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Abstract
As for many other tumors, development of hepatocellular 
carcinoma (HCC) must be understood as a multistep 
process with accumulation of genetic and epigenetic 
alterations in regulatory genes, leading to activation of 
oncogenes and inactivation or loss of tumor suppressor 
genes (TSG). In the last decades, in addition to genetic 
alterations, epigenetic inactivation of (tumor suppressor) 
genes by promoter hypermethylat ion has been 
recognized as an important and alternative mechanism 
in tumorigenesis. In HCC, aberrant methylation of 
promoter sequences occurs not only in advanced tumors, 
it has been also observed in premalignant conditions 
just as chronic viral hepatitis B or C and cirrhotic liver. 
This review discusses the epigenetic alterations in 
hepatocellular carcinoma focusing DNA methylation.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is one of  the most 
common cancer worldwide. It shows a wide geographical 
variation with low incidence areas in North America 
and Europe and high incidence areas in Africa and Asia. 

70%-80% of  hepatocellular carcinoma occurs in cirrhotic 
liver. In high incidence areas, such as Asia and Africa, HCC 
is strongly associated with chronic viral hepatitis B and C 
and liver cirrhosis. Nutritional factors, toxins and metabolic 
diseases contribute also to hepatocarcinogenesis[1,2].

As for many other tumors, development of  HCC is 
due to a multistep process with accumulation of  genetic 
and epigenetic alterations in regulatory genes, leading to 
activation of  oncogenes and inactivation or loss of  tumor 
suppressor genes (TSG).

In the last three decades, cancer has been understood 
as a summary of  altered genetic and epigenetic events. 
The epigenetic pathway is, in contrast to genetic events, 
a reversible alteration and characterized by three main 
mechanisms: (1) DNA hypermethylation leading to 
inactivation, (2) DNA hypomethylation causing genomic 
instability, (3) histone modifications affecting chromatin 
conformation.

These processes, especially aberrant DNA methylation 
and histone modifications, are closely linked with each 
other by a protein complex of  transcript activators and 
repressors and alter mRNA transcript expression of  
affected genes[3].

Characteristically, DNA methylation does not change 
the genetic information. It just alters the readability of  the 
DNA and results in inactivation of  genes by subsequent 
mRNA transcript repression.

In humans and o the r mamma l s, CpG i s l and 
methylation is an important physiological mechanism. The 
inactivated X-chromosome of  females, silenced alleles of  
imprinted genes or inserted viral genes and repeat elements 
are inactivated through promoter methylation[4,5].

DNA HYPERMETHYLATION
Promoter hypermethylation
Hypermethylation of  CpG islands in promoter sequences 
is associated with silencing of  tumor suppressor genes 
and tumor-related genes by subsequent downregulation 
of  mRNA transcript expression. Epigenetic silenced 
genes are involved in important molecular pathways of  
carcinogenesis e.g., cell cycle regulation, apoptosis, DNA 
repair or cell adhesion.

According to other types of  malignant tumors, in 
hepatocellular carcinomas, aberrant methylation of  several 
TSG and tumor-related genes such as RASSF1A, hMLH1 
or SOCS1 was frequently observed[6].

CpG island hypermethylation is not only seen in HCC 
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tumor tissue. Even in premalignant conditions such as 
dysplastic nodules or cirrhotic liver, promoter methylation 
of  several kinds of  TSG, e.g. E-cadherin, GSTP1 or 6Ink4a 
was demonstrated (Table 1 shows promoter methylation 
of  different tumor-related genes in HCC).

Proliferation and apoptosis
One of  the most important pathways affected in HCC are 
the Rb (Retinoblastoma) gene and INK4a-ARF pathway[7]. 
The INK4a-ARF locus is coding two cell-cycle regulatory 
proteins, p16INK4a and p14ARF, acting through the Rb-CDK4 
and p53 pathways. p16INK4a binds to cyclin-dependent 
protein kinase 4 (CDK4) and inhibits the ability of  
CDK4 to interact with cyclin D1. p14ARF prevents the p53 
degradation through its binding to MDM-2 and induces 
cell cycle arrest[8,9].

p16INK4a is one of  the most altered tumor suppressor 
gene in human cancer.  In HCC, loss of  p16INK4a is mainly 
caused by aberrant promoter methylation, whereas 
deletions and mutations of  this gene locus are infrequently 
seen. CpG island promoter methylation was reported from 
55% to 73%, but aberrant methylation occurred also in 
non-cancerous liver tissue with cirrhosis in 29% or chronic 
hepatitis B and C up to 23%[10,11]. Compared to p16INK4a 
methylation, p14ARF promoter methylation was observed 
less frequently in 8% to 20% of  HCC. It was demonstrated 
that inactivation of p14ARF is due to homozygous deletions. 
No correlation was found between p53 mutations and 
promoter methylation of  p16INK4a or p14ARF[7,12].

