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Abstract
AIM: To investigate in vitro  and in vivo  treatment with 
histone deacetylase inhibitors NVP-LAQ824 and NVP-
LBH589 in pancreatic cancer.
METHODS: Cell-growth inhibition by NVP-LAQ824 and 
NVP-LBH589 was studied in vitro  in 8 human pancreatic 
cancer cell lines using the 3-(4,5-dimethylthiazole-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 
In addition, the anti-tumoral effect of NVP-LBH589 
was studied in a chimeric mouse model. Anti-tumoral 
activity of the drugs was assessed by immunoblotting 
for p21WAF-1, acH4, cell cycle analysis, TUNEL assay, 
and immunohistochemistry for MIB-1.
RESULTS: In vitro  treatment with both compounds 
significantly suppressed the growth of all cancer 
cell lines and was associated with hyperacetylation 
of nucleosomal histone H4, increased expression of 
p21WAF-1, cell cycle arrest at G2/M-checkpoint, and 
increased apoptosis. In vivo , NVP-LBH589 alone 
significantly reduced tumor mass and potentiated the 
efficacy of gemcitabine. Further analysis of the tumor 
specimens revealed slightly increased apoptosis and no 
significant reduction of cell proliferation.

CONCLUSION: Our findings suggest that NVP-LBH589 
and NVP-LAQ824 are active against human pancreatic 
cancer, although the precise mechanism of in vivo  drug 
action is not yet completely understood. Therefore, 
further preclinical and clinical studies for the treatment 
of pancreatic cancer are recommended.
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INTRODUCTION
Pancreatic cancer is the fifth to sixth leading cause of  
cancer death in Europe and the fourth leading cause 
of  cancer death in the USA[1]. The lethality of  this 
malignancy is demonstrated by the fact that the annual 
incidence is approximately equal to the annual deaths. 
Unfortunately, carcinoma of  the pancreas is increasing 
in incidence, and its risk factors are poorly understood. 
Although surgical resection remains the only chance 
for cure, less than 10% of  patients diagnosed with 
pancreatic cancer are eligible for curative (R0) resection, 
since up to 90% of  patients will present with locally 
advanced or metastatic disease. In addition, there is 
a high rate of  relapse, even in patients who receive 
adjuvant therapy[2]. A recent evaluation of  the Finnish 
Cancer Registry, which recorded 4922 pancreatic cancer 
patients between 1990 and 1996, detected only 89 five 
year survivors (1.8%) [3]. Metastatic cancer tends to 
be a rapidly progressing disease, often accompanied 
by significant weight loss, abdominal pain, nausea, 
and/or depression. For decades, 5-fluorouracil (5-FU) 
was the most widely used chemotherapeutic agent in 
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metastatic pancreatic cancer. Today gemcitabine, a 
nucleoside analogue that is incorporated into replicating 
DNA resulting in premature chain termination and 
apoptosis, is the current standard of  care[4]. In a 
phase Ⅲ approval study 126 patients with metastatic 
disease who had not received prior chemotherapy were 
randomized to weekly gemcitabine (n = 63) or weekly 
bolus 5-FU (n = 63)[5]. Overall survival in patients 
treated with gemcitabine was significantly improved 
compared with patients treated with 5-FU; However, 
there was no convincing gain in median survival time 
(median survival 5.7 mo vs 4.4 mo, P = 0.0025). The 
primary efficacy measure in this study was clinical 
benefit response, a composite of  patient-oriented 
parameters including pain, Karnofsky performance 
status, daily analgesic usage, and body weight. Clinical 
benefit  was experienced in 23.8% of  patients treated 
with gemcitabine compared with only 4.5% of  the 
patients treated with 5-FU (P = 0.022). Fixed-dose-
rate (FDR) gemcitabine (1500 mg/m2 at 10 mg/m2 
per minute) has also been investigated by Tempero  
et al in comparison to 2200 mg/m2 gemcitabine over  
30 min[6]. Although median survival time improved from 
5.0 mo in the standard arm to 8.0 mo in the FDR arm  
(P = 0.013), grade 3 and 4 toxicity increased significantly. 
Many combination regimens with gemcitabine have 
been tested in open-label phase Ⅱ or Ⅲ studies with 
higher response and progression-free survival rates, but 
no definitive benefit in overall survival, with the only 
exception being a combination with capecitabine[4,7]. As 
little progress has been made in the past decade, new 
strategies should focus on targeting cancer cells at the 
molecular level. Recently, in a randomized phase Ⅲ 
placebo-controlled trial, Moore et al demonstrated that 
combining gemcitabine with EGFR inhibitor erlotinib 
was associated with a modest, but statistically significant 
survival benefit of  15 d[8]. In contrast, a recent phase 
Ⅲ trial (SWOG S0205 study) failed to demonstrate 
a clinically significant advantage of  the addition of  
cetuximab, an anti-EGFR monoclonal antibody, to 
gemcitabine for overall survival, progression free 
survival and response[9]. Another approach is targeting 
VEGF as a key player in tumor growth and resistance 
to therapy. In a phase Ⅱ trial with 52 patients, a 
combination of  VEGF inhibitor bevacizumab and 
gemcitabine y ie lded a 21% response rate and a 
median survival of  8.8 mo[10]. These data led CALGB 
to conduct a randomized, double-blind, placebo-
controlled, phase Ⅲ trial (CALGB 80303). However, 
the addition of  bevacizumab to gemcitabine did not 
improve survival[11]. Inhibiting histone deacetylases 
(HDACs), which regulate interactions between histones 
and DNA together with histone acetylases (HATs) as 
counter-players, may be another promising molecular 
target. Clinical studies published so far have shown that 
HDAC inhibitors (HDACIs) can be administered safely 
in humans and that treatment of  some cancers with 
such agents seems to be beneficial[12,13]. NVP-LAQ824 
and NVP-LBH589 are new chemical entities belonging 
to a structurally novel class of  cinnamic hydroxamic 

