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INTRODUCTION
Although organ transplantation has become an established 
treatment, the shortage of  donor organs remains a 
serious problem, for which tissue engineering is a possible 
solution. A bioartificial liver (BAL) system consists of  three 
components: cells, a scaffold for the cells, and growth-
regulating factors. Ideally, the cells for a BAL will exhibit 
similar functions to normal human mature hepatocytes 
while maintaining long-term viability and proliferative 
activity. However, a method of  culturing human hepatocytes 
for a prolonged period has not been established so far.

We have developed a radial flow bioreactor (RFB), 
which is a 3-dimensional culture system that can be used 
for high-density culture[1-4], achieving a cell density 10 times 
greater than that obtained with hollow-fiber culture[5,6]. A 
cylindrical bioreactor is filled with porous cellulose beads 
that act as microcarriers, and culture medium flows from the 
periphery toward the center of  the reactor (Figure 1A)[2,7].  
To achieve a high-density cell culture, it is essential to 
minimize any variations in the distribution of  oxygen and 
nutrients between the culture medium at the inlet and outlet 
of  the reactor. If  medium flows from the periphery towards 
the center, a high perfusion rate can provide an adequate 
supply of  oxygen and nutrients to cells at the center of  the 
bioreactor even though oxygen and nutrients are consumed 
by cells at the periphery. Thus, there are similarities between 
the RFB and the anatomy of  hepatic lobules (Figure 1B)[2,7].

Because of  the easy availability, recent reports point 
out a clinical use of  BAL systems that utilize animal 
cells[8,9]. Fetal porcine hepatocytes have a high proliferative 
potential in vitro. Previous studies have shown that minimal 
immunogenicity is exhibited by tissues harvested at the 
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Abstract
AIM: To examine the eff icacy of the radial f low 
bioreactor (RFB) as an extracorporeal bioartificial liver 
(BAL) and the reconstruction of liver organoids using 
embryonic pig liver cells.

METHODS: We reconstructed the liver organoids 
using embryonic porcine liver cells in the RFB. We also 
determined the gestational time window for the optimum 
growth of embryonic porcine liver cells. Five weeks of 
gestation was designated as embryonic day (E) 35 and 
8 wk of gestation was designated as E56. These cells 
were cultured for one week before morphological and 
functional examinations. Moreover, the efficacy of pulsed 
administration of a high concentration hepatocyte growth 
factor (HGF) was examined.

RESULTS: Both cell growth and function were excellent 
after harvesting on E35. The pulsed administration of a 
high concentration of HGF promoted the differentiation 
and maturation of these fetal hepatic cells. Microscopic 
examination of organoids in the RFB revealed palisading 
and showed that bile duct-like structures were well 
developed, indicating that the organoids were mini livers. 
Transmission electron microscopy revealed microvilli 
on the luminal surfaces of bile duct-like structures 
and junctional complexes, which form the basis of the 
cytoskeleton of epithelial tissues. Furthermore, strong 
expression of connexin (Cx) 32, which is the main 
protein of hepatocyte gap junctions, was observed. With 
respect to liver function, ammonia detoxification and 
urea synthesis were shown to be performed effectively.

CONCLUSION: Our system can potentially be applied in 
the fields of BAL and transplantation medicine.
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earliest available gestational age[10-12]. Thus, the earliest 
time after organogenesis is established appears to be 
preferable for human transplantation. In fact, Friedman  
et al[13] have shown that maximal liver growth and function 
were achieved at the earliest teratoma-free gestational age 
of  embryonic day (E) 28. In this study, the possibility of  
teratoma development was also taken into consideration, 
and construction of  a BAL system was achieved with a 
RFB and fetal porcine livers obtained on E35 as the cell 
source, while E56 cells were also examined for comparison. 
Furthermore, this study also focused on the effect of  
hepatocyte growth factor (HGF), which was originally 
reported as a hepatocyte-specific mitogen with an important 
role in liver regeneration[14].