Caspase 8 (CASP8) is a key apoptotic gene that is 
involved in death receptor and the mitochondrial pathways 
and acts as initiator CASP[13]. CASP8 is silenced by 
aberrant hypermethylation of  its promoter in childhood 
neuroblastomas[14,15]. In HCC, CASP8 aberrant promoter 
methylation was reported by Yu et al[16] with a frequency up 
to 72%.

TMS1/ASC, another proapoptotic gene, functions as a 
negative regulator of  nuclear factor kappaB (NF-κB) and 

blocks transcription of  survival signals[17]. First, TSM1 was 
identified as a target of  methylation-induced silencing in 
cell lines overexpressing DNMT1. Epigenetic inactivation 
of  TMS1 was demonstrated in human glioblastomas, 
ovarian cancer, human melanoma, colorectal carcinomas 
or in lung cancer and breast cancer[18-22]. In HCC, TMS1 
promoter methylation was observed in 80%[23].

In hepatocellular carcinoma cell lines, restoration of  
TMS1 transcript was induced by demethylating agent  
5'-AZA and trichostatin, a histone deacetylase inhibitor. 
Furthermore, in these cell lines TMS1 DNA methylation 
was associated with histone H3 lysine 9 hypoacetylation 
and trimethylation[24].

Cell adhesion and invasion
E-cadherin (CDH1): E-cadherin, a member of  calcium-
mediated membrane glycoproteins, is expressed in all 
epithelial cells acting as an adhesion molecule. Inactivation 
of  E-cadherin induces loss of  adherens junctions and 
impairment of  cell adhesiveness and cell proliferation 
signalling pathways. In tumours, reduction of  E-cadherin 
expression results in tumour progression, cell invasion and 
formation of  metastasis[25,26].

Downregulation of  E-cadherin, caused by genetic and 
epigenetic mechanism, is a frequent event in most type 
of  epithelial carcinomas. In poorly-differentiated breast 
and gastric cancer, somatic mutations of  E-cadherin are 
frequently found. Further, in all cases of  familial gastric 
cancer, loss of  E-cadherin is mainly caused by germline 
mutations[27]. In other types of  tumors, mutations are 
infrequent events and repression of  E-cadherin is mainly 
caused by aberrant promoter methylation.

In according to CC, mutations of  E-cadherin are rare 
events in HCC. Reduced or loss of  E-cadherin expression 
is mainly caused by aberrant CpG island methylation with 
a detectable frequency from 33% to 67%[28-30]. Wei et al[31] 
described, that loss of  E-cadherin was closely associated 
with loss of  heterozygosity (LOH) of  E-cadherin and 
CpG hypermethylation. In precancerous conditions just as 
dysplastic nodules or liver tissue with chronic hepatitis or 
cirrhosis, aberrant E-cadherin methylation was detected in 
8% and 46%, respectively[29,30].

Other factors, except epigenetic inactivation or 
mutations, leading to inactivation of  E-cadherin include 
transcriptional repression by binding of  transcriptional 
factors, e.g. the repressors Snail or Sip-1 to CDH1-E box 
elements[32,33].

But not only E-cadherin, as a member of  cadherin 
genes, is epigenetically altered in HCC. Yamada et al[34] 
reported the highest methylation frequency of  M-cadherin 
with a frequency to 55% among seven elucidated cadherin 
genes. Methylation-induced silencing of  H-Cadherin 
(CDH13) was observed by Yu et al[17], reaching 21%.

TIMP-3: Tissue inhibitor of  metalloproteinase-3 (TIMP-3) 
leads to inhibition of  cell migration and angiogenesis. 
In human carcinoma cell l ines, overexpression of  
TIMP-3 suppresses cell growth and induces apoptosis 
by stabilization of  TNF-alpha receptors on the cell 
surface[35,36]. A TIMP-3 downregulation was demonstrated 

Gene Location Function Methylation 
frequency (%)

Ref.