acid compounds[14-17], which are currently in phase Ⅰ 
clinical evaluation in advanced refractory solid tumors 
and hematologic malignancies[18-22]. However, little 
is known about their potential efficacy in pancreatic 
cancer. Therefore, the objectives of  the current study 
were to investigate the efficacy of  in vitro and in vivo 
treatment with the novel pan-HDAC inhibitors NVP-
LAQ824 and NVP-LBH589 and to evaluate effects of  
combination with gemcitabine.

MATERIALS AND METHODS
Materials 
Eight human pancreatic cancer cell lines (Hs766T, 
As-PC-1, CFPAC-1, Capan-2, Panc-1, MiaPaca-2, 
HPAF-2 and L3.6pl) were examined[23-27]. All cell 
lines were cultured in a 37℃ incubator with 50-100 
mL/L CO 2 in appropr iate media . The HDACIs 
NVP-LAQ824 and NVP-LBH589 were provided by 
Novartis (Basel, Switzerland) and dissolved in dimethyl 
sulfoxide (DMSO) (10 mmol/L stock). Hoechst 
dye, sodium butyrate and monoclonal (mc) β-actin 
antibody were purchased from Sigma (Sigma-Aldrich 
Chemie GmbH Munich, Germany), mc p21WAF-1/Cip-1 

from Cell Signaling (Cell Signaling Technology, Beverly, 
USA), mc acH4 antibody from Upstate (Upstate 
Biotechnology, Lake Placid, USA), mc MIB-1 antibody 
from Dako (Glostrub, Denmark), and gemcitabine 
(diluted in D5W and 50 mL/L DMSO) from our 
hospital pharmacy. Six to eight-wk-old female athymic 
NMRI nude mice were supplied by Taconic (Taconic 
Europe, Ry, Denmark) and held under pathogen-free 
conditions. Humane care was administered, and study 
protocols complied with the institutional guidelines.

Inhibition of cell growth
Cytotoxic effects of  both drugs were determined by the 
3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT, Sigma-Aldrich Chemie GmbH Munich, 
Germany) assay. 1-5 × 103 cells were seeded in triplicate 
in 96-well plates (100 µL/well) and allowed to attach 
overnight. The medium was then replaced with media 
(100 µL) containing the designated drug or vehicle 
control (50 mL/L DMSO in D5W) followed by an 
incubation for 3 or 6 d. For the 6 d experiment, medium 
was changed after 3 d. Three hours before the end 
of  the incubation period, 10 µL of  PBS containing 
MTT (5 g/L) was added to each well. Following this, 
the medium was removed. The precipitate was then 
resuspended in 100 µL of  lysis buffer (DMSO, 100 g/L 
SDS). Absorbance was measured on a plate reader at 
590 nm using a reference wavelength of  630 nm. Each 
experiment was performed in triplicate.