MATERIALS AND METHODS
Isolation of fetal hepatocytes and nonparenchymal 
epithelial cells
Pregnant mini swines (CSK-MS) weighing 30 to 35 kg 
were purchased from Chugai Institute of  Medical Science 
(Nagano, Japan). Fetal hepatic cells were isolated from the 
porcine livers of  embryos at 5 and 8 wk of  gestation (NIBS 
strain) by the two-step liver perfusion method of  Seglen 
with some modifications[15-17]. Five weeks of  gestation was 
designated as E35 and 8 wk of  gestation was designated 
as E56. For controls, mature porcine liver cells were 
used. After intraportal infusion of  collagenase (0.05%) 
and dispase (1000 U/mL), the hepatic tissue was minced 
into pieces and shaken in collagenase solution. Then the 
collagenase-digested liver cell suspension was centrifuged 
at 50 g for 1 min. The E35 cells were divided into 3 
fractions and the E56 cells were divided into 2 fractions. 
The hepatocyte fraction (lowest fraction) was maintained 
on ice in serum-free ASF 104 medium (Ajinomoto, 
Tokyo). The one and two upper fractions, respectively, 
were centrifuged once at 350 g for 5 min, and the cell pellet 
(containing non-parenchymal cells) was also maintained on 
ice in serum-free ASF 104 medium.

Oxygen consumption in the RFB
An RFB system with a 15-mL capacity was placed in 
an aseptic room maintained at 37℃. The system was 
composed of  an RFB and a conditioning vessel connected 
to a tank containing fresh medium and a recovery tank. 
The system was automatically controlled by a computer 
that monitored pH, glucose, and oxygen consumption. The 
oxygen tension in the culture medium was measured both 
within the reservoir and at the outlet of  the bioreactor, 
and the oxygen consumption was monitored on the basis 
of  the oxygen tension gradient (Do in-Do out: ∆O2 ppm). 
Oxygen consumption was used as an index of  the activity 
of  the cells in the RFB system.

Culture of cells in the RFB
The RFB (Biott, Tokyo, Japan) is a cylindrical bioreactor 
with a capacity of  15 mL that contains cellulose beads 
(Asahi Kasei, Tokyo, Japan). The RFB is attached to a 
reservoir containing culture medium and an automatic 
controller that maintains the oxygen content and pH of  the 
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medium. Both hepatocytes (5 × 107) and non-parenchymal 
cells (5 × 107) were inoculated into the reservoir, which 
was filled with ASF104 medium containing 2% fetal bovine 
serum (FBS). The bioreactor was perfused in a closed 
circuit fashion for 2 h to maximize the efficiency of  cell 
attachment to the cellulose beads, after which the reactor 
was switched to the open-circuit mode and the medium 
was changed to ASF104 without FBS. For this study, 
incubation in the RFB system was performed for one week 
before morphological and functional examinations.

Factor mix and HGF
The factor mix (FM) that we formulated consists of   
10-7 mol/L insulin, 10-7 mol/L dexamethasone, 100 ng/mL 
oncostatin M (OSM), 25 ng/mL epidermal growth factor 
(EGF), 1 µg/mL L-ascorbic acid phosphate magnesium 
salt, 0.1 mmol/L nicotinamide, and antibiotics, which 
was added to the culture medium. HGF was also added 
at 20 ng/mL (low-dose group) or 100 ng/mL (high-dose 
group). HGF was administered three times (d 1, 3, and 5) 
by closed-circuit perfusion for 2 h.

Experimental groups
The following groups were studied: FME35 group (ASF104 
+ FM), LFE35 group (ASF104 + FM + HGF 20 ng/mL: 
low-dose), and HFE35 group (ASF104 + FM + HGF 100 
ng/mL: high-dose) for E35 cells, with corresponding groups 
for E56 cells. Two other groups, i.e., the FMH group (Adult: 
group H, ASF104 + FM) and the HFH group (Adult: group 
H, ASF104 + FM + HGF 100 ng/mL), were studied as 
control groups. Each group was set at n = 3.

Ammonia loading test
In order to assess the performance of  hepatocyte functions, 
the ammonia (NH3) loading test was performed. In 
consideration of  the results of  oxygen consumption and 
morphological features, the NH3 loading test compared the 
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Figure 1  The principle of RFB system. A: A cylindrical bioreactor is filled with 
porous cellulose beads that act as microcarriers and culture medium flows from 
the periphery toward the center of the reactor. Biases in distribution of oxygen 
and nutrients between the culture medium at the inlet and outlet of the reactor are 
minimized; B: The RFB system is similar to the organization of the hepatic primary 
lobe Figure 1B is reproduced from reference 7.