p16INK4a 9q21 CDK inhibitor    17-83 [10,11]
p14ARF 9q21 MDM2 inhibitor    25-30 [7,12]
CASP8 2q33 Apoptosis    72 [17]
TMS1/ASC 16p11.2 Apoptosis    80 [23]
E-Cadherin 16q22.1 Cell adhesion    33-67 [28-30]
M-Cadherin 16q24.1 Cell adhesion    55 [34]
H-Cadherin 16q24.2-3 Cell adhesion    21 [17]
TIMP3 22q12 MMP inhibitor    13-19 [37-39]
hMLH1 3p21.3 Mismatch repair    18-44 [47-50]
hMSH2 2p21-22 Mismatch repair    68 [47,49,50]
hMSH3 5q11-12 Mismatch repair    75 [47,49,50]
MGMT 10q26 DNA repair    22-39 [53-55]
GSTP1 11q13 Detoxification    41-58 [53,58-61]
SOCS-1 16p13.13 Cytokine inhibitor    60 [67]
SOCS-3 17q25.3 Cytokine inhibitor    33 [68]
RASSF1A 3p21.3 Apoptosis    54-95 [71,75,76]
BLU 3p21.3 Unknown    20 [71]
SEMA3B 3p21.3 Apoptosis    80 [71]
FHIT 3p14.2 histidine triad protein    71 [86]

Table 1  Methylation in hepatocellular carcinoma
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in different kinds of  tumors, mostly mediated by CpG 
island promoter methylation[6]. 

In HCC, TIMP-3 methylation is an infrequent event 
reaching 13% to 19%. No methylation was found in 
normal liver tissue. Lü et al [37] demonstrated TIMP-3 
methylation in 25% of  hepatocellular cancer emboli 
in portal veins. The aberrant promoter methylation is 
accompanied by loss or reduced TIMP-3 mRNA and 
protein expression[37-39].

TFPI-2: TFPI-2 is a Kunitz-type serine protease inhibitor 
that represses cellular invasion in several kinds of  tumors, 
e.g. in lung cancer or pancreas carcinomas, by suppressing 
plasmin-mediated activation of  MMP-1 and MMP-3 or 
inhibition of  plasmin and trypsin activity[40-43].

Wong et al[44] observed TFPI-2 downregulation with 
reduced or loss mRNA transcript expression in HCC 
with a frequency of  90%. In 47% of  the observed HCC, 
aberrant CpG methylation was seen, but not in normal 
liver tissue. In HCC cell lines with epigenetically induced 
silencing, a TFPI-2 mRNA transcript re-expression was 
induced by combined treatment with the demethylating 
agent 5'-AZA-DC and the histone deacetylase inhibitor 
TSA.

DNA repair
Mismatch repair system: Defects in DNA repair 
mechanisms may result in accumulation of  mutations and 
genomic instability. The mismatch repair system (MMR) 
is one of  the most important DNA repair mechanisms 
correcting errors in DNA replication. Defects of  the 
MMR leading to microsatellite instabilities (MSI) have been 
observed in approximately 15% of  sporadic colorectal 
and gastric carcinomas[45,46]. Promoter methylation of  
MMR genes in HCC occurred with a frequency of  5% to 
13% for hMLH1, 68% for hMSH2 and 75% for hMSH3. 
A high methylation frequency of  hMSH2 and hMSH3 
was observed in HCC corresponding non neoplastic liver 
tissue, especially in cirrhotic liver tissue, reaching 55 % 
and 70%, but not in normal liver tissue. No correlation 
was found neither to viral hepatitis nor to MSI status and 
DNA methylation of  analyzed MMR genes[47-50].

MGMT (O6-methylguanine DNA methyltransferase): 
O6-methylguanine DNA methyltransferase (MGMT) is 
another important DNA repair gene with the highest 
activity in the liver[51]. MGMT protects cells from DNA 
damage caused by mutagenic and cytotoxic agents leading 
to alkylation at O6-guanine. Loss or reduced MGMT 
expression due to CpG islands methylation was detected 
in several kinds of  human cancers[52]. In HCC, aberrant 
methylation occurred with a frequency of  22% to 39%, 
whereas the MGMT promoter shows higher methylation 
levels in chronic viral hepatitis associated HCC[53-55]. 
Interestingly, Su et al[53] reported that MGMT promoter 
methylation occurred to a similar extent in non neoplastic 
liver tissue compared to HCC.