Immunoblotting
Cell culture monolayers were washed twice with ice-
cold PBS and lysed with RIPA-buffer containing Tris-
HCl (50 mmol/L, pH 7.4), NP-40 (10 g/L), sodium-
desoxycholate (2.5 g/L), NaCl (150 mmol/L), EDTA 
(1 mmol/L), sodium-orthovanadate (1 mmol/L), and 
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one tablet of  complete mini-EDTA-free protease 
inhibitor cocktail (Boehringer, Mannheim, Germany, in 
10 mL buffer). Histones for anti-acH4 immunoblotting 
were isolated by acid extraction [cells were lysed in ice-
cold lysis buffer (HEPES 10 mmol/L; pH 7.9), MgCl2 
(1.5 mmol/L), KCl (10 mmol/L), DTT (0.5 mmol/L), 
PMSF (1.5 mmol/L), and additional protease inhibitor]. 
One molar HCl was added to a final concentration 
of  0.2 mol/L, followed by an incubation on ice for  
30 min and centrifugation at 13 000 r/min for 10 min. 
The supernatant was retained and dialysed against  
200 mL of  0.2 mol/L acetic acid twice for 1 h and 
against 200 mL H2O overnight). Proteins were quantified 
by Bradford protein assay (Bio-Rad, Munich, Germany) 
and stored at -80℃. 50 μg of  cell or tissue lysates were 
separated on SDS-polyacrylamide gels and electroblotted 
onto polyvinylidene difluoride membranes (Amersham 
Pharmacia Biotech, Freiburg, Germany). Membranes 
were then incubated in blocking solution [50 g/L dry 
milk in 10 mmol/L Tris-HCl, 140 mmol/L NaCl,  
1 g/L Tween-20 (TBS-T)], followed by incubation with 
the primary antibody at 4℃ overnight (50 g/L BSA in 
TBS-T). The membranes were then washed in TBS-T 
and incubated with horseradish peroxidase (HRPO)-
conjugated secondary antibodies for 1 h at room 
temperature. Antibody detection was performed with 
an enhanced chemoluminescence reaction (SuperSignal 
West Dura, Pierce, Rockford, USA).

Cell cycle analysis
Cells were seeded in T-25 flasks (2 × 105), treated with 
various concentrations of  NVP-LAQ824 or NVP-
LBH589 or vehicle control (50 mL/L DMSO in D5W) 
for 72 h, washed with PBS, trypsinized, centrifuged, 
and fixed in 750 mL/L ice-cold ethanol-phosphate-
buffered saline containing 10 g/L EDTA. DNA was 
labeled with 100 mL/L propidium iodide. Cells were 
sorted by FACScan analysis, and cell cycle profiles were 
determined using ModFitLT V2.0 software (Becton 
Dickinson, San Diego, USA). Each experiment was 
performed in triplicate.

Animal studies
Tumors were induced by injecting 5 × 106 HPAF-2 
or L3.6pl cells in 200 μL PBS sc into the flank region 
of  NMRI nude mice. Treatment was started when 
an average tumor volume of  150 mm³ was reached 
(usually after 2 wk). The verum groups received either 
NVP-LBH589 (25 mg/kg, 5 × weekly) or gemcitabine  
(5 mg/kg, 1 × weekly) or a combination of  both (NVP-
LBH589 at 25 mg/kg, 5 × weekly plus gemcitabine at  
5 mg/kg, 1 × weekly) ip, whereas the control group 
received placebo (carrier solution 50 mL/L DMSO in 
D5W) only. Treatment was continued for 28 consecutive 
days, tumors were measured daily with a Vernier caliper and 
tumor volumes were calculated using the formula tumor 
volume = 0.5 × L × W², where L represents the length and 
W the width of  the tumor. When treatment was finished, 
animals were sacrificed and tumors excised and weighed.

TUNEL POD test
Terminal deoxynucleotidyl transferase-mediated dUTP 
nick end labeling (in situ cell death detection kit, POD) 
was used to detect apoptosis in paraffin sections from 
mouse tumor tissue. TUNEL was carried out following 
the manufacturer’s instructions (Roche, Penzberg, 
Germany) as previously described[28]. Apoptotic cells (red) 
were counted under a light microscope after fluorescence 
signal conversion using peroxidase-conjugated antibody 
and peroxidase substrate (DAB, Roche, Penzberg, 
Germany). The number of  positive cells was counted by 
an experienced pathologist (M.N.) in a total of  8 high 
power fields (HPFs) and expressed as mean percentage 
of  total cells in these fields of  the tumor. Necrotic 
tumor cells were excluded from the cell count.

Immunohistochemical staining
For MIB-1 staining, we used paraffin sections following 
a protocol that has been described elsewhere[29]. The 
number of  positive cells was counted by an experienced 
pathologist (M.N.) in a total of  4 HPFs and expressed as 
mean percentage of  total cells in these fields of  the tumor.

Statistical analysis
Statistical calculations were performed using SPSS, 
version 10.0 (SPSS Inc., Chicago, USA). Numeric data 
were presented as mean value with SD or SEM. Inter-
group comparisons were performed with the Student 
t-test and ANOVA. P < 0.05 was considered significant.

RESULTS
Inhibition of cell growth 
After 3 d of  incubation, 7 of  8 tested cell lines were 
sensitive to NVP-LAQ824 (mean IC50 (3 d) = 0.18 ± 
0.24 µmol/L) and even more to NVP-LBH589 (mean 
IC50 (3 d) = 0.09 ± 0.14 μmol/L). Only cell line Capan-2 
demonstrated an IC50 (3 d) value > 1 μmol/L for 
both compounds. Inhibition of  cell growth was more 
pronounced if  incubation time was extended to 6 d with 
a mean IC50 value of  0.06 ± 0.07 μmol/L for NVP-
LAQ824 and 0.03 ± 0.02 μmol/L for NVP-LBH589. 
After 6 d of  incubation, cell line Capan-2 also became 
responsive (Figure 1 and Table 1). In addition, DMSO 
alone (the solvent for NVP-LAQ824 and NVP-LBH589) 
had no influence on cell growth (data not shown).

