
INTRODUCTION
The functioning of  the gastrointestinal tract with its 
balanced microflora depends on the establishment and 
preservation of  distinct compartments which are lined by 
a sheet of  epithelial cells. The gastrointestinal epithelial 
lining consists of  a monolayer of  columnar cells that are 
held together by circumferential intercellular junctions 
to form a selectively permeable barrier to the luminal 
contents. Thus, the epithelium prevents unwanted solutes, 
microorganisms, and luminal antigens from entering the 
body[1,2]. Components of  the intestinal mucosal barrier 
include luminal secretions such as mucus which is secreted 
on the apical surfaces of  epithelial cells, followed by IECs 
with lipid plasma membranes, specific membrane transport 
systems responsible for transepithelial passage of  different 
molecules, and the stromal compartment below the 
epithelial layer. The intestinal barrier has to be permeable 
for nutrients and macromolecules which are important 
for growth and development. At the same time, it has to 
provide an effective barrier to harmful macromolecules and 
microorganisms. The mechanisms that have evolved to deal 
with these physiological events are extremely complex. On 
the one hand, the structural and functional properties of  the 
epithelium limit the amount of  antigens reaching the surface 
of  the epithelium. On the other hand, both specialized cells 
of  the follicle-associated epithelium (M-cells) and dendritic 
cells sample luminal antigens that are then delivered to the 
cells of  the mucosal immune system thereby guaranteeing 
permanent immunosurveillance. An intercellular junction 
referred to as the tight junction (TJ) is located at the apical 
end of  the lateral intercellular space and is considered a key 
player that regulates paracellular movement of  fluid and 
solutes[3]. Altered TJ structure and epithelial permeability 
has been observed in IBD[2]. Additionally, pathogens 
and bacterial toxins influence epithelial permeability by 
modulating TJ proteins[4-6]. Although the permeability 
defects could conceivably be due to the marked apoptosis 
that occurs during the inflammation processes, numerous 
studies have clearly shown that epithelial cell apoptosis alone 
does not account for the entire permeability deficits[7-10]. 
In addition, the importance of  the intestinal microflora 
and more specifically its composition in physiological 
and pathophysiological processes in the human GI tract 
is becoming more evident. New discoveries relate to the 
beneficial effects of  normal microflora and probiotics 
in preventing gastrointestinal infections[11-13]. Probiotics 
released by bacteria may functionally modulate the intestinal 
epithelial barrier of  the host by different mechanisms, 
including the competition of  whole organisms for contact 
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Abstract
A critical function of the intestinal mucosa is to form 
a barrier that separates luminal contents from the 
interstitium. The single layer of intestinal epithelial cells 
(IECs) serves as a dynamic interface between the host 
and its environment. Cell polarity and structural properties 
of the epithelium is complex and is important in the 
development of epithelial barrier function. Epithelial cells 
associate with each other via  a series of intercellular 
junctions. The apical most intercellular junctional complex 
referred to as the Apical Junction Complex (AJC) is 
important in not only cell-cell recognition, but also in the 
regulation of paracellular movement of fluid and solutes. 
Defects in the intestinal epithelial barrier function have 
been observed in a number of intestinal disorders such 
as inflammatory bowel disease (IBD). It is now becoming 
evident that an aberrant epithelial barrier function plays a 
central role in the pathophysiology of IBD. Thus, a better 
understanding of the intestinal epithelial barrier structure 
and function in healthy and disease states such as IBD 
will foster new ideas for the development of therapies for 
such chronic disorders.

© 2008 WJG. All rights reserved.