GSTP1 (Glutathione S-transferase P1): The detoxi-
ficating glutathione S-transferase P1 (GSTP1) gene 
protects cells from cytotoxic and carcinogenic influences 

in due to inactivation of  electrophilic carcinogens by 
conjugation with glutathione. Promoter methylation 
of  GSTP1 is best analyzed in prostate cancer. GSTP1 
methylation is an early event in prostatic carcinogenesis, 
because in high-grade prostatic intraepithelial neoplasia 
loss of  GSTP1 expression is caused by DNA methylation. 
Many other tumor types including breast cancer and 
cholangiocarcinoma showed a GSTP1 hypermethylated 
promoter[56,57]. In HCC, methylation of  the GSTP1 gene 
occurred in 41% to 85%[53,58-61]. Zhang elucidated GSTP1 
methylation in HCC in presence of  environmental 
chemical carcinogens. A significant correlation was 
observed with higher aflatoxin B1 (AFB1)-DNA adducts in 
tumor tissue in contrast to tumor tissue without or lower 
levels of  AFB1-DNA adducts. However, no association 
was found between GSTP1 methylation and polycyclic 
aromatic hydrocarbon-DNA adducts[59]. So far, aberrant 
methylation of  GSTP1 is not only detectable in tumor 
tissue, Wang et al[62] observed a GSTP1 hypermethylation in 
serum of  HCC patients.

Suppressors of  cytokine signaling (SOCS): Suppressors 
of  cytokine signaling 1 and 3 (SOCS-1 and SOCS-3) are 
intracellular proteins that act as negative regulators of  
Janus kinase (JAK) and signal transducer and activators 
of  signaling pathways (STAT). The JAK/STAT signaling 
pathway plays an important role in cell growth and 
differentiation or immune reaction mediated by cytokines. 
Cytokines activate JAK's by binding to membrane 
receptors that leads to phosphorylation of  STAT's and 
activates target genes. SOCS1 and SOCS-3 bind direct 
and indirect to JAK's and inhibit the phosphorylation of  
STAT's and activation of  target genes[63,64].

Aberrant methylation of  SOCS-1 and SOCS-3 promoter 
sequence has been reported in several kinds of  human 
cancer. SOCS-1 and SOCS-3 CpG island hypermethylation 
is an early event in human carcinogenesis. Recently, we 
have shown methylation-induced downregulation of  
SOCS-1 and SOCS-3 in precursor lesions of  Barrett’s  
adenocarcinomas and precursor lesions of  squamous 
carcinomas of  head and neck[65,66]. In HCC, aberrant 
promoter methylation of  SOCS-1 and SOCS-3 occurred 
with a frequency of  60% and 33%, respectively[67,68]. 
Methylation of  the SOCS-1 gene was detected in HCV-
induced chronic hepatitis and liver cirrhosis, reaching 45%, 
whereas the methylation frequency increased with fibrosis 
stage with the highest proportion in liver cirrhosis[69,70].

Methylation hot spot 3p 
The short arm of  human chromosome 3 belongs to 
regional methylation hot spots in addition to chromosomal 
locus 11p and 17p. Alterations of  the genetic information 
on chromosome 3 are one of  the most frequent and 
earliest steps in the carcinogenesis of  several types of  
tumors. LOH of  chromosome 3p occurred in about 30% 
of  hepatocellular carcinomas[71]. 

In different kinds of  human cancer, epigenetic 
inactivation via promoter methylation of  several genes 
located on 3p, including RASSF1A on 3p21.3, hMLH1 at 
3p21.3, RARβ 2 at 3p24.2, was shown. 

One of  the most frequent obser ved and most 
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epigenetically inactivated genes of  3p is RASSF1A, a 
multifunctional tumor suppressor gene that protects cells 
from genomic instability and transformation by stabilizing 
the microtubules[72,73]. An aberrant promoter methylation 
was detected in about 50% of  malignant tumors. In renal 
cell carcinoma and small cell lung cancer, the highest 
prevalence was observed, reaching about 91%[74]. In HCC, 
hypermethylation occurred in approximately 54% to 
95%, whereas HBV-associated HCC showed higher levels 
of  RASSF1A methylation compared to HCC without 
risk factors. RASSF1A methylation occurs not only in 
HCC, methylation is even observed in non-neoplastic 
precancerous conditions like cirrhotic liver and chronic 
hepatitis[71].

Semaphorin 3B (SEMA3B) and BLU are two other 
putative tumour suppressor genes located on 3p21.3, 
whereas the function of  BLU still remains unclear. In 
lung cancer, BLU overexpression inhibits tumor colony 
formation efficiency. Qiu et al[77] reported that BLU might 
function as an environmental stress-responsive gene, 
regulated by E2F, at least in nasopharyngeal carcinomas. 
However, BLU methylation is a rare event in human 
cancer. We detected BLU promoter methylation in about 
20% of  our examined HCC[71,78].