HFE35 group, FME35 group, and HFE56 group. After 
incubation for one week (d 7) in the RFB, ammonium 
chloride (NH4Cl) was added at three concentrations  
(1 mmol/L + 2 mmol/L + 3 mmol/L) every 8 h for 24 h, 
followed by 3 mmol/L for a further 24 h[4]. Then NH3 and 
urea levels were measured on d 8 and d 9 using an automatic 
high-speed amino acid analyzer JLC-300 (JEOL Ltd., 
Tokyo).

Immunohistochemistry
For immunochemical study of  cytokeratin 19 (CK19) 
(DakoCytomation), the streptoavidin-biotin (SAB) 
technique was used[18,19]. Specimens of  RFB cultures were 
fixed with Methacarn solution (methanol:chloroform:
glacial acetic acid = 6:3:1), embedded in paraffin, cut into  
3 μm sections, and deparaffinized with graded xylene 
series. Endogenous peroxidase was inhibited by adding 
0.3% H2O2 methanol.

For immunofluorescence study of  connexin 32 (Cx32), 
specimens of  RFB cultures were fixed in cold absolute 
acetone for 10 min. Immunohistochemistry with a rabbit 
polyclonal anti-Cx32 (Zymed, South San Francisco, 
CA) was performed. Cx32 was visualized using Alexa 
Fluor 488-conjugated goat anti rabbit immunoglobulin 
G (Molecular Probes, Eugene, OR). For comparison, 
immunohistochemical staining as also performed on 
parenchymal cells and non-parenchymal cells in monolayer 
cell culture. Samples were examined with an epifluorescence 
microscope (Nikon, Tokyo, Japan) and a laser-scanning 
confocal microscope (MRC 1024; Bio-Rad, Hercules, CA,).

Transmission electron microscopy (TEM)
For TEM, cultured cells were fixed with 2.0% glutaraldehyde 
in 0.1 mol/L phosphate buffer (PB) for 1 h and postfixed 
with 1% OsO4 in 0.1 mmol/L PB for 1 h at 4℃. Specimens 
were dehydrated in ethanol and embedded in a mixture 
of  Epon-Araldite. Thin sections (60 nm) were cut with 
a diamond knife mounted on an LKB ultratome, and 
stained with aqueous uranyl acetate. Then the sections were 
examined under a JEOL 1200EX electron microscope 
(JEOL Ltd., Tokyo, Japan).

Statistical analysis
The oxygen consumption, the NH3 and urea levels were 
reported as a mean ± SD. For individual parameters, 
differences between groups were assessed by repeated 
measures ANOVA[20,21] and Bonfer ron`s mult iple 

comparison test. All calculations were performed using Stat 
View-J statistical soft ware (SAS Institute, Cary, NC) with  
P < 0.05 considered significant.

RESULTS
Morphological features of fetal porcine liver cells
Figure 2A demonstrates the histological features of  E35 
porcine liver. Although the hepatic lobular structure is 
present, extramedullary hematopoiesis was also observed 
and the cells are largely immature. On the other hand, the 
E56 liver shows a definite lobular structure and a decrease 
of  extramedullary hematopoiesis, so it more closely 
resembles the adult porcine liver (Figure 2B). Liver cells 
isolated on E56 were divided into two layers (parenchymatous 
cells and non-parenchymatous cells) after centrifugation of  
the cell suspensions in accordance with these histological 
findings; but, E35 liver cell suspensions were divided into 
three layers. The upper layer, the middle layer, and the 
lower layer consisted of  parenchymal cells, extramedullary-
hematopoiesis cells including immature hepatic cells, and 
non-parenchymal cells, respectively.