Key words: Intestine; Barrier function; Tight Junction; 
Inflammatory bowel disease; Crohn’s disease; Ulcerative 
colitis

Laukoetter MG, Nava P, Nusrat A. Role of the intestinal barrier in  
inflammatory bowel disease. World J Gastroenterol 2008; 14(3):  
401-407  Available from: URL: http://www.wjgnet.com/1007-9327/ 
14/401.asp  DOI: http://dx.doi.org/10.3748/wjg.14.401

 TOPIC HIGHLIGHT

Role of the intestinal barrier in inflammatory bowel disease

Mike G Laukoetter, Porfirio Nava, Asma Nusrat

Daniel C Baumgart, MD, PhD, Series Editor

Online Submissions: wjg.wjgnet.com                           World J Gastroenterol  2008 January 21; 14(3): 401-407
www.wjgnet.com                                                                                                                                          World Journal of Gastroenterology  ISSN 1007-9327
wjg@wjgnet.com                                                                                                                                                             © 2008 WJG. All rights reserved.

www.wjgnet.com



with the epithelial surface as well as stabilization of  the 
cytoskeleton and barrier function and the induction of  
mucin expression.

Some of  the most recently available data are discussed 
in this review. This field is changing rapidly and it is 
increasingly becoming accepted that immunogenetics 
play an important role in the predisposition, modulation 
and perpetuation of  IBD. The role of  the intestinal 
environment and the enteric flora in particular appears 
to be of  greater significance than previously thought. 
This complex interaction of  genetic, microbial and 
environmental factors culminates in a sustained activation 
of  the mucosal immune system. This is facilitated by 
defects in the intestinal epithelial barrier and its mucosal 
immune system and results in active inflammation and 
tissue damage. We will concentrate on the role of  the 
intestinal barrier, its regulation and modulation in IBD.

THE INTESTINAL BARRIER
Mucosal integrity and repair
The small and large intestine have potent mucosal defense 
and repair mechanisms. These mechanisms include a 
fast rate of  cell renewal, a capable mucosal blood flow, 
a continuous adherent mucus layer and the presence of  
regulatory peptides that can stimulate repair mechanisms. 
The epithelial monolayer which lines the intestinal 
tract originates from multipotent stem cells present in 
the crypts[14]. Four major IECs are generated by these 
multipotent cells: (1) the absorptive enterocytes (reviewed 
in[15]), (2) the goblet cells responsible for the assembly of  
mucins[16] and trefoil peptides needed for epithelial growth 
and repair, (3) the enteroendocrine cells which export 
peptide hormones (reviewed in[17]) and (4) the paneth cells 
which secrete antimicrobial cryptidins or defensins, digestive 
enzymes and growth factors[18]. Injury to the epithelial lining 
resulting in mucosal erosion/ulceration can occur following 
exposure to pathogens and chemical therapeutic agents, 
decreased mucosal defense such as an abnormal mucus layer 
or reduced production of  growth regulatory peptides. The 
GI tract epithelium has a remarkable capacity to rapidly 
reseal superficial erosions by migration of  epithelial cells, a 
process referred to as restitution. Epithelial cell proliferation 
contributes to resealing of  larger ulcers. Wound closure is 
influenced by a diverse array of  peptides and growth factors 
released into the milieu of  the regenerating epithelium. For 
example, the mucosal integrity peptide, TGFα (transforming 
growth factor α) directly acts on the enterocytes to stimulate 
proliferation and migration. TGFβ, and the pancreatic 
secretory trypsin inhibitor (PSTI) protect the overlying 
mucus layer from excessive digestion by luminal proteases 
and are involved in maintaining normal mucosal integrity[19]. 
Epidermal growth factor has been proposed as mucosal 
protector, playing an important role in luminal surveillance 
and rapid response to injury[20,21]. Mucosal epithelial cells 
and paneth cells produce a variety of  antimicrobial peptides 
(defensins, cathelicidins, cryptidin related sequence peptides, 
chemokine CCL20) and bacteriolytic enzymes (lysozyme, 
group ⅡA phospholipase A2) that protect mucosal surfaces 
and crypts containing intestinal stem cells against invading 
microorganisms[21-23]. Trefoil peptides found in the goblet 

cells of  the intestine are a family of  three small proteins 
(TFF1, 2 and 3) which bind to the membrane-anchored 
glycoproteins of  the filamentous brush border glycocalyx 
of  the IECs. These peptides promote cell migration 
and interact with mucins such as MUC2, suggesting 
cooperation between the two in epithelial cell protection[24] 
and preservation of  mucosal integrity[25]. Such peptides are 
rapidly up-regulated at sites of  injury and inflammation. 
Recent experimental data has shown that the physiological 
role of  TFF2, a member of  the gastrointestinal trefoil 
factor family is associated with modulation of  the immune 
system[25] and that the TFF2 rhythm is impaired in cohorts 
of  individuals known to suffer from gastric symptoms, like 
H pylori infection and sleep deprivation[26].

