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Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly 
prevalent and can result in nonalcoholic steatohepatitis 
(NASH) and progressive liver disease including cirrhosis 
and hepatocellular carcinoma. A growing body of 
literature implicates the peroxisome proliferators-
activated receptors (PPARs) in the pathogenesis and 
treatment of NAFLD. These nuclear hormone receptors 
impact on hepatic triglyceride accumulation and insulin 
resistance. The aim of this review is to describe the data 
linking PPARα and PPARγ to NAFLD/NASH and to discuss 
the use of PPAR ligands for the treatment of NASH.
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BACKGROUND ON NAFLD/NASH
An estimated 30% of  adults and 10% of  children and 
adolescents in the United States have nonalcoholic fatty liver 
disease (NAFLD), defined as liver fat content exceeding 
5% (Figure 1)[1-3]. Non-alcoholic fatty liver disease is 
associated with obesity, non-insulin dependent diabetes, and 
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hypertriglyceridemia and represents the hepatic manifestation 
of  the metabolic syndrome[4]. A subset of  persons with 
NAFLD progresses to nonalcoholic steatohepatitis (NASH), 
consisting of  hepatic steatosis accompanied by inflammation 
and fibrosis (Figure 1)[5]. Nonalcoholic steatohepatitis affects 
approximately 3% of  the lean population and 19% of  obese 
persons, making it the most prevalent cause of  chronic 
liver disease in the country[6]. Moreover, NASH represents 
a progressive form of  liver disease. Cirrhosis developed in 
5% of  patients with NASH in a community-based cohort 
and 20% of  NASH patients in a referral population[7,8]. 
Nonalcoholic steatohepatitis accounts for up to 75% of  
cases of  cryptogenic cirrhosis and patients with NASH and 
cirrhosis are at risk for hepatocellular carcinoma[9,10].

The pathogenesis of  NASH is often conceptualized 
as a two-step process, consisting of  hepatic triglyceride 
accumulation, followed by the development of  oxidative 
stress and cytokine expression leading to steatohepatitis[11]. 
Multiple metabolic processes can result in hepatocellular 
triglyceride accumulation including: (1) Excess dietary 
intake. Dietary triglycerides are delivered to the liver in the 
form of  chylomicrons. In addition, dietary calories stored 
in adipose tissue as fat represent a source of  fatty acids and 
triglycerides that can be delivered to the liver in the form 
of  lipoprotein particles and free fatty acids. (2) Increased 
rates of  lipogenesis resulting from the de novo synthesis of  
fatty acids and triglycerides in the liver. (3) Decreased rates 
of  β-oxidation of  fatty acids in the liver. (4) Decreased 
rates of  export of  cholesterol esters and triglycerides 
from the liver as very low density lipoprotein (VLDL)[12]. 
As shown in Figure 2, the PPARs impact on multiple 
processes involved in lipid trafficking and metabolism.

Insulin resistance and hyperinsulinemia seem to be 
central to the development of  NAFLD. Insulin resistance is 
associated with increased lipolysis and reduced postprandial 
uptake and storage of  fatty acids in adipose tissue, leading 
to increased fatty acid flux to the liver[13]. In turn, increased 
liver fat content contributes to hepatic insulin resistance[14]. 
Hyperinsulinemia induces sterol regulatory element-binding 
protein-1c (SREBP-1c) expression and hyperglycemia 
activates carbohydrate response element binding protein 
(ChREBP), both of  which increase hepatic fatty acid 
synthesis[15].

THE PPARS
PPARs play a key role in modulating hepatic triglyceride 
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accumulation. PPARα regulates fatty acid β-oxidation. 
PPARγ increases insulin sensitivity as well as regulating 
triglyceride storage in adipose tissue. Fat labeling studies 
indicated that the majority of  hepatic triglycerides originate 
from adipose tissue as non-esterified fatty acids[16].

PPARs are part of  the nuclear receptor superfamily[17]. 
There are three isotypes in mammals designated PPARα 
[NR1C1], PPARδ [NR1C2] and PPARγ [NR1C3][18]. 
PPARα is activated by ligands termed peroxisome 
proliferators, which were named for their effects on 
peroxisomes in rodent livers[19,20]. Lipids are natural PPAR 
ligands, leading to regulation of  lipid metabolism and 

fuel partitioning[17]. PPARs form a heterodimer with the 
retinoid X receptor (RXR). The PPAR:RXR heterodimer, 
when bound to a ligand, changes conformation and binds 
to DNA at PPAR response elements, resulting in gene 
transcription[21,22]. 

