activity, repressing 
expression of  Wnt signaling target genes such as axin2 and 
cyclin D1[136]. The same authors reported that p53-induced 
apoptosis was influenced by Hint1, which up-regulated 
Bax and down-regulated Bcl-2. The pro-apoptotic 
activity of  Hint1 was not related to its enzymatic AMP-
NH2 hydrolase activity[140]. Treatment of  non small cell 
lung cancer (NSCLC) cell line with DNA demethylating 
agent, 5-aza-2’-deoxycytidine up-regulated of  Hint1, and 
this correlated with growth inhibition and reduction of  
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tumorigenicity[141]. Weinstein’s group described Hint1 is 
a novel haploinsufficient tumor suppressor gene and is 
able to repress the cell growth and tumor progression 
by inhibition of  AP-1 transcription factor activity in 
mammary tumor and colon cancer cells, respectively[142,143]. 
The role of  Hint1 in hepatocarcinogenesis remains to be 
explored. 

Hint2: Hint2 is a mitochondrial HIT protein. This protein 
is encoded by a gene located on chromosome 9p13.3. 
Tissue profile expression of  Hint2 showed that this protein 
is predominantly expressed in the liver and pancreas. 
Like its cytoplasmic homologue Hint1, Hint2 acts as an 
adenosine monophosphate hydrolase enzyme and this 
enzymatic activity was lost when the second histidine 
of  the HIT motif  is mutated. The sensitivity of  cells to 
apoptosis was increased when Hint2 was over expressed 
whereas Hint2 knockdown was coincident with reduced 
caspase 3 expression. Subcutaneous injection of  HepG2 
cells over-expressing int2 in SCID mice resulted in maller 
tumours, which displayed more apoptosis in comparison 
to mice, injected with control HepG2 cells. Microarray 
analyses carried out on human tissues found a significant 
reduction of  HINT 2 mRNA in HCC compared with 
surrounding liver tissue. This diminution of  Hint2 
expression was associated with a poor prognosis[144]. 

FRAGILE CHROMOSAL SITE GENES AND 
HCC
FHIT
The FHIT protein is encoded by a haploinsufficient 
tumor suppressor gene[145], located on chromosome 
3p14.2 a place known to be one of  the most fragile 
sites in human genome. This protein, a member of  the 
histidine triad gene family, is a diadenosine triphosphate 
hydrolase. In numerous tumor types such as lung, 
stomach, breast, colon, aberrant forms of  FHIT protein 
were found due to rearrangements and deletions in region 
of  FHIT locus[146-148]. Aberrant FHIT transcripts with 
deletions of  exons and fusion of  remaining exons and 
loss of  heterozygosity were observed in HCC tissues 
in comparison with non-tumoral tissues and lead to 
the lack of  FHIT protein expression. So FHIT was 
frequently altered in liver and might be implicated in 
liver tumorigenesis[149-151]. FHIT has also been described 
as a pro-apoptotic agent. Restoration of  Fhit expression 
activated caspase 8 and induced apoptosis in Fhit-
negative cell lines[152]. Sard reported a 2-fold increase in 
the apoptosis-related protein Bak and in the cell cycle 
inhibitory protein p21, but not in Bcl-2, Bcl-X, Bax 
and, p53[153]. Inactivation like by promoter methylation 
was associated with progression and poor prognosis of  
HCC[154,155]. In 2004, a study performed on HCC cohort 
from the US found over-expression of  modified FHIT 
transcripts[156]. Fusion between exon 5 and 7 and between 
exon 7 and 9 were frequently observed in HCV-related[157]. 
Apoptosis was weaker in early HCC with negative FHIT 
expression than in advanced HCC with positive expression 
of  FHIT. So, the absence of  FHIT protein influencing the 

balance between apoptosis/proliferation may play a role in 
formation of  HCC[158]. 

