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Abstract
Recently, inflammatory bowel disease (IBD) has been 
the subject of considerable research, with increasing 
attention being paid to the loss of intestinal epithelial 
cell barrier function as a mechanism of pathogenesis. 
Ste20-related proline/alanine-rich kinase (SPAK) is 
involved in regulating barrier function. SPAK is known 
to interact with inflammation-related kinases (such 
as p38, JNK, NKCC1, PKCθ, WNK and MLCK), and 
with transcription factor AP-1, resulting in diverse 
biological phenomena, including cell differentiation, 
cell transformation and proliferation, cytoskeleton 
rearrangement, and regulation of chloride transport. 
This review examines the involvement of Ste20-like 
kinases and downstream mitogen-activated protein 
kinases (MAPKs) pathways in the pathogenesis and 
control of intestinal inflammation. The primary focus will 
be on the molecular features of intestinal inflammation, 
with an emphasis on the interaction between SPAK and 
other molecules, and the effect of these interactions on 
homeostatic maintenance, cell volume regulation and 
increased cell permeability in intestinal inflammation. 
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INTRODUCTION
Inflammatory bowel diseases (IBD), primarily ulcerative 
colitis (UC) and Crohn’s disease (CD), are chronic 
idiopathic inflammatory disorders of  the gastrointestinal 
tract that are thought to arise as a result of  an interplay 
of  genetic and environmental factors. The mechanisms 
implicated in the pathogenesis of  IBD (Figure 1) include: 
(1) inappropriate regulation of  the innate immune response 
at the level of  the intestinal mucosa; (2) deregulation of  
the adaptive immune system stemming from an imbalance 
between regulatory and effector-cell immune responses to 
luminal antigens; and (3) increased permeability across the 
mucosal epithelial barrier due to loss of  structural integrity 
and/or abnormal transepithelial transport[1,2]. The loss of  
barrier function, in particular, has gained increasing support 
as an IBD pathogenic mechanism because the epithelium 
represents a potential intersection of  both genetic and 
environmental influences. The intestinal mucosa is 
composed of  a single layer of  polarized intestinal epithelial 
cells (IECs) that protects against direct contact with enteric 
antigens, bacteria and other pathogens (Figure 1). The 
integrity of  the epithelium is maintained primarily through 
a combination of  intercellular adhesion structures and 
specialized junctions. In addition, other factors such as the 
presence of  mucins, rapid turnover of  epithelial cells, and 
peristaltic movement of  the gastrointestinal tract, all help to 
protect against colonization and invasion of  the intestinal 
mucosa by pathogens[3]. Moreover, epidemiological and 
genetic linkage studies have confirmed a strong link 
between modulation of  the barrier function and IBD; these 
include, for example, the loci IBD1-9, corresponding to 
regions on chromosomes 16, 12, 6, 14, 5, 19, 1, 16 and 3, 
respectively[4-13], and a new IBD locus on chromosome 2[14]. 

MITOGEN-ACTIVATED PROTEIN KINASES 
(MAPKs) ARE INVOLVED IN INTESTINAL 
INFLAMMATION 
Intracellular signaling cascades are the main route of  
communication between the plasma membrane and 
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regulatory targets in various intracellular compartments. 
The evolutionarily conserved MAPK signaling pathway 
plays an important role in transducing signals from 
diverse extra-cellular stimuli (including growth factors, 
cytokines and environmental stresses) to the nucleus in 
order to affect a wide range of  cellular processes, such 
as proliferation, differentiation, development, stress 
responses and apoptosis. MAPK signaling cascades, 
which comprise up to five levels of  protein kinases that 
are sequentially activated by phosphorylation, are also 
involved in intestinal inflammation[15-17] (Figure 2).

MAPK signaling pathways are involved in regulating 
crucial inflammatory mediators and could thus serve 
as molecular targets for anti-inflammatory therapy. At 
least six distinct MAPK pathways have been identified 
in multicellular organisms, of  which three, the extra-
cellular signal-regulated kinase (ERK), Jun N-terminal 
kinase (JNK) and p38 cascades, are significantly activated 
and directly involved in inflammatory diseases such 
as IBD (Figure 2). In this context, cross-talk between 
these pathways and other inflammatory signaling 
pathways, including the NF-κB and Janus kinase/signal 
transducers, and activation of  transcription (STAT) 
cascades[18-20], is also relevant to the action of  MAPK 
pathways. 