KEY PLAYERS OF THE INTESTINAL
BARRIER
Components
Intercellular junctions in epithelial cells play a vital role 
in regulating mucosal barrier properties. Specifically, 
the epithelial AJC consisting of  the TJ and adherens 
junction (AJ) (Figure 1) is important in regulating cell-
cell adhesion and paracellular movement of  fluids and 
solutes. TJs are continuous, circumferential belt-like 

structures that form a permeability barrier at the apical 
end of  the intercellular space. TJs regulate vectorial 
transport of  water and electrolytes across the intestinal 
epithelium and prevent leakage of  macromolecules 
from the gut lumen[27,28]. Additionally, TJs restrict the 
diffusion of  lipids and proteins between the apical and 
basolateral plasma membranes (fence function) thereby 
preserving cellular polarity and, in combination with 
transcellular vectorial transport processes, generate distinct 
environments in the opposing compartments across the 
epithelium. Lastly, TJ proteins play an important role in 
the overall epithelial differentiation of  cells, and their 
deregulation has been observed in epithelial cancers[29-31]. 
By freeze-fracture electron microscopy, TJs are viewed as 
a series of  anastomosing intramembranous strands, the 
complexity of  which correlates with barrier properties of  
the epithelium[32,33]. The TJ is a highly dynamic structure 
that regulates physiologic processes such as glucose 
absorption[3] and undergoes rapid regulatory changes in 
response to inflammation[34]. The AJs reside immediately 
subadjacent to TJs and play an important role in cell 
recognition and in mediating intercellular associations[35,36]. 
Both the TJ and AJ are intimately linked in their regulation 
and function and have therefore been collectively referred 
to as the AJC. Lastly, subadjacent to the AJC are spot-like 
intercellular junctions referred to as desmosomes (DMs). 
Although DMs create strong intercellular associations 
important in the integrity of  stratified epithelia such 
as the epidermis, the function of  DMs in the intestinal 
epithelium is poorly understood.

At a structural level, al l the above intercellular 
junctions consist of  transmembrane proteins that affiliate 
with the cytoskeleton via cytoplasmic plaque proteins. 
The association of  AJC proteins with an underlying 
perijunctional filamentous actin (F-actin) ring plays an 
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important structural and regulatory role in the AJC[37]. Key 
integral membrane proteins of  the TJ include occludin, 
claudin family members, junction adhesion molecule-A 
(JAM-A) and the coxsackie adenovirus receptor (CAR). 
These proteins are believed to interact in a heterotypic 
or homotypic fashion in the extracellular space to create 
the selectively permeable epithelial barrier[37-39]. The 
intracytoplasmic domains of  these TJ proteins interact 
with scaffolding proteins like the zonula occludens 
proteins (ZO), which contain several protein-protein 
interaction domains such as the PDZ domains (PSD 95, 
Discs large, ZO-1) important in mediating interactions 
of  AJC-associated proteins. E-cadherin is a major 
transmembrane protein in AJs that associates with the 
apical perijunctional F-actin ring via cytoplasmic proteins 
in the catenin family[28,36,40]. The intestinal epithelial 
intercellular junctions are not static extracellular domains. 
Their adaptive mechanisms can undergo rapid regulatory 
changes in response to inflammation processes affiliated 
with IBD. Moreover the appropriate function of  the AJC 
is coordinated by a complex array of  signaling proteins 
which include the Rho and Rap family of  GTPases, kinases 
and phosphatases[9,10,28].