Oxygen consumption
Changes in the oxygen consumption in each group, which 
is an index of  cellular activity in RFB culture, are shown 
in Figure 3. Although viability of  the FME35 group was 
maintained for one week, viability of  the FMH group 
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Figure 2  Histological findings of fetal porcine liver 
(HE staining). A: Extramedullary hematopoiesis 
was observed (arrow) and the cells are largely 
immature at embryonic d 35 (x 100); B: A definite 
lobular structures and a decrease of extramedullary 
hematopoiesis were observed at embryonic d 56 (x 
100).
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Figure 3  Changes of the oxygen consumption in the HFE35, LFE35, and FME35 
groups. HFE35 group vs FME35 group (P < 0.01), HFE35 group vs LFE35 group  
(P < 0.05), LFE35 group vs FME35 group (no significant). The data show the 
mean values, while error bars represent corresponding standard deviations. aP < 
0.05, bP < 0.01.
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was difficult to maintain (data not shown). Although the 
LFE56 group did not show a significant change of  oxygen 
consumption over time compared with the FME35 group  
(P = 0.2792), the HFE35 group showed a significant 
change of  oxygen consumption with time (P < 0.01). Also 
compared to the LFE35 group, the HFE35 group showed 
a significant change over time (P < 0.05). E56 cells gave 
the same results as E35 cells when cultured under the same 
conditions (data not shown). The HFH group, which was 
treated with a high concentration of  HGF, also maintained 
viability for one week (data not shown).

Architecture of cells cultured in the RFB
In the bioreactor, cultured cells formed layers on the 
cellulose beads. Non-parenchymal cells had a flat shape and 
existed on the surface of  the perfused side (Figure 4A).  
Moreover, cell clumps of  0.4 to 0.8 cm3 separated from 
the cellulose beads to float in the RFB. In particular, 
these clumps were conspicuous in the HFE35 group. On 
histological examination of  these clumps, a palisading 
structure (Figure 4B) and bile duct-like structures were 
also observed (Figure 4C), so reconstruction of  a “mini-
liver organoid” was achieved. Furthermore, CK19 which 
is the marker of  a bile duct was also observed in bile 
duct-like structures (Figure 4D). TEM images revealed 
microvilli inside bile duct-like structures (Figure 5A). 
Moreover, junctional complexes were well-developed 
and tight junctions were also observed (Figure 5B). 
Immunohistochemical staining for Cx32, which is the main 
protein of  gap junctions in hepatocytes of  the organoid, 
showed expression in a whirl-shaped pattern (Figure 5C).  
These morphological characteristics were more notable 
in the HFE35 group. The expression of  Cx32 in the 
parencymal cells in monolayer culture was reduced 

compared to that of  the clump in RFB (Figure 5D). 
Furthermore, the expression of  Cx32 in non-parenchymal 
cells in monolayer culture was not observed (Figure 5E).

Ammonia loading test
The ammonia loading test was performed in the HFE35 
group, which showed good oxygen consumption and 
morphological reconstruction of  a mini liver, the FME35 
group, and the HFE56 group. Compared with the FME35 
group, the NH3 concentration of  the HFE35 group was 
decreased significantly (P < 0.01) (Figure 6), and the 
urea concentration increased significantly along with a 
reduction of  NH3 (P < 0.01) (Figure 7). Moreover, a 
significant reduction of  the NH3 concentration was seen 
in the HFE35 group compared with the HFE56 group  
(P < 0.05) (Figure 6). On the other hand, the change of  
the urea concentration in the HFE35 group was marked, 
but there was no significant difference with the HFE56 
group (Figure 7).

DISCUSSION
In this study, fetal porcine hepatic cells with proliferative 
capacity were cultured in a RFB system that allowed high-
density, three-dimension culture[1-4], and the usefulness 
of  the RFB system as a BAL and the possibility of  liver 
reconstruction with implantable organoids were examined. 
Although the high proliferative capacity of  embryonic 
cells is well known, it has been unclear at which gestational 
age the fetal liver cells show optimal proliferation and 
functional capacity when used as a source of  cells for a 
BAL or for organoid reconstruction. In this study, fetal 
porcine livers (E35 and E56) were selected based on the 
findings of  Friedman et al, who examined the timing 