Immunoblotting
Treatment of  cell l ines HPAF-2 and L3.6pl with  
0.1 μmol/L NVP-LAQ824 or 0.1 μmol/L NVP-
LBH589 for 24 h resulted in acetylation of  histone 
H4 (Figure 2A and B). The same treatment caused an 
induction of  p21WAF-1/CIP-1 expression (Figure 2C and D). 
A dose increase to 0.2 μmol/L NVP-LAQ824 or NVP-
LBH589 corresponded with an increase in histone 
H4 acetylation and p21WAF-1/CIP-1 levels. Histone H4 
acetylation was higher in treated HPAF-2 than L3.6pl 
cells, whereas p21WAF-1/CIP-1 expression was slightly higher 
in treated L3.6pl cells.
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Cell cycle analysis 
Treatment of  cell l ines HPAF-2 and L3.6pl with  
0.1 μmol/L NVP-LAQ824 or NVP-LBH589 for 72 
h resulted in G2/M arrest. This arrest was, in general, 
more pronounced if  the dose of  NVP-LAQ824 or NVP-
LBH589 was increased to 0.2 µmol/L. Percentual G2/M 
arrest was lower for 0.2 µmol/L than 0.1 μmol/L only 
for the treatment of  HPAF-2 cells with NVP-LBH589. 
This phenomenon may derive from the fact, that at 

the same time the sub-G1-peak was much higher for  
0.2 µmol/L. For both concentrations, the effect of  NVP-
LBH589 was stronger than the effect of  NVP-LAQ824 
with the aforementioned exception of  0.2 µmol/L 
NVP-LBH589 in HPAF-2 cells (Figure 3). In addition, 
incubation with NVP-LAQ824 or NVP-LBH589 for  
72 h resulted in a dose-dependent significant increase in 
the sub-G1-peak, which was higher for NVP-LBH589 
than NVP-LAQ824 and higher in L3.6pl than in HPAF-2 
cells. This result correlated well with the fact that IC50 
values in the cell growth inhibition experiment (Figure 1) 
were lower for L3.6pl in comparison to HPAF-2 cells.

Chimeric mouse model
Tumors were induced in nude mice by subcutaneous 
injection of  HPAF-2 and L3.6pl cells. These cell 
lines were selected because they had the best growth 
capability in our nude mice in a pilot study. Treatment 
of  mice consisted of  ip injections with NVP-LBH589, 
gemcitabine, NVP-LBH589 plus gemcitabine (COMBO) 
or placebo (50 mL/L DMSO in D5W). Three days 
after commencement of  NVP-LBH589 or COMBO 
treatment, HPAF-2 cell tumors showed a signifi-

Table 1  Inhibition of cell growth by NVP-LAQ824 and 
NVP-LBH589

Cell line IC50 (μmol/L)

NVP-LAQ824 NVP-LAQ589

3 d 6 d 3 d 6 d
MiaPaca-2 0.03 0.01 0.01 0.01
As-PC-1 0.05 0.02 0.02 0.01
Panc-1 0.70 0.04 0.40 0.02
Hs766T 0.02 0.01 0.01 0.01
CFPAC-1 0.25 0.04 0.09 0.02
HPAF-2 0.16 0.12 0.07 0.06
L3.6pl 0.05 0.02 0.03 0.04
Capan-2 > 1 0.19 > 1 0.05
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Figure 1  In vitro treatment of pancreatic cancer with NVP-LAQ824 and NVP-LBH589 (MTT assay). A: 3-d incubation with NVP-LAQ824 (n = 3); B: 6-d incubation 
with NVP-LAQ824 (n = 3); C: 3-d incubation with NVP-LBH589 (n = 3); D: 6-d incubation with NVP-LBH589 (n = 3).
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cantly reduced volume in comparison to control (n = 7 
for each group, P < 0.05). Treatment of  mice with 
gemcitabine alone resulted in a significant reduction 
of  tumor volume compared to control after 4 d from 
commencement of  treatment. These differences were 
maintained until the end of  the experiment. COMBO 
therapy was significantly more efficient than gemcitabine 
treatment alone on treatment day 7, 8, 13, 14, 15, and 16 
and was significantly more efficient than NVP-LBH589 
therapy alone on treatment day 7 and 14 (P < 0.05, 