INTESTINAL BARRIER AND REGULATION 
OF PERMEABILITY IN IBD
Most current treatments for IBD are aimed at reducing 
disease severity and at prolonging periods of  disease-
free remission by pharmaceutical suppression of  inflam-
mation. It appears that the pathophysiology of  IBD is  
multifactorial. The enormous complexity of  IBD patho-
physiology therefore requires a systematic approach to 
identify the molecular events that cause and sustain the 
chronic, recurring inflammation. It has been suggested that 
the continuous stimulation of  the mucosal immune system 
due to an increased permeability of  the IECs may be the 
primary defect in patients suffering from IBD, whereas 

a healthy epithelium provides an effective barrier against 
luminal antigens. Increased paracellular permeability has 
been documented in the epithelial lining from both the 
acutely inflamed and chronically damaged areas of  the 
intestine[41,42]. Animal studies support the tendency for 
development of  inflammation in areas of  the intestine 
lying beneath the permeability defect[43] or even for an 
increased permeability prior to the onset of  a spontaneous 
intestinal inflammation[44]. It is well known that intestinal 
permeability is regulated directly through alteration of  TJ 
proteins, or indirectly through effects on the cytoskeleton. 
A broad array of  inflammatory cytokines have been 
reported to regulate TJs and barrier function by recruiting 
additional inflammatory cells into the intestinal wall and 
by re-distribution of  TJ proteins in IECs and endothelial 
cells[45].

CROHN’S DISEASE
Besides genetic linkage like CARD15/NOD2 mutations 
on chromosome 16[46,47], OCTN1 and 2 mutations on 
chromosome 5 and DLG5 mutations on chromosome 
10[48], abundant evidence indicates that increased intestinal 
permeability is implicated in the pathogenesis of  CD[49]. 
The integrity of  the intestinal barrier in patients with 
Crohn’s disease is known to be compromised. Moreover, 
first degree relatives of  patients with CD have been 
documented to have increased enteric permeability[50-52]. 
Interestingly, spouses of  patients with CD suffered from 
increased intestinal permeability[53], which suggests that 
environmental factors may play a role. It has not been 
investigated whether these individuals develop CD or 
other gastrointestinal disorders. However, the debate 
continues if  the increased enteric permeability is to blame 
for the development of  CD or if  the barrier defect is 
a consequence of  an existing immune or inflammatory 
response. Animal models mimicking CD such as the 
SAMP1/Yit model, showed increased paracellular 
permeability across intestinal epithelial cells at an early 
stage of  disease (three week old mice), prior to the onset 
of  inflammation[54]. Transgenic animal models revealed 
the importance of  E-cadherin in maintaining the epithelial 
barrier by demonstrating that dysfunction of  AJ proteins 
contributed to an IBD-like process[55]. In addition, a 
number of  studies have shown a potential role for 
inflammatory cytokines like TNF-k and IFN-g in directly 
increasing intestinal epithelial permeability. In vitro model 
systems have demonstrated that such pro-inflammatory 
cytokines inf luence bar r ier funct ion by inducing 
disassembly of  TJs in epithelial cells[7,9,10,56]. Furthermore, a 

role for TNF-k in both apoptosis independent disruption 
of  epithelial barrier function via alteration of  TJs and 
upregulation of  epithelial apoptosis (reversible by anti-
TNF-k antibody treatment) in the absence of  changes in 
the expression of  TJ proteins was reported, suggesting 
that TNF-k may be one of  the major links between the 
leaky bowel and Crohn’s disease[57,58]. Soderholm et al[59] 
reported that non-inflamed ileac mucosa from patients 
with CD showed increased epithelial permeability and 
that increased endosomal uptake of  antigens in ileac CD 
may be mediated by TNF-k[60]. A recently published study 
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pertaining to the expression of  TJ proteins (occludin and 
zonula occludens), alpha2-smooth muscle actin, TGF-k 
with a cytoskeletal protein (F-actin) in the intestinal 
epithelium of  patients with inflammatory bowel disease 
showed that latent dislocation of  TJ proteins, without 
disturbance of  the cytoskeleton in the inactive mucosa 
of  patients with CD, may permit the invasion of  gut 
antigens secondary to the functional disruption of  TJs, 
that in turn could initiate an altered immune response[61]. 
Some reports have demonstrated that IFN-g increases 
permeability across model intestinal epithelial cell lines[7,56]. 
Recently published data suggest that normally poorly 
invasive enteric bacteria may, in situations of  inflammatory 
stress, exploit lipid raft-mediated transcytotic pathways to 
cross the intestinal epithelium because of  INF-g-induced 
disruption of  TJs[62]. Although the mechanisms by which 
IFN-g induces permeability changes across the epithelium 
are still incompletely understood, our data demonstrated 
that the permeabil ity changes occur secondary to 
endocytosis of  TJ transmembrane proteins occludin, 
JAM-A and claudin-1[9]. Furthermore, we believe that such 
endocytosis of  TJ proteins is initiated by activation of  the 
Rho GTPases and subsequent downstream activation of  
Rho kinase and actin-myosin Ⅱ contraction[10].