SEMA3B , a member of  the Semaphorin family, 
suppresses tumor formation in lung cancer and induces 
apoptosis. It has been demonstrated that SEMA3B 
induced apoptosis is antagonized by VEGF165 in due to an 
interaction with NP-1 receptor[79,80]. 

Aberrant methylation of  SEMA3B was detected 
in lung cancer and gliomas[81,82]. We reported a high 
prevalence of  SEMA3B methylation in HCC, reaching 
80%. In contrast, the tumor surrounding non-neoplastic 
liver exhibited an unmethylated SEMA3B promoter. 
Further, RASSF1A and SEMA3B expression was restored 
by treatment with the demethylating drug 5-AZA-C in 
HCC cell lines, suggesting that promoter hypermethylation 
is responsible for silencing transcript expression[71,72,81]. 

The fragile histidine triad (FHIT) gene, located to 
3p14.2, embraces FRA3b, the most actively fragile site 
in humans[83,84]. Functional and structural alterations of  
FHIT were identified in several kinds of  human cancer. 
Methylation induced silencing was described in lung and 
breast cancers[85]. In HCC, promoter methylation of  FHIT 
is a frequent and early event. Sun et al[86] observed FHIT 
hypermethylation with a frequency of  71% in HCC, 64% 
in non neoplastic liver tissue and 14 % in normal liver.

CpG island methylator phenotype (CIMP)
Carcinomas with high rates of  accumulated aberrant 
promoter methylation of  tumor-related genes are 
character ized as CIMP+ (CpG is land methylator 
phenotype). CIMP+ was first described for colorectal and 
gastric cancer by Toyota and Issa in 1999[87,88]. Shen et al[89] 

reported that CIMP+ is associated with environmental 
exposures in HCC. HCC f rom pat ients wi thout 
precancerous conditions or risk factors, respectively, 
showed significantly lower levels of  methylation than HCC 
arising from patients with chronic hepatitis B and C or 
patients with cirrhosis.

CIMP positive HCC (tumours with five genes that 

are concordantly methylated) showed a significantly 
association with methylation of  the TSG p14, p15, p16 ER, 
RASSF1A or WT1 and elevated serum alpha-fetoprotein 
(AFP) levels. Further, CIMP+ was commonly seen in HCC 
with increased serum AFP levels[90,91].

DNA-methyltransferases (DNMT)
DNA hypermethylation is catalyzed by the family of  DNA 
methyltransferases (DNMT) including DNMT1, DNMT3a 
and DNMT3b. DNMT1 is required for maintenance of  
DNA methylation whereas DNMT3a and DNMT3b 
function as de novo DNA methyltransferases[92-94]. 
DNMT2 was former described as DNMT because of  its 
strong similarity with m5C methyltransferases of  pro- and 
eukaryotes. But it was recently shown that DNMT2 does 
not methylate DNA. It’s the first described RNA cytosine 
methyltransferase that methylate position 38 in Aspartic 
acid transfer RNA[95].

In human cancer just as in HCC, an upregulation 
of  DNMT act iv i ty i s seen in contras t to g loba l 
hypomethylation. Park et al[96] described a significantly 
overexpression of  DNMT1 and DNMT3b in HCC 
compared to non-neoplastic liver tissue. DNMT3a showed 
similar or higher expression levels. Saito et al[97] observed 
higher expression levels of  all three DNMTs in HCC and 
cirrhotic liver than in normal liver. Increased DNMT1 
and DNMT3a expression was also reported in dysplastic 
nodules[98].

According to other tumors, no correlation was 
seen between DNMT upregulat ion and promoter 
hypermethylation-induced inactivation of  tumor-related 
genes. The certain mechanisms of  DNMT upregulation 
remains still unclear, but it is suggested that aberrant 
DNMT activity, especially of  DNMT1, is due to rapid 
proliferation of  cancer cells because DNMT1 binds to 
proliferating cell nuclear antigen (PCNA)[99-101].

DNA hypomethylation on pericentromeric satellite 
regions results in chromosomal instability. During 
hepatocarcinogenesis, DNA hypomethylation of  these 
regions was reported in HCC and precancerous conditions. 
The splice variant of  DNMT3b, DNMT3b4 that may lack 
DNA methyltransferase activity is associated with DNA 
hypomethylation on pericentromeric satellite regions. 
Saito et al[102] reported that overexpresssion of  DNMT3b4 
was seen in cirrhotic liver, chronic hepatitis and HCC 
whereas increased DNMT3b4 levels correlated with DNA 
hypomethylation on pericentromeric satellite regions.