Figure 4A). Treatment of  L3.6pl tumors with NVP-
LBH589 or COMBO resulted in a significantly reduced 
volume in comparison to control after 4 d (P < 0.05) 
and 3 d (P < 0.05) from commencement of  therapy, 
respectively (n = 7 for each group). These differences 
were also maintained until the end of  the experiment. 
Treatment of  mice with gemcitabine alone resulted 
in a significant reduction of  tumor volume compared 
to control at treatment day 12, 13, 16, 17, and 18  
(P < 0.05). COMBO therapy was significantly more 
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Figure 2  Mechanism of drug action after in vitro treatment with NVP-LAQ824 and NVP-LBH589 for 24 h. A and B: Acetylation of histone H4. Protein extracts from 
HELA cells that were treated with 5 mmol/L sodium butyrate served as positive controls; C and D: p21WAF-1/CIP-1 expression. Cell lysate from HCT 116 colon cancer cells 
served as positive control; A-D: Staining with b-actin antibody confirmed equal protein loading.
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Figure 3  Cell cycle analysis. A: Treatment of cell line HPAF-2 with 0.1 or 0.2 µmol/L NVP-LAQ824 for 72 h (n = 3); B: Treatment of cell line HPAF-2 with 0.1 or 0.2 µmol/L 
NVP-LBH589 for 72 h (n = 3); C: Treatment of cell line L3.6pl with 0.1 or 0.2 µmol/L NVP-LAQ824 for 72 h (n = 3); D: Treatment of cell line L3.6pl with 0.1 or 0.2 µmol/L 
NVP-LBH589 for 72 h (n = 3).



efficient than gemcitabine treatment alone on treatment 
day 3-20 and was significantly more efficient than NVP-
LBH589 therapy alone on treatment day 3 (P < 0.05). 
NVP-LBH589 therapy was significantly more efficient 
than gemcitabine treatment alone on treatment day 5-20 
(P < 0.05, Figure 4B). At the end of  the experiment 
after 30 d, tumor mass in HPAF-2 cells bearing mice 

was significantly diminished as compared to placebo 
after treatment with COMBO (-63%, P < 0.05). In 
contrast, treatment of  mice with gemcitabine (-24%, P 
= 0.45) or NVP-LBH589 alone (-58%, P = 0.056) did 
not result in any significant reduction of  tumor mass 
as compared to control (Figure 4C). L3.6pl cell tumor 
mass in mice was significantly diminished after treatment 
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Figure 4  In vivo treatment with NVP-LBH589 + gemcitabine in chimeric mice. 
A: Effect on tumor volume of HPAF-2 cells; B: Effect on tumor volume of L3.6pl 
cells; C: Effect on tumor mass (aP < 0.05, COMBO vs control; bP < 0.01, NVP-
LBH589 or COMBO vs control).
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with either NVP-LBH589 (-70%, P < 0.01) or COMBO (-81%, P < 0.01), but not with gemcitabine (-24%, P = 0.28), 

Figure 5  Hematoxylin-eosin (HE), MIB-1 (proliferation marker) and TUNEL (apoptosis marker) staining of mouse tumors (SABC, x 40). A: Cell line HPAF-2; B: Cell 
line L3.6pl.
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respectively. In addition, the combination of  NVP-
LBH589 with gemcitabine was more effective at tumor 
mass reduction in comparison to gemcitabine alone  
(P < 0.05). The L3.6pl animal experiment was stopped 
at day 21 for ethical reasons, since animals suffered 
from tumor burden. Regarding side effects of  the 
different drugs used in HPAF-2 cell tumor bearing mice, 
weight loss was 2%, 0%, 13%, and 6%, in the control, 
gemcitabine, NVP-LBH589, and COMBO groups. 
There was a statistically significant difference between 
the control and NVP-LBH589 group (P < 0.05) and 
between the gemcitabine and NVP-LBH589 group  
(P < 0.01). Concerning side effects of  the different 
drugs used in L3.6pl cell tumor bearing mice, weight 
loss was 23%, 17%, 12%, and 25%, in the control, 
gemcitabine, NVP-LBH589, and COMBO groups. 
There was a statistically significant difference between 
the control and NVP-LBH589 group (P < 0.05).

In order to assess the anti-tumoral drug mechanism, 
paraffin sections of  mouse tumors were stained with 
hematoxylin-eosin (H&E), MIB-1 (proliferation marker) 
and TUNEL (apoptosis marker) (Figure 5). Treatment 
with NVP-LBH589 and COMBO slightly reduced 
proliferation (reduced MIB-1 staining) and slightly 
induced apoptosis (increased TUNEL-staining) in 
HPAF-2 cell bearing mice, whereas proliferation was not 
decreased and apoptosis only slightly increased in L3.6pl 
cell bearing mice (Table 2).