The involvement of  some MAPK members in IBD 

is suggested by linkage studies. For example, the ERK1 
gene is located in a major IBD susceptibility region 
on chromosome 16[4], and the p38α gene is located 
in a major IBD susceptibility region on chromosome 
6[9]. Activation of  p38 MAPK is also known to induce 
the production and secretion of  pro-inflammatory 
cytokines, such as interleukin (IL)-1β and tumor 
necrosis factor-α (TNF-α)[21], and increased activity 
of  p38 MAPK has been observed in patients with 
IBD[18,22]. Inhibition of  p38 has been well documented 
to suppress IBD [17], and the guany lhydrazone 
compound, CNI-1493, which inhibits both JNK 
and p38, strongly reduces clinical disease activity in 
CD patients. In addition, inhibition of  either ERK 
or p38 kinase pathway decreases lipopolysaccharide 
(LPS)-induced production of  the cytokines, IL-6 and 
TNF-α [23]. The involvement of  JNK pathways in 
intestinal inflammation has been intensively studied 
both in patients with IBD and in an experimental 
colitis model[18,24,25]. JNK inhibitors, which affect either 
JNK signaling pathway indirectly (e.g. CEP1347) or 
block the catalytic domain of  JNK (e.g. SP 600125), 
have been tested for their potential value in treating 
IBD. Collectively, these observations demonstrate a 
very important role for MAPK pathways in the control 
and therapy of  IBD.
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Figure 1  Pathogenesis of IBD. Many different factors, such as genetic factors, environmental factors, and intestinal non-pathogenic or pathogenic bacteria can 
damage the mucus, epithelium, or the tight junction, to initiate the inappropriate regulation or deregulation of the immune response, leading to the secretion of pro-
inflammatory cytokines, decrease in epithelial barrier function and initiation of the inflammation-related signaling pathways. IEC: Intestinal epithelial cell; APC: Antigen 
presenting cell; TJ: Tight junction.
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STE20-LIKE KINASES ACT UPSTREAM 
OF MAPK PATHWAYS
The various MAPK pathways share a common family 
of  upstream mediators: the Ste20 kinases. Ste20 was 
originally identified as a component of  the pheromone-
response pathway in budding yeast, and has also been 
shown to participate in the signaling pathways that 
regulate osmotic responses, including those to high 
osmolarity glycerol (HOG)[26]. Several mammalian 
Ste20 homologs have been identified. The Ste20 family 
includes two subfamilies that share basic structural and 
functional properties. The first subfamily includes the 
p21-activated kinases (PAKs), which are characterized by 
a C-terminal catalytic domain and an N-terminal binding 
site for the small G proteins, Rac1 and Cdc42. The 
second family comprises of  the germinal center kinases 
(GCKs), which contain an N-terminal kinase domain 
and a C-terminal regulatory domain. 

Ste20-like kinases function as MAP4Ks, triggering 
activation of  MAPK cascade[27-29] and transmitting 
s ignals from extra-cel lular st imul i that act ivate 
transcription factors (Figure 2). The resulting changes in 
gene expression, in turn, regulate cellular functions[27-31] 

that are important in the maintenance of  epithelial 
barrier function, apoptosis, growth, morphogenesis, cell 
permeability, and rearrangements of  the cytoskeleton 
that lead to changes in cell shape and motility. For 
example, members of  the PAK subfamily of  Ste20 
kinases have been shown to increase endothelial 
permeability[32,33]. The pro-inflammatory cytokine, 

TNF-α , stimulates expression of  the yeast Ste20 
homolog, Map4k4, through TNF-α-receptor-1-mediated 
signaling to c-Jun[34], the chemokine CXCL12 and 
the complement factor C5a. The resulting increase in 
Map4k4 activity triggers cell migration via a PAK1/2-
p38a MAPK-MAPKAP-K2-HSP27 pathway[35]. Other 
relevant examples include: (1) Ste20-like kinase (SLK)[36], 
Ste20-like oxidant stress-activated kinase (SOK)[37] and 
prostate-derived Ste20-like kinase 1-α (PSK1-α)[38], 
which induce apoptosis by activating the JNK pathway; 
(2) lymphocyte-oriented kinase (LOK)[39] and SLK[40], 
which regulate Rac1-mediated actin reorganization 
during cell adhesion and spreading; (3) mixed lineage 
kinase-3 (MLK-3)[41], which activates the SAPK/JNK 
and p38/RK pathways via SEK1 and MKK3/6; and 
(4) hematopoietic progenitor kinase 1 (HPK1), which 
is activated by prostaglandin E2 (PGE2) through a 
G-protein coupled receptor (GPCR) pathway, and 
negatively regulates transcription of  the fos gene[42].  