PPARα and NAFLD
PPARα is expressed in the liver and other metabolically 
active tissues including striated muscle, kidney and 
pancreas[23,24]. Many of  the genes encoding enzymes 
involved in the mitochondrial and peroxisomal fatty acid 
β-oxidation pathways are regulated by PPARα. In particular, 
the acyl-CoA synthetase, the carnitine palmitoyl transferase 
Ⅰ, the very long-chain acyl-CoA dehydrogenase and the 
tri-functional protein genes encoding enzymes in the 
mitochondrial fatty acid β-oxidation pathway are induced 
by peroxisome proliferators that activate PPARα[25-28]. 
Similarly, the acyl-CoA synthetase, the straight-chain acyl-
CoA oxidase, the L-bifunctional protein and the 3-ketoacyl-
CoA thiolase genes encoding enzymes in the peroxisomal 
fatty acid β-oxidation pathway are induced by peroxisome 
proliferators that active PPARα[26,27,29,30]. Loss of  expression 
of  the PPARα gene in mice results in hepatic steatosis 
under conditions of  increased fatty acid metabolism in the 
liver such as fasting or a high fat diet[31,32]. Administration of  
a potent PPAR agonist decreases hepatic steatosis in mice 
receiving a methionine and choline deficient diet[33]. These 
observations indicate that under conditions of  increased 
hepatic fatty acid influx or decreased hepatic fatty acid 
efflux, PPARα activation prevents the accumulation of  
triglycerides by increasing the rate of  fatty acid catabolism.

Additional factors appear to interact with PPARα 
to regulate hepatic triglyceride content. These include 
adiponectin, which is an adipocyte produced peptide 
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Figure 2  Mechanisms by which PPARs and their ligands can modulate triglyceride 
accumulation are highlighted by letters in the figure. A: PPARγ increases 
expression of genes associated with fatty acid uptake and triglyceride storage in 
adipocytes. Release of adiponectin from adipocytes improves insulin sensitivity 
and activates PPARα; B: PPARγ increases lipoprotein lipase expression, liberating 
circulating fatty acids from lipoproteins for import into adipocytes; C: PPARα 
activity up regulates β-oxidation of fatty acids in the liver; D: PPARα and TZDs 
upregulate stearoyl-CoA desaturase-1, a necessary enzyme for VLDL synthesis 
and export, and TZDs increase arachidonic acid content in triglycerides, which is 
associated with increased insulin sensitivity.
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Figure 1  Liver histology ranging from normal 
liver to steatohepatitis with fibrosis. A: Normal 
liver. Cytoplasmic fat globules are absent 
in hepatocytes and there is no fibrosis in 
this trichrome stained specimen (× 20); B: 
Steatosis without steatohepatitis. Moderate 
cytoplasmic fat infiltration (arrow) is present 
without fibrosis (× 20); C: Steatohepatitis with 
minimal fibrosis. There is focal hepatocyte 
ballooning, inflammation, and minimal fibrosis 
(accentuated in blue by trichrome stain)  
(× 20); D: Steatohepatitis with fibrosis. There 
is nodular scarring in this fat laden liver 
with advanced fibrosis depicted in blue by 
trichrome stain (× 20).
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hormone that limits fat accumulation in the liver by a 
number of  mechanisms including activation of  PPARα 
to increase hepatic fatty acid oxidation[34]. In cell culture 
models, treatment with adiponectin resulted in increased 
activity of  PPARα target genes such as acyl-CoA oxidase, 
carnitine palmitoyl transferase-Ⅰ, and fatty acid binding 
protein[35]. PPARα ligands can increase steaoryl-CoA 
desaturase-1 (SCD1) activity, which is necessary for VLDL 
secretion[36]. A PPAR response element was found in the 
SCD1 promoter[37]. Adiponectin is upregulated by PPARγ, 
providing a connection between the two isotypes[38].

Most of  the data regarding PPARα and hepatic lipid 
homeostasis comes from mouse models. However, there 
are important differences in PPARα activity between 
rodents and humans. PPARα DNA binding activity and 
PPARα expression in human hepatocytes is less than 
10-fold that observed in mice[39,40]. Certain PPAR response 
elements, such as the acyl CoA oxidase gene, do not 
respond to PPAR ligands in humans as they do in rodent 
models[41]. Finally, PPARα activation in rodent models 
resulted in peroxisomal proliferation, hepatomegaly, and 
hepatocellular carcinoma[39,42,43], whereas similar changes 
were not observed in humans[44,45]. Further research is 
needed to determine the relative importance of  PPARα in 
regulating hepatic triglyceride metabolism in humans.