DISCUSSION
Analyzing palliative treatment data, a novel approach 
for patients with metastatic pancreatic cancer is urgently 
required. Targeting HDACs may be a new option for 
this tumor entity. Preliminary studies have demonstrated 
in vitro activity of  HDACIs in pancreatic cancer cell 
lines. Natoni et al[30] showed that treatment with sodium 
butyrate, a carboxyl acid class inhibitor of  HDACs, 
resulted in marked down-regulation of  anti-apototic 
Bcl-xL protein expression, mitochondrial membrane 
depolarization, cytochrome c release from mitochondria, 
activation of  caspase-9 and -3, and apoptosis induction. 
Garcia-Morales et al [31] reported HDACIs induced 
apoptosis in the pancreatic cancer cell lines IMIM-PC-1, 
IMIM-PC-2, and RWP-1 that are normally resistant to 
other antineoplastic drugs. This finding was previously 
observed by Sato et al[32] for five normally chemotherapy-
resistant cell lines when treated with FR901228, a cyclic 
peptide HDACI belonging to the depsipeptides class. 
Recently, another class of  HDACIs, the hydroxamic 

acids, with representatives such as trichostatin A 
(TSA), suberoylanilide hydroxamic acid (vorinostat, 
SAHA), azelaic bis-hydroxamic acid (ABHA), scriptaid, 
oxamflatin, pyroxamide, m-carboxycinnamic acid bis-
hydroxamide (CBHA), and the recently developed NVP-
LAQ824, NVP-LBH589, and PXD101 have become 
the focus for further research, including pancreatic 
cancer. Gahr et al[33] used HDACI trichostatin A for  
in vitro treatment of  pancreatic carcinoma cell lines 
YAP C and DAN G. They described an apoptosis rate 
of  71% and 66% after 72 h using a drug concentration 
of  1 μmol/L. Moore et al[34] tested trichostatin A in 
PaCa44 cells using microarrays containing 22 283 probe 
sets. One prominent feature was the increased ratio 
between the levels of  expression of  pro-apoptotic 
(BIM) and anti-apoptotic (Bcl-xL and Bcl-W) genes. In 
addition, Cecconi et al[35] reported for the same cell line 
PaCa44 that trichostatin A caused cell cycle arrest at the 
G2 phase and induced apoptotic cell death. Another 
hydroxamic acid, SAHA, induced growth inhibition 
in three pancreatic cell lines BxPC3, COLO-357, and 
PANC-1 by upregulating p21 and sequestering it in the 
cytoplasm[36]. In our current study, we investigated the 
two novel cinnamic hydroxamic acid compounds NVP-
LAQ824 and NVP-LBH589 for   treatment of  8 
different human pancreatic cancer cell lines. Cell-growth 
inhibition by NVP-LAQ824 and NVP-LBH589 was 
studied by MTT assay. Treatment with both compounds 
significantly suppressed the growth of  7 cancer cell lines 
after 3 d of  incubation and all cancer cell lines after 6 d 
of  incubation. We hypothezise that the lack of  response 
of  Capan-2 cells after 3 d of  treatment may be based 
on the status of  the tumor suppressor p53. A genetic 
profile of  10 different human pancreatic cancer cell lines  
(6 of  the 8 cell lines used in our experiment being 
amongst them) created by a group from John Hopkins 
University (http://pathology2.jhu.edu/pancreas/
geneticsweb/ profiles.htm) discovered p53 mutations 
in almost all cell lines, but not in Capan-2 cells. On 
the other hand, it has been shown that acetylation 
and deacetylation of  p53 is likely to be part of  the 
mechanism that controls its physiological activity. 
Whereas HDACs are capable of  downregulating p53 
function, HDAC inhibition can cause the opposite 
effect[37]. Interestingly, it has also been shown that 
HDAC inhibitors, such as FR901228 and trichostatin 
A, completely deplete mutant p53 in cancer cell 
lines and restore p53-like functions, which is highly 
toxic to cell l ines with mutant p53[38]. Donadell i  
et al confirmed this finding in p53 gene mutated 
pancreatic cancer cell lines which were treated with 
trichostatin A. The compound induced G2 phase arrest 
and apoptotic cell death by activation of  p21waf1, which is 
normally induced by p53[39].

In previous in vitro studies, NVP-LAQ824 exhibited 
potent anti-proliferative activity against colon carcinoma 
(IC 50 = 0 .01 μmol/L) , and b i l i a r y t ract cancer  
(IC50 = 0.11 μmol/L) as well as against non-small cell 
lung carcinoma (IC50 = 0.15 μmol/L), prostate cancer 
(IC50 = 0.018-0.023 μmol/L), head and neck squamous 
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Table 2  MIB-1- and TUNEL-staining of mouse tumor 
specimens

Mean in % HPAF-2  L3.6pl

MIB-1 Apoptosis MIB-1 Apoptosis

CTRL 67.5 1.3 61.3           0
GEM 66.3 2.5          70           0
LBH 51.3 3.8 76.3 6.3
COMBO 55.0 3.8 78.8 3.8



carcinoma (IC50 = 0.04-0.34 μmol/L), and human breast 
adenocarcinoma cells (IC50 = 0.03-0.039 μmol/L) after 
72 h of  exposure[16,40-42]. The in vitro effects of  NVP-
LAQ824 on hematologic malignancies have been 
examined in several human cell lines with a death rate 
of  more than 90% following 48 h of  drug incubation, 
with exposures as low as 0.1 μmol/L[43-45]. Our second 
compound NVP-LBH589,  was even more effective 
in vitro for the treatment of  human chronic myeloid 
leukemia blast crisis K562 and LAMA-84, multiple 
myeloma, and acute leukemia MV4-11 cells[15,46-48].