ULCERATIVE COLITIS
UC is characterized by diffuse mucosal chronic inflam-
matory disease in the colon. Analogous chronic mucosal 
inflammation has been observed in animal models such as 
the mdr1a-/- mice. In this mdr1a-/- animal model a link 
between epithelial barrier dysfunction and development of  
colitis has been proposed[63]. Moreover, UC is associated 
with a mutation of  the Toll-like receptor (TLR)-4 gene 
in humans, resulting in impaired lipopolysaccharide 
(LPS) signaling[64]. LPS comprises the major cell wall 
component of  gram-negative bacteria and is mainly 
recognized via TLR-4. Stimulation of  TLR-4 with 
bacterial LPS or other ligands[65] leads to activation of  
the NF-kB signaling system and subsequent induction 
of  inflammatory responses[66]. Kiechl et al[67] showed that 
carriers of  these mutations displayed an increased risk of  
gram-negative infections stressing that the predisposition 
of  UC is associated with a genetic background. Besides 
these genetic factors, it has been demonstrated that an 
activated mucosal immune system leads to impaired 
epithelial barrier function and tissue destruction in patients 
suffering from UC[6,68]. In contrast to patients with CD, 
where the cytokines IFN-g and TNF-k play a central role 
in altering the epithelial barrier function, it still remains 
unclear which panel of  cytokines regulates inflammation 
and induces epithelial barrier dysfunction in UC. Recently 
published data has shown that IL-13 produced by CD1-
reactive natural killer T cells (NKT) played a central role 
in a murine model of  colitis[69]. The IL-13 producing cells 
were also found in patients suffering from UC which 
suggests that this cytokine is one of  the key mediators in 
the intestinal pathology of  UC. Interestingly Heller et al  
showed that IL-13 mediates a drop of  transepithelial 
resistance without any induction of  necrosis in model IECs 
by increasing the paracellular permeability stressing the 

profound effect of  IL-13 on epithelial barrier function[34]. 
Furthermore, it has been shown that IL-13 is produced in 
large amounts in the lamina propria of  patients with UC. 
This is accompanied by increased expression of  the pore-
forming tight junction molecule claudin 2, which leads to 
the development of  impaired barrier function for small 
cations and is thought to be responsible for the diarrhea in 
UC[70].