WWOX
WWOX (WW-domain containing oxidoreductase) gene 
located on another fragile site on chromosome 16q23.3-q24 
encodes a 46 kDa protein having 2 WW domains, which 
mediate the protein-protein interaction, and a short-chain 
dehydrogenase/reductase domain (SRD). The WW domain-
proteins are expressed in all eukaryotes and act as regulator 
of  a wide variety of  cellular functions such as RNA splicing, 
transcription and protein degradation. Different forms of  
WWOX transcripts were observed following deletions or 
alternative splicing in frameshift leading to the total or partial 
loss of  different domains. Diverse missense mutations 
and single nucleotide polymorphisms (SNP) within the 
WWOX have been identified in many tumor cell lines and 
conduct to consider this protein as a tumor suppressor[159]. 
No mutations leading to WWOX abnormal transcript were 
found in HCC cell lines. However, loss of  heterozygosity 
on chromosome 16q at the fragile site FRA16D was found 
in 29% of  HCC and an association between 16q lack and 
R249S mutation affecting the p53 gene was determined in 
HCC samples from patients exposed to aflatoxin B1[160]. 
Decreased or absent expression of  WWOX was observed 
in cell lines derived from human HCCs[161]. WWOX protein 
is able to interact with other proteins, in particular with 
p73 protein[162,163]. The association of  WWOX with p73 
redistributes p73 from nucleus to cytoplasm blocking p73 
transcriptional activity and enhancing the pro-apoptotic 
potential of  WWOX[164]. A recent study performed on 
mouse models treated with carcinogen drugs found that the 
same down regulation profile for FHIT and WWOX in the 
liver[80]. This result completes the association between FHIT 
and WWOX expression observed in breast and gastric 
cancer[164-167].

Parkin (PARK2)
Like WW domain-containing oxidoreductase gene 
(WWOX; 16q23) and fragile histidine triad gene (FHIT; 
3p14.2) parkin is also located on fragile and unstable 
chromosomal region (FRA6), which can be targeted by 
mutational rearrangement (duplication or deletion). Parkin 
is a member of  RBR protein family implicated in ubiquitin 
related-proteolytic pathway[168-170]. This protein was 
involved in neurodegenerative diseases[171]. Parkin protects 
neurons and autosomal recessive juvenile parkinsonism is 
associated with mutations affecting this gene. Parkin seems 
to play a role in tumor suppression[172]. Analysis of  HCC 
samples has been performed by Wang and collaborators. 
They determined that the expression of  parkin was lower 
in HCC compared with normal liver. Transfection of  
Hep3B cells with parkin increased their sensitivity to 
apoptosis and negatively regulated their cell growth. These 
results prompt speculation that the absence of  parkin 
expression may favor the development of  HCC[173]. Down-
regulation and loss of  parkin expression was correlated 
with methylation of  its promoter in acute lymphoblastic 
leukemia and chronic myelogenous leukemia (CML) in 
lymphoid blast crisis[174].
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NEW POTENTIAL PATHWAYS IN TUMOR 
SUPPRESSION
DNA methyltransferase
A family of  protein called DNA methyltransferase 
catalyses the methylation process on CpG islands leading 
to regulation of  gene expression. Two distinct gene 
families: DNMT1 gene and DNMT3 gene family which 
regroups two related genes: DNMT3a and DNMT3b 
are known to maintain and induce the methylation. The 
function of  DNMT2 is still to be clarified[175-177]. High 
mRNA levels of  DNMT1 and DNMT3 were observed 
in HCC in comparison of  normal or non-tumoral tissues 
but only cytoplasmic DNMT3 expression was decreased 
in HCC. The first studies proposed that these proteins 
act during early stage of  hepatocarcinogenesis and might 
take a part in progression of  HCC[178-180]. Excepted for a 
correlation between DNMT3a immuno-reactivity and p53 
methylation levels, Park and co-worked did not observed 
a correlation between DNMT expression and methylation 
levels of  different tumor suppressor genes described in 
HCC[11]. It seems that not only DNMTs protein but also 
other mechanisms are engaged in methylation changes 
of  tumor suppressor genes in HCC. In liver cell line 
infected by HBV and HBV-infected HCC samples, HBVx 
proteins induced a change of  transcription of  DNMTs 
proteins leading to regional methylation of  tumor 
suppressor genes[181]. The lack of  two other proteins: O6-
Methylguanine-DNA Methyltransferase (MGMT) and 
human Mut L homologue (hMLH) implicated in DNA 
repair system have been associated with poor prognosis 
and advanced stages of  HCC[182]. The expression of  
MGMT in HCC is altered by hypermethylation of  its 
promoter and DNA integration of  HBV near to FRA10F 
chromosome fragile site[183,184]. 