The in vitro anti-tumoral drug mechanism in our study 
was assessed by immunoblotting for acH4 (surrogate 
marker for histone acetylation) p21WAF-1/CIP-1, and cell 
cycle analysis. Treatment with both compounds was 
associated with hyperacetylation of  nucleosomal histone 
H4, increased expression of  p21WAF-1/CIP-1, cell cycle 
arrest at G2/M-checkpoint, and significant induction 
of  apoptosis (increased sub-G1-peak). Therefore, our 
results are very consistent with the in vitro results of  
the aforementioned studies by Natoni et al[30], Garcia-
Morales et al[31], Sato et al[32], Gahr et al[33], Donadelli  
et al[39], Cecconi et al[35], and Arnold et al[36].

Encouraged by our in vitro results, we decided to 
test the most effective drug NVP-LBH589 in vivo in 
comparison to placebo using the chimeric mouse model. 
The NVP-LBH589 dose of  25 mg/kg (5 d/wk) was 
selected according to a study testing different iv doses 
of  NVP-LAQ824 between 5 and 100 mg/kg (5 d/wk) 
in a similar chimeric mouse model using the human 
colon cancer cell line HCT 116[16]. In vivo data for NVP-
LBH589 using human prostate carcinoma cell PC-3 
xenografts became available only after completion of  
our study, and showed tumor reduction at a dose of  10 
mg/kg per day[49]. In our experiments, NVP-LBH589 
significantly reduced tumor mass in comparison to 
placebo and potentiated the efficacy of  gemcitabine. 
In accordance with our observations, Gahr et al [33] 
and Piacentini et al[50] showed that a combination with 
gemcitabine potentiated the in vitro effects of  trichostatin 
A in pancreatic cancer cells, demonstrating a synergistic 
effect between both agents. This phenomenon has 
been shown for in vitro cotreatment with SAHA, too, 
where the compound rendered pancreatic cancer cells 
sensitive to the inhibitory and proapoptotic effects 
of  gemcitabine[36]. In human breast cancer cell lines 
SKBR-3 and BT-474, NVP-LAQ824 also enhanced 
gemcitabine-induced apoptosis in vitro[41]. For head and 
neck squamous carcinoma cells, the combination of  
NVP-LAQ824 with gemcitabine was more effective  
in vitro than a combination with docetaxel, paclitaxel, or 
cisplatin, especially when the cytotoxic agent was used 
first for 24 h followed by 48 h of  NVP-LAQ824[40]. 
Unfortunately, in the first recently published randomized, 
double-blind, placebo-controlled multicenter-phase 
Ⅱ trial, gemcitabine plus benzamide HDACI CI-994 
(N-acetyldinaline) showed no advantage over gemci-
tabine alone in patients with advanced pancreatic 
cancer[51]. In this study, a total of  174 patients received 
combination therapy (CI-994, 6 mg/m2 per day, day 1-21 

plus gemcitabine, 1000 mg/m2, day 1, 8 and 15 each 
28-d cycle) or placebo plus gemcitabine (1000 mg/m2, 
day 1, 8 and 15 each 28-d cycle). Median survival was 
194 d (combination therapy) vs 214 d (gemcitabine)  
(P = 0.908). The objective response rate was 12% vs 14% 
when investigator-assessed and 1% vs 6%, respectively, 
when assessed centrally. Time to treatment failure did 
not differ between the two arms (P = 0.304). Quality 
of  life scores at 2 mo were worse with the combination 
than with gemcitabine alone. Pain response rates were 
similar between the two groups. There was an increased 
incidence of  neutropenia and thrombocytopenia 
with combination therapy. However, it is currently 
unknown whether these clinical observations are also 
true for the hydroxamic acids class of  HDACIs. In 
addition, recent in vitro and in vivo data have shown 
synergistic effects of  trichostatin A in combination 
with DNA methyltransferase inhibitors azacytidine[52,53] 
and zebularine[54] and proteasome inhibitor PS-341[55], 
suggesting alternative combination partners for HDACIs. 
Whereas upregulation of  tumor suppressors DUSP6[52] 
and MUC 2[53] is the proposed mechanism for the 
additional effect of  DNA methyltransferase inhibitors, it 
is inactivation of  NFkappaB signalling, downregulation 
of  anti-apoptotic Bcl-xL and disruption of  MAP kinase 
pathway for combination with the proteasome inhibitor 
PS-341[55].