PPARα AS A TARGET FOR THE
TREATMENT OF NAFLD
Fibric acid derivatives, which are available for use 
in humans as lipid lowering agents, serve as PPARα 
activators[46,47]. In a mouse model of  fatty liver disease, 
fenofibrate treatment improved steatosis and increased 
expression of  genes involved in fatty acid metabolism[48]. 
Trials with fibrates in humans have yielded mixed results. 
A study involving potential living liver donors with 
steatosis showed that a combination of  diet, exercise, and 
benzafibrate significantly reduced steatosis and resulted 
in normalization of  alanine aminotransferase levels[49]. 
However, it was not clear whether the therapeutic benefit 
was related to benzafibrate or to a 1000 kilocalorie/day diet 
and a 600 kilocalorie/day exercise regimen. In addition to 
being a PPARα ligand, benzofibrate activates PPARγ and 
improves insulin sensitivity in animal models[46,47], an effect 
not seen with fenofibrate[50]. Another study demonstrated 
that 42% of  62 patients with NAFLD had biochemical 
and ultrasound improvement on fenofibrate, but histologic 
data were not collected[51]. A small controlled study of  
gemfibrozil versus placebo for four weeks found improved 
aminotransferase levels with the use of  gemfibrozil in 
patients with NAFLD[52]. These studies are in contrast to 
a another small series, which demonstrated no change in 
aminotransferases and no histologic improvement after 
one year of  clofibrate therapy for NAFLD[53].

Omega-3 polyunsaturated fatty acids (PUFA) present 
in fish oil , and their metabolites, provide another 
source of  PPARα ligands. Omega-3 PUFA also inhibit 
lipogenesis by antagonizing activation of  LXR[54,55], thus 
reducing expression of  SREBP-1c[56], which results in 
the down regulation of  key enzymes involved in hepatic 

lipid biosynthesis. In mouse models, omega-3 PUFA 
supplementation was associated with improvement in 
hepatic steatosis and insulin sensitivity, as well as lower 
fasting free fatty acid concentrations and lower serum 
triglyceride levels[57,58]. Two human studies reported a 
decline in serum aminotransferase levels and improvement 
in ultrasound features of  fatty liver with omega-3 PUFA 
supplementation[59,60]. However, no histologic data were 
provided. Omega-3 PUFA supplementation also reduces 
serum triglyceride levels in the fasting and postprandial 
state[61-63], but was not found to improve insulin sensitivity 
in humans[62,64,65].

PPARγ AND NAFLD
PPARγ is expressed in high levels in adipose tissue[66] and 
plays a role in increasing insulin sensitivity as well as in 
promoting fatty acid uptake into adipocytes and adipocyte 
differentiation. The net effect of  these processes is to 
increase triglyceride storage in adipocytes, reducing delivery 
of  fatty acids to the liver. Patients with dominant negative 
mutations in PPARγ have NAFLD and the metabolic 
syndrome while lacking adipose tissue suggesting increased 
triglyceride delivery to the liver[67]. PPARγ is present in 
the liver to a lesser degree than in adipose tissue. Liver-
specific PPARγ deficient mice are protected against the 
development of  steatosis suggesting a role for hepatic 
PPARγ in liver triglyceride accumulation[68,69].

Insulin resistance is integral to the development of  
NAFLD, leading to increased fatty acid flux to the liver 
and increased hepatic fatty acid synthesis[13,15]. PPARγ 
increases insulin sensitivity by upregulating GLUT4, an 
insulin dependent glucose transporter in adipose tissue and 
striated muscle[70], and inducing expression of  the c-Cbl 
associated protein, which is involved in insulin signaling[71]. 
Additionally, in mouse models of  insulin resistance, PPARγ 
activation attenuated induction of  supressor of  cytokine 
signaling 3 (SOCS3), which is involved in the development 
of  insulin resistance[72].