miroRNA and HCC
Small non-coding RNAs 19 to 25-nucleotide-long 
RNA called microRNAs (miRNA) define a new family 
of  regulatory molecules. They recognize and bind the 
complementary sequences in 3’ untranslated regions (3’- 
UTR) of  diverse target mRNAs[185]. By their role in 
control of  diverse cellular processes such as proliferation, 
differentiation and apoptosis, miRNAs appear as new actor 
of  regulation of  tumorigenesis. However, miRNAs are 
themselves the target of  regulation and their expressions 
are down- or up-regulated in various human cancer types 
and they can act as tumor suppressors or oncogenes[186-192]. 
Murakami and collaborators identified five mRNAs 
(miRNA 199a, 199a*, 200a, 125a and 195) and three 
(miRNA 224, 18, p18) with lower and higher expression in 
HCC than in adjacent non-tumoral tissues, respectively[184]. 
Kutay and Gramantieri observed that miR-122a, the 
most represented miRNA in liver, is down regulated in 
HCC[193,194]. Moreover, Gramantieri and collaborators 
showed a reverse correlation between miR-122a and cyclin 
G1. This miRNA appears to block the tumor growth 
through the inhibition of  cyclin G1 expression[194]. miR-
122a has been also described to facilitate the replication of  
HCV RNA in HCC[195]. The genomic integration of  HBV 

in region of  fragile site alters the expression of  miRNA[196]. 
In fact, the genome integration of  HBV in particularly 
in fragile site alters the expression of  different miRNA. 
The expression of  let-7e is lower in HCC than in non 
tumor liver and this inhibition is a consequence of  HBV 
integration in FRA11B, FRA11G and FRA19A fragile 
sites[184,187,196]. miRNA-195 which modulates the expression 
of  Bcl-2 like protein , SKI oncogenes and methyl-CpG 
binding protein-2 in HCC, is altered by integration of  
HBV in FRA17A[184,196].

CONCLUSION
Numerous proteins involved on the control of  different 
cellular processes such as cell proliferation, apoptosis 
and DNA replication are described as tumor suppressor. 
The deregulation of  expression of  these proteins by 
mutations and/or methylation of  their promoter and 
viral-dependent-action contributes to the progression of  
hepatic cancers. Comprehensive understanding of  the 
functions of  these tumor suppressors is a prerequisite to 
devise innovative treatments of  HCC. 

Definitions 
Tumor suppressor
Cell fate is controlled by division, differentiation and 
death. The balance between these commitments is 
determined by negative and positive regulations mainly 
through two classes of  genes: the tumor suppressor genes 
and the proto-oncogene genes, respectively. In normal 
condition, tumor suppressor genes repress the formation 
and development of  tumor but damage in their expression 
or function conduct to uncontrolled cell growth or 
cancer. Their function is impaired by mutations, loss of  
chromosome region or silencing by promoter methylation. 
Tumor suppressor genes are important targets in the quest 
to develop clinical therapies based on the restoration of  
gene function to reverse the carcinogenesis process.

Haploinsufficiency
The majority of  tumor suppressor genes follow the “two-
hit hypothesis”. The loss of  function is associated with 
a damage of  both alleles. In case of  haploinsufficiency, 
the missing of  only one allele is sufficient to inactivate 
the synthesis of  gene product and to confer in a dose-
dependent manner tumor sensitivity. Haploinsuffiency is 
associated with a few tumor suppressor genes such as p53 
and PTEN. 

Methylation state
Expression of  genes can be regulated by methylation of  
their promoter. DNA methylation is the conversion of  
cytosine to 5-methylcytosine, which is catalyzed by DNA 
methyltransferase. It occurs on CpG sites mainly located 
in promoter region of  genes. In case of  cancer, aberrant 
methylation affects several tumor suppressor genes such 
as E-cadherin and SOCS1 leading to gene silencing and 
loss of  protein function. The simultaneous methylation of  
CpG islands of  multiple genes defines a new biomarker 
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named CpG island methylator phenotype (CIMP). CIMP 
has been recognized as an important mechanism of  gene 
regulation. 

Loss of heterozygosity (LOH)
Loss of  heterozygosity (LOH) refers to the loss of  a 
single allele of  a gene due to mutation, deletion of  large 
chromosome segment and epigenetic regulating events such 
as methylation. LOH frequently affects tumor suppressor 
genes because most of  them are located in chromosome 
fragile site. Losses in regions 1p, 4q, 6q, 8p, 13q, 16q, and 
17p have been related to HCC and induce the lack of  gene 
such as E-cadherin, WWOX, FHIT or p53.
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