PROBIOTICS AND BARRIER FUNCTION IN
UC AND ANIMAL MODELS OF COLITIS
Data from different in vitro and in vivo models support the 
involvement of  luminal bacteria in mucosal inflammation 
and alteration of  the intestinal barrier function especially 
in UC. In contrast to CD, ulcerative colitis is a disease 
involving mucosa only. Intestinal inf lammation is 
accompanied by direct adherence of  bacteria to this 
mucosal surface while the protective function of  the 
mucus layer seems to be disrupted[71]. Studies have 
shown that bacteria like E. coli, lactobacilli, bifidobacteria and 
streptococci are able to interact with immunocompetent 
cells, using the mucosal interface and locally modulate 
the production of  proinflammatory cytokines[72]. They 
may also directly change the structure of  the intestinal 
epithelial barrier. Although the treatment of  CD with 
probiotics has not demonstrated any sufficient results 
yet[73-75], the treatment of  UC has shown encouraging 
data[76-81]. Generally the mechanisms by which probiotic 
microbial agents contribute to the protection of  the 
inflamed intestinal epithelium involve two main categories: 
(1) competition for binding sites and inhibition of  
pathogen growth as well as epithelial attachment or 
invasion[82,83] and (2) stimulation of  the mucosal immune 
system including the stimulation of  anti-inflammatory 
cytokine levels and enhancement of  the barrier function. 
Recent work provided evidence that protective effects of  
probiotic microorganisms in a DSS model of  experimental 
colitis are mediated by DNA, which was recognized by the 
mucosal TLR9 receptor and this interaction consequently 
lead to an increased production of  β-defensins. Defensins 
are known to be responsible for the destabilization and 
disruption of  microorganism cell membranes, leading 
to an increase in permeability and leakage of  small 
molecules[84,85]. To combat invading pathogens, phagocytes 
need to be recruited to sites of  bacterial entry. Leukocyte 
recruitment occurs along gradients of  chemotactic factors, 
including chemokines and defensin chemoattractants 
at nanomolar concentrations[86,87]. In addition, it has 
been shown that the probiotic compound VSL #3 was 
effective as primary therapy in a colitis model of  IL-10 
gene-deficient mice. A direct effect on epithelial barrier 
function was described. The treatment resulted in a 
normalization of  colonic physiologic function and barrier 
integrity along with a reduction in mucosal levels of  
proinflammatory cytokines and a significant improvement 
in histological disease by secretion of  soluble factors 
enhancing the barrier integrity[88]. This stabilization of  the 
intestinal barrier function is an important target in the 
treatment of  intestinal inflammatory disorders. Otte et al[89]  
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reported that the treatment of  cultured IECs with VSL 
#3 lead to an increase of  the transepithelial electrical 
resistance (TEER). In addition, this probiotic mixture 
was found to diminish Salmonella-induced alterations in 
the cellular cytoskeleton[90,91], including the distribution of  
the tight junction protein ZO-1. The stabilization of  the 
cytoskeleton by regulation of  tight junctions is important 
in the preservation of  the epithelial architecture and, 
thereby, in the maintenance of  the intestinal barrier, which 
might be affected by the MAPK pathway as postulated by 
the authors[89]. Interestingly, the incubation of  IECs with 
these probiotics also induced the expression of  several 
mucins, leading to less adhesion of  microorganisms and 
its compounds like LPS to the epithelial surface. Together 
these housekeeping mechanisms might be responsible for 
the homeostasis of  the intestinal barrier function during 
inflammatory disorders like UC.

CONCLUSION AND PERSPECTIVES
The pathophysiology of  intestinal inf lammation is 
multifactorial. Whatever the trigger, increased epithelial 
permeability plays a central role in the inflammatory 
process. The permeability changes and inflammation are 
intimately linked and play a central role in perpetuating 
the chronic mucosal damage observed in IBD. TJs do not 
merely represent static junctions between epithelial cells 
but are multifunctional protein complexes involved in 
numerous vital and diverse functions of  epithelial cells. It 
is becoming evident that the TJs are extremely dynamic 
structures involved in developmental, physiological, and 
pathological conditions like CD and UC, where defects 
in mucosal integrity and repair remain key elements in 
initiation and perpetuation of  the disease. Future studies 
will be focused on the mechanisms by which the epithelial 
barrier can be made “less leaky”. The mucosal immune 
system is the central effector of  intestinal inflammation 
and injury, with cytokines playing a central role in 
modulating inflammation and epithelial barrier function. 
Cytokines are, therefore, logical targets for IBD therapy. 
Finally, preliminary clinical trials of  probiotic therapies in 
IBD may offer a valuable tool for prevention and control 
of  IBD. Understanding the function and action of  these 
probiotics will lead to the selection of  useful probiotic 
strains for clinical application. As more work is directed 
at the function and modulation of  the intestinal barrier, 
further potential therapeutic targets will provide more 
options to combat CD and UC. 
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