PPARγ also promotes adipocyte differentiation and 
expression of  proteins in adipocytes involved in fatty 
acid uptake[17,73], fatty acid transport[74,75] and fatty acid 
synthesis[76]. Differentiation of  preadipocytes to adipocytes 
requires transcription factors including the CCAT-enhancer-
binding proteins (C/EBPs) and the adipocyte differentiation 
and determination factor (ADD)-1/SREBP-1 [77-80].  
C/EBP plays an important role in inducing and maintaining 
PPARγ expression in adipogenesis[81,82]. ADD-1/SREBP-1 
is strongly adipogenic, is enhanced by PPARγ, and results 
in the expression of  lipogenic genes including fatty acid 
synthase[80]. These transcription factors guide the cell 
through proliferation, clonal expansion, growth arrest, and 
eventually adipocyte specific genes are activated resulting 
in lipid accumulation[82]. PPARγ also increases expression 
of  lipoprotein lipase, an enzyme that serves to partition fat 
to adipocytes, limiting fatty acid flux to the liver. Similar 
to PPARα, PPARγ ligands upregulate SCD1 activity, 
which promotes VLDL secretion. Thiazolidinediones 
(TZDs), l igands for PPARγ have also been shown 
to increase arachidonic acid content in triglycerides 
through SCD1, which has been associated with increased 
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insulin sensitivity[83]. Other effects of  PPARγ include 
induction of  uncoupling protein-2, which might decrease 
hepatic triglyceride accumulation by increasing energy 
expenditure[84]. PPARγ expression also might reduce hepatic 
inflammation by decreasing expression of  proinflammatory 
cytokines, such as TNFα[85].

PPARγ AS A TARGET FOR THE
TREATMENT OF NAFLD
TZDs are PPARγ agonists, which improve glycemic 
control in patients with type 2 diabetes mellitus by 
increasing insulin sensitivity[86]. The TZD-mediated 
increase in insulin sensitivity was demonstrated in adipose 
tissue, the liver, and skeletal muscle[87,88]. TZD therapy 
increases adiponectin levels, which are associated with 
improved insulin sensitivity[89]. Furthermore, adiponectin 
impacts on hepatic fat accumulation by enhancing fatty 
acid oxidation in muscle, and by activating PPARα to 
increase fatty acid oxidation in the liver[34].

Thiazolidinediones also increase expression of  AMP-
activated protein kinase[88,90]. This protein kinase increases 
fatty acid oxidation as well as decreasing lipogenesis[91,92]. 
The reduction in l ipogenesis is mediated through 
phosphorylation and inhibition of  acetyl-CoA carboxylase, 
which decreases malonyl CoA formation and down 
regulates SREBP and the carbohydrate response element 
binding protein (ChREBP)[93]. Finally, TZDs have anti-
inflammatory and anti-fibrotic properties that might be 
beneficial in NASH. Serum high-sensitivity CRP, IL-6 and 
IL-18 levels were significantly reduced in patients on TZD 
therapy[94,95] and the TZD pioglitazone reduced activation 
of  hepatic stellate cells in an animal model[96]. Increased 
adiponectin may also contribute to the anti-inflammatory 
effects of  TZD therapy. Adiponectin was shown to block 
TNFα activation of  inflammatory genes in endothelial 
cells[97], decrease macrophage growth and function[98-100], 
and increase release of  the anti-inflammatory cytokines 
IL-10 and IL-1RA with a concomitant decrease in 
interferon-γ production[100].

Studies of  the TZDs rosiglitazone and pioglitazone 
demonstrated reduction in aminotransferase levels and 
improvement in liver histology in patients with NASH[87,101-106]. 
One study that compared pioglitazone plus vitamin E to 
vitamin E alone for the treatment of  NASH found significant 
improvement in steatosis, hepatocellular ballooning, and 
pericellular fibrosis in the combination therapy arm, but not 
in patients treated with vitamin E alone[103]. In a study of  
pioglitazone plus diet versus placebo plus diet in patients with 
biopsy proven NASH and insulin resistance, pioglitazone 
therapy was associated with a significant reduction in mean 
serum aminotransferase levels and improved glycemic 
control[107]. There were significant improvements in hepatic 
insulin resistance as well as histologic parameters including 
hepatic steatosis, ballooning, and inflammation, although not 
fibrosis with six months of  treatment. Further evaluation of  
the efficacy and the cardiovascular risk of  TZD therapy[108] is 
needed before this class of  medications is routinely prescribed 
for the treatment of  NASH. 

CONCLUSION
The nuclear hormone receptors PPARα and PPARγ appear 
to play an important role in modulating hepatic triglyceride 
accumulation, the primary process in the development of  
NAFLD. PPARα activity reduces liver fat by increasing 
β-oxidation of  fatty acids and PPARγ increases insulin 
sensitivity as well as reducing fatty acid flux to the liver. 
PPAR ligands show promise in the treatment of  NAFLD, 
although further human studies are needed to define the 
therapeutic role of  these agents. 
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