Ste20-like kinases has been reported to be activated 
by at least three pathogen-associated molecular patterns 
(PAMPs)-lipopolysaccharide, peptidoglycan, and flagellin-
produced by invading microbial pathogens, and has been 
shown to initiate innate immune responses by binding to 
pattern recognition receptors (PRRs)[43]. PAMPs activate 
GCKs (Ste-20 family of  kinases), which signal through 
MLK-2 and -3 to recruit JNK, p38 and their effectors[43]. 
These findings indicate an important role for GCKs and 
MLKs in PAMP-stimulated MAPK pathway activation, 
and therefore in stimulating the expression of  pro-
inflammatory genes involved in intestinal inflammation.
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Figure 2  Ste20 kinases participate in inflammation. Ste20 kinases that function as an MAP4K can activate MAP3K, MAP2K and MAPK, leading to the 
inflammatory functions. This model adapted from the model presented in http://www.cellsignal.com/pathways/map-kinase.jsp. MAPK: Mitogen-activated protein 
kinase. GPCR: G-protein coupled receptor; PAK: p21 activated kinase; GCK: Germinal central kinase; MLK: Multiple lineage kinase; TAK: Tat-associated kinase; DLK: 
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kinase; SAPK: Stress-activated protein kinase; JNK: Jun-amino-terminal kinase.
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STE20-RELATED PROLINE/ALANINE-
RICH KINASE (SPAK) IS A STE20-LIKE 
KINASES INVOLVED IN INTESTINAL 
INFLAMMATION
The GCKs may be divided into eight subfamilies based 
on homologies in their C-terminal domains (GCKI-VII). 
The Ste20-like kinase SPAK[44], PASK (the rat SPAK 
homolog)[45,46] and OSR1[47] share GCK Ⅵ homologies. 
Among these, SPAK and OSR1 are ubiquitously 
expressed. PASK is also expressed in most rat tissues, 
but its expression is particularly notable in cells with high 
ion-transport activity[45,48]. Both SPAK and PASK are 
highly expressed in epithelia and neurons[49]. On the other 
hand, PASK is found only in negligible levels in the liver 
and skeletal muscle[50]. SPAK, OSR1 and PASK contain 
a series of  proline and alanine repeats (PAPA box) at 
the extreme N-terminus, followed by a serine/threonine 
kinase domain, a nuclear localization signal, a consensus 
caspase cleavage recognition motif, and a C-terminal 
regulatory region. However, the colonic SPAK isoform 
is unique in that it lacks the PAPA box and N-terminal 
F-alpha helix loop, due to the presence of  a 5' splice 
junction-like sequence within exon-1[51]. Given its 
ubiquitous expression and diverse functional domains, 
the SPAK protein may be associated with diverse 
biological roles. It has been shown that under hyper-
osmotic (but not hypo-osmotic) stress conditions, SPAK 
translocates from the cytosolic pool to a Triton X-100-
insoluble fraction; although present in both fractions, 
SPAK associated with the Triton X-100-insoluble pool is 
dephosphorylated[52]. Our laboratory has observed that 
upon SPAK over-expression[51] or under TNF-α stress 
conditions (unpublished data), SPAK is cleaved and the 
N-terminal fragment is translocated to the nucleus. 

The Na+-K+-2Cl- cotransporter 1 (NKCC1), a 
member of  the Slc12 family of  solute carriers and 
target of  SPAK, plays a crucial role in cell volume 
regulation, cell proliferation and survival, and epithelial 
transport[53]. The activity and expression of  NKCC1 
can be regulated by cell volume[53] and intracellular 
chloride concentration[54], which act through NKCC1’s 
N-terminal (R/K) FX (Ⅴ/Ⅰ) binding motif. The pro-
inflammatory cytokines IL-1β, TNF-α[55] and IL-6[56] 

also regulate NKCC1 activity. In addition, NKCC1 
can be activated by α- and β-adrenergic stimulation via 
the cAMP/PKA-dependent pathway[57-59] and can be 
stimulated by PKC in a cell-specific manner[60,61]. Notably, 
NKCC1 can be phosphorylated by hyperosmolarity 
and, in vitro, by JNK, which can also be activated by 
hyperosmolarity[62,63]. As an upstream kinase to NKCC1, 
SPAK can associate through its conserved C-terminal 
domain with the (R/K) FX (Ⅴ/Ⅰ) motif  of  NKCC1 
and phosphorylate Thr203, Thr207, and Thr212 
residues on NKCC1, thereby playing an important role 
in inflammation[45,64,65]. However, SPAK alone is unable 
to activate NKCC1. SPAK is a substrate of  WNK1/4, 
which are serine threonine kinases lacking a lysine in 
subdomain I of  the catalytic domain[66]. SPAK physically 

associates through its conserved C-terminal domain with 
the C-terminus of  WNK, resulting in phosphorylation 
and activation of  SPAK by WNK. WNK is also unable 
to activate NKCC1 in the absence of  SPAK, indicating 
that this association of  SPAK with WNK is required 
for SPAK-dependent phosphorylation and activation 
of  NKCC1. A mutation of  WNK1 is involved in the 
pathogenesis of  pseudohypoaldosteronism type Ⅱ (PHA
Ⅱ), characterized by hypertension and hyperkalemia[67]. 