DNA HYPOMETHYLATION
In human cancer, global DNA hypomethylation leads 
to genomic instability, affects repeated DNA sequences, 
tissue-specific genes and proto-oncogenes or causes loss 
of  imprinting with a biallelic expression, just as in case 
of  IGF2. Further, the level of  DNA hypomethylation 
increases with tumor progression[103,104]. In recent years, 
DNA hypomethylation was shown in several human 
cancer and some premalignant alterations, i.e. colorectal 
adenomas and carcinomas, adenocarcinoma of  prostate, 
breast cancer or intestinal type of  gastric carcinoma and 
hepatocellular carcinoma, respectively[105-108].
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Lin et al[109] observed 5-methylcytosine (m5C) content in 
hepatocellular carcinogenesis by comparing hepatocellular 
carcinoma with non neoplastic liver, including cirrhotic 
l ivers. In al l cancer t issues, 5-methylcytosine was 
significantly reduced. No difference of  the m5C content 
was detected in cirrhotic and non cirrhotic liver tissue. The 
reduced 5mC level was associated with large tumor size 
and poorly histopathological grade.

It is suggested that (re-)activation of  retroposons 
might be associated with global hypomethylation because 
approximately 90% of  all m5C lies in these elements. An 
association between hypomethylation and transposon 
activation, especially of  LINE-1 transposons, has been 
observed in human testicular carcinoma cell lines, urothelial 
carcinoma cell lines and teratocarcinoma cell lines[110-112]. 
But in HCC, an activation of  transposable elements just as 
LINE-1 retrotransposons via hypomethylation could not 
be detected yet[109].

HISTONE MODIFICATION
Histone modifications are strongly associated with 
formation of  the nucleosome structure and are closely 
linked to CpG island methylation by interacting with 
Methyl-CpG-binding proteins (MBD's) and DNA 
methyltransferases (DNMT's). Modifications including 
methylation, acetylation or phosphorylation of  certain 
position of  the histone tails. Whereas histone methylation 
is associated either to activation or to repression, histone 
hypoacetylation mediated by histone deacetylases leads 
mostly to DNA relaxation and subsequent accessibility for 
transcriptional factors with repression of  transcription. 

Lee et al [113] reported that HCC with low survival 
expressed higher levels of  genes involved in histone 
modifications just as PTMA and SET, two proteins that 
are members of  inhibitors of  histoneacetyltransferases 
complex.

P73, a member of  the TP53 family represses AFP 
expression during normal hepatic development by chromatin 
structure alterations. In hepatoma cells, transactivated p73 
suppresses endogenous AFP transcription via reducing of  
acetylated histone H3 lysine 9 and increasing dimethylated 
histone H3 lysine 9[114].

CONCLUSION
In hepatocarcinogenesis, aberrant methylation of  tumor 
related genes occurs not only in advanced tumour stages, 
it’s a frequent and early event. Promoter methylation of  
different kinds of  tumor suppressor genes including p16, 
SOCS1 and SOCS3 or RASSF1A, has been demonstrated 
in premalignant conditions just as chronic hepatitis or liver 
cirrhosis. Moreover, the frequency of  aberrant promoter 
methylation increases during the progression from 
precancerous lesion to HCC. In HBV or HCV-associated 
chronic hepatitis, methylation frequency of  detected genes 
is significantly higher than in non-neoplastic non-viral 
liver tissue. Therefore, epigenetic changes in preneoplastic 
or early neoplastic stages may serve as indicator or 
“biomarker” for screening of  patients with an increased 
risk for HCC.

Further, HCC is one of  the most common causes 
of  cancer death worldwide with a poor prognosis. Only 
few therapeutic interventions exist. It was demonstrated 
that re-expression of  tumor suppressor genes that are 
epigenetically silenced is possible by using demethylating 
and histone modifying agents. In the next years, this 
might be a possible therapeutic approach analogue to 
other malignant diseases, e.g. myelodysplastic syndrome, 
but the used therapeutic agents that influence DNA 
hypermethylation are toxic and lead to genome wide 
alteration of  the methylation pattern with possible 
activating of  oncogenes or imprinted genes. Another 
possible aspect of  chemotherapy might be to modulate the 
epigenetically involved pathways by using small molecules 
that are more specific. But further investigations in clinical 
trails are needed to prove and integrate epigenetic pathway 
modulating agents.
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