Figure 4  Histological findings of cultured cells 
in the RFB (hematoxyl in-eosin staining and 
immunohistochemistry). A: Cultured cells formed 
layers on the cellulose beads. Non-parenchymal 
cells had a flat shape and exited on the surface of 
the perfused side (arrow); B: A palisading structure 
was observed in cell clumps; C: Bile duct-like 
structures were also observed in cell clumps; D: The 
expression of cytokeratin 19 (CK19) was observed 
in bile duct-like structures.
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of  liver organogenesis in embryonic swines [13]. They 
determined distinct gestational time windows for the 
embryonic porcine liver and precursor cells, with maximal 
liver growth and function being achieved at the earliest 
teratoma-free gestational age of  E28. In their tissue 
transplantation experiment, no development of  teratomas 
was seen on E28 (0/23 transplants)[13]. Examination of  
hepatocyte function based on the serum albumin level 
also showed that E28 is the optimal gestational age for 
transplantation, and albumin secretion was decreased at 
E56 and E80[13]. Although this study was performed in vitro 

using the RFB system, in consideration of  the possibility 
of  the teratoma development because the environment was 
similar to that in vivo, E35 was chosen as a safe gestational 
age and comparison with E56 was also performed.

At present, using cells from the fetal human liver is 
ethically problematic and great difficulties in obtaining 
such cells are expected. For this reason, fetal porcine liver 
cells were used in the present study. The following three 
points are also worth considering: (1) The anatomical and 
physiological characteristics of  the porcine liver are similar 
to those of  the human liver; (2) The gestation period of  

Figure 5  A: Transmission electron microscopic images revealed microvilli inside bile duct-like structures; B: Junctional complexes were well developed and tight junctions 
were also observed; C: Connexin 32 (Cx32) in liver organoid, showed expression in a whirl-shaped pattern; D: Cx32 in parenchymal cells in monolayer culture was fewer 
than that of the organoid; E: Cx32 in npon-parenchymal cells in monolayer culture was not observed.
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Figure 6  The NH3 loading test compared the HFE35 group, FME35 group, and 
HME56 group. HFE35 group vs FME35 group (P < 0.01), HFE35 group vs HFE56 
group (P < 0.05). FME35 vs HFH56 (no significant). aP < 0.05, bP < 0.01.
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pigs is comparatively short (about 112-116 d), and breeding 
is easy; (3) Breeding of  specific-pathogen-free animals is 
also possible, so zoonoses can be avoided[22,23]. However, 
the swine is immunologically different from humans and 
hyperacute rejection of  porcine organs by human recipients 
is mediated via antibodies directed against Galα-1, 3-Gal 
on porcine cells, posing an immediate barrier to successful 
clinical xenotransplantation[24-26]. In addition, infection 
of  the human host by porcine endogenous retroviruses 
poses a major problem[27]. It was reported that infection 
can be avoided by breeding GalT KO swines that show 
no infectivity for human cells in vitro[28,29]. Thus, porcine 
organs may be used for xenotransplantation in donors with 
no alternative.

With respect to growth factors, the factors that were 
considered to be necessary for organogenesis by inducing 
proliferation, differentiation, and maturation of  co-cultured 
fetal hepatic parenchymal cells and non-parenchymal 
cells were added to the culture medium[30-35]. Hamazaki 
et al[35] demonstrated that the important growth factors 
for hepatogenesis are fibroblast growth factor (FGF) 
at an early stage, HGF in the middle stage, and OSM, 
insulin, and dexamethasone at the late stage. OSM and 
dexamethasone are especially important for the maturation 
of  hepatoblasts to hepatocytes[31,36]. On the other hand, it 
is generally accepted that HGF/scatter factor (SF) is an 
important paracrine mediator of  epithelial-mesenchymal cell 
interactions, with potential involvement in organogenesis 
and angiogenesisis[37,38]. In particular, a morphogenic effects 
of  HGF/SF on the organization of  focal contacts and 
cellular junctions has been documented[39].