Regarding side effects of  the different drugs used in 
our studies, there was no significant additional weight 
loss in the COMBO group as compared to placebo. 
Moreover, NVP-LBH589 alone only induced additional 
weight loss in the HPAF-2 cell experiment. Weight 
loss in general was apparently more pronounced in 
the L3.6pl than in the HPAF-2 cell experiment. This 
may be due to the fact that L3.6pl cells are a selected 
variant of  COLO-357 cells with increased metastatic 
potential[24,56,57]. Regarding other studies, weight loss 
of  animals was not previously reported for NVP-
LAQ824[16], but for NVP-LBH589[42].

In order to assess i n v i v o ant i - tumora l dr ug 
mechanisms, paraffin sections of  mouse tumors were 
stained with hematoxylin-eosin (H&E), MIB-1 (prolife-
ration marker) and TUNEL (apoptosis marker). 
Treatment with NVP-LBH589 and COMBO slightly 
reduced proliferation (reduced MIB-1 staining) and 
slightly induced apoptosis (increased TUNEL-staining) 
in HPAF-2 cell bearing mice, whereas proliferation was 
not decreased and apoptosis only slightly increased in 
L3.6pl cell bearing mice. Surprisingly, the calculated 
numbers were much smaller than expected from the  
in vitro experiments. This might be derived from the 
fact that other pathways, like inhibition of  angiogenesis, 
which we were unable to study in our model due to 
insufficient tissue quality, may be more important for 
NVP-LBH589 action in the in vivo setting.

Our findings suggest that NVP-LBH589 and NVP-
LAQ824 are active against human pancreatic cancer 
cells in vitro, mainly by inhibition of  proliferation and 
induction of  apoptosis. NVP-LBH589 is also active in 
the in vivo setting, although the precise mechanism of  
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drug action is not yet completely understood. Therefore, 
a clinical study testing NVP-LBH589 for the treatment 
of  pancreaticobiliary cancer has just been initiated at our 
department. 
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 COMMENTS
Background
Pancreatic adenocarcinoma is essentially an incurable disease, with mortality 
closely approaching incidence. Single agent gemcitabine is currently considered 
the standard of care for the treatment of inoperable pancreatic cancer, providing 
a small but sizable benefit in survival and palliation of symptoms. 
Research frontiers
In the past ten years, several molecular-targeting agents have been introduced 
in the clinical setting. Despite promising results in phase Ⅱ studies, randomized 
clinical trials exploring the new compounds, such as matrix-metalloprotease-
inhibitors (MMPI), farnesyl transferase inhibitors (FTI), signal transduction 
inhibitors, and angiogenesis inhibitors, either alone or in combination with 
gemcitabine have been largely disappointing. Polo-like kinase 1 (PLK-1), death 
receptor 5 (DR5), and histondeacetylase (HDAC) inhibitors are currently under 
clinical evaluation as new treatment options.
Innovations and breakthroughs
In 2003, fixed-dose-rate (FDR) gemcitabine (1500 mg/m2 at 10 mg/m2 per 
minute) improved median survival time from 5.0 mo in the standard arm to 
8.0 mo in a randomized study; However, grade 3 and 4 toxicity increased 
significantly. In 2005, investigators of a phase Ⅲ study found that the 
gemcitabine-capecitabine combination significantly improved overall survival 
over gemcitabine alone (hazard ratio 0.80; 95% CI 0.65-0.98; P = 0.026). 
Recently, a randomized phase Ⅲ placebo-controlled trial demonstrated that 
combining gemcitabine with EGFR inhibitor erlotinib was associated with a 
modest, but statistically significant survival benefit of 15 d.
Applications 
The aim of our study was to investigate in vitro and in vivo treatment with the 
histone deacetylase inhibitors NVP-LAQ824 and NVP-LBH589 in pancreatic 
cancer. Our findings suggested that NVP-LBH589 and NVP-LAQ824 are 
active against human pancreatic cancer in vitro. In addition, NVP-LBH589 
demonstrated significant in vivo activity and potentiated the efficacy of 
gemcitabine.
Terminology
Histones (positively charged proteins) are the major components of chromatin. 
Histone acetylation and deacetylation modulate chromosome structure and 
regulate gene transcription. Two families of enzymes, histone acetyltransferases 
(HATs) and histone deacetylases (HDACs), activate and repress gene 
expression, respectively. Aberrant HAT or HDAC activity is associated with 
various epithelial and hematologic cancers. HDACs may play an important role 
in human oncogenesis through HDAC-mediated gene silencing and interaction 
of HDACs with proteins involved in tumorigenesis. HDAC inhibition could 
potentially restore normal processes in transformed cells without affecting 
normal cells.
Peer review
This paper addresses the use of histone deacetylase inhibitors in the treatment 
of pancreatic cancer in vitro and in vivo. It represents an important experimental 
assessment of novel agents in the treatment of a cancer for which effective 
therapy is currently lacking. It’s a very interesting paper.
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