Morphological examination of  each group showed that 
fetal hepatic parenchymal cells were adherent to the cellulose 
beads, while fetal hepatic non-parenchymal cells existed on 
side of  perfusion (Figure 4A)[2]. Also, small organoids that 
had separated from the beads were observed floating in the 
RFB. In the HFE35 group, larger organoids were observed. 
Microscopic examination of  the organoids from a high-
HGF groups revealed a palisading architecture and bile 
duct-like structures with the expression of  CK19, so the 
organoids could be called mini livers. Furthermore, TEM 
showed microvilli on the luminal surfaces of  bile duct-
like structures and junctional complexes, the basis of  the 
cytoskeleton of  epithelial tissue. Finally, strong expression 
of  Cx32, which is the main protein of  hepatocyte gap 
junctions, was observed[40,41]. These findings were considered 
to be the features of  organoids which had adhered to the 
beads firmly until reaching a certain size.

Oxygen consumption was used as an index of  cellular 
activity and it showed a significant change over time in 
the HFE35 group compared to the FME35 group, and a 
high level of  oxygen consumption was maintained in the 
HFE35 group. Although the LFE35 group also showed a 
high consumption at the time of  HGF addition compared 
to the FME35 group, there was no significant change 
over time. The E56 group also showed similar changes 
of  oxygen consumption under the same conditions. The 
ammonia loading test was performed for evaluation of  
functionality of  mature hepatocytes. Among 3 groups 
tested, the reduction of  NH3 and the increase of  urea 

production were highest in the HFE35 group, suggesting 
that the urea cycle was activated by elevation of  the 
ammonia concentration. Although similar changes were 
observed in the HFE56 group, the extent of  change was 
smaller than in the HFE35 group. These results showed 
that the organoids possessed some of  the functions of  
mature hepatocytes.

Both proliferative activity and differentiation of  cells 
are needed as an ideal source for a BAL. In this study, 
the combination of  embryonic porcine liver (E35) cells 
and pulsing with a high concentration of  HGF in our 
RFB provided a system for which clinical application 
may eventually be possible in the fields of  BAL and 
transplantation medicine.
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As an alternative to liver transplantation, numerous researchers have been working 
towards the goal of development of a fully functional artificial liver. Researchers 
are, therefore, concentrating their efforts on hybrid systems incorporating human-
or animal-derived cells. While research on bioartificial liver (BAL) system is still in 
its infancy, the urgent goal is to develop a sophisticated BAL suitable for clinical 
applications.

Research frontiers
The flow bioreactor (RFB) system is a 3-dimensional culture system that can be 
used for high-density culture, achieving a cell density 10 times greater than that 
obtained with hollow-fiber culture. The culture medium flows from the periphery 
toward the center of the reactor. When medium flows from the periphery towards 
the center, a high perfusion rate can provide an adequate supply of oxygen 
and nutriments to cells at the center of the bioreactor even though oxygen and 
nutrients are consumed by cells at the periphery. This system simulates the 
anatomy of hepatic lobules. On the other hand, both proliferative activity and 
differentiation of cells are needed as an ideal source for a BAL. Fetal cells have a 
high proliferative potential in vitro and we selected the fetal porcine hepatocytes 
as a cell source. Furthermore, we examined the earliest teratoma-free gestational 
age of embryonic day. Furthermore, the efficacy of pulsed administration of a high 
concentration hepatocytes growth factor (HGF) was examined.

Innovations and breakthroughs
In this study, the combination of embryonic porcine liver (embryonic d 35: E35) 
cells and pulsing a high concentration of HGF in our RFB provided a system for 
which clinical application may eventually be possible in the fields of BAL and 
transplantation medicine.

Applications
Our RFB system may be able to perform clinical application as extracorporeal 
BAL for acute hepatic failure. Furthermore, the liver organoids in RFB have the 
potential future in vivo application (implantable bioartificial liver etc.).

Peer review
The manuscript reports the hepatic reconstruction from fetal porcine liver cells 
using a radial flow bioreactor. The authors evidenced that cells organized in 
organoids with the presence of bile duct-like structure. They also showed that HGF 
favored differentiation and survival of cells in the bioreactor. Despite the fact that 
this bioreactor was described useful from maintenance of expression of CYP3A4 
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by human hepatocytes and that the use of pig cells is ethically problematic for 
tissue engineering and development of extracorporeal bioartificial liver, the results 
are interesting and well documented.
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