SPAK can also activate p38 pathways in different 
cell types[51,68,69] to play a role in cell differentiation; 
an observation that may be relevant in the context of  
the known relationship between the p38 pathway and 
inflammation[17,70-74]. Interestingly, p38 activation has been 
noted in damaged corneal epithelial tissue and in an in vitro  
intestinal epithelial restitution model[75-78], suggesting 
that under some circumstances p38 may be involved in 
regulating cell motility and wound healing. Protein kinase 
C θ (PKCθ) is known to be an intestinal inflammation-
related kinase[79]. By associating with Rho GTPases, 
PKCθ migrates from the cytosol to the membrane 
and the actin cytoskeleton[80], where SPAK may act as 
both a substrate and target of  PKCθ in a TCR/CD28-
induced signaling pathway that leads selectively to AP-1 
activation, T-cell transformation and proliferation, and 
IL-2 production[81]. SPAK is also known to associate with 
F-actin under conditions of  stress, which, along with the 
activation and phosphorylation of  myosin light chain 
kinase (MLCK), leads to cytoskeleton rearrangement[47,52]. 
Fray, the Drosophila orthologue of  mammalian SPAK, 
has been shown to participate in the activation of  the 
JNK pathway by sorbitol[47]. Fray probably functions by 
activating MAP3K, leading to activation of  MAP2K/
MEK4 and MEK7, and ultimately, JNK activation.

Accumulating evidence points to the important role 
that SPAK plays in the physiology and pathogenesis of  
intestinal inflammation (Figure 3). First, by activating 
and phosphorylating p38, Ap-1, NKCC1, as well 
as p21-activated protein kinase 1 (PAK1, another 
Ste20 line kinase), SPAK induces the transcription of  
inflammation-related genes or modulates the function of  
inflammation-related proteins. Second, SPAK is activated 
and phosphorylated by WNK1/4, PKCθ and MLCK. 
In addition, SPAK has been reported to associate with 
the heat shock protein HSP105, the cytoskeleton protein 
gelsolin, and the apoptosis-associated tyrosine kinase 
AATYK. We have observed that SPAK can increase 
the permeability of  Caco2-BBE cells (unpublished 
observations). Additional unpublished data indicate 
that colonic epithelial SPAK expression is increased in 
IBD patients and in mice with experimentally induced 
colitis. Importantly, we have also found that the pro-
inflammatory cytokine, TNF-α, increases colonic 
SPAK expression, an observation that underscores the 
importance of  SPAK in the pathogenesis of  intestinal 
inflammation.

PERSPECTIVE
Increased permeability across the mucosal epithelial 
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barrier resulting from loss of  structural integrity and/or  
abnormal transepithelial transport is thought to be 
one of  the main functional changes that lead to IBD. 
Numerous studies have focused on epithelial barrier 
function, measuring transepithelial electrical resistance 
(TER), which is known to be decreased in intestinal 
epithelium by over-expression of  SPAK[51]. Other studies 
have assessed cell adhesion and migration, providing 
a measure of  wound healing. The pro-inflammatory 
cytokine TNF-α is both necessary and sufficient to 
trigger the onset of  IBD. In fact, nearly half  of  the 
drugs used for the treatment of  IBD target TNF-α. 
In in vitro studies, we have found that TNF-α increases 
SPAK expression in intestinal epithelial cells in a dose- 
and time- dependent manner (unpublished data). It is 
therefore reasonable to speculate that the regulation of  
SPAK by TNF-α could account for TNF-α-mediated 
alterations of  barrier function and inflammation in 
intestinal epithelial cells. Additional studies on the role 
of  SPAK in intestinal barrier function would likely 
substantially advance the field of  IBD.

Intestinal inflammation is usually associated with 
hyper-osmotic status in the lumen. The WNK1/4-
SPAK-NKCC1 pathway has been highlighted in this 
context as a molecular mechanism that may contribute 
to ion transport and cell volume changes. This pathway, 
together with its interactions with other related 
molecules, such as MLCK, claudin and zo-1, may play 
an important role in maintaining cell shape, since the 
epithelial cell tight junctions that play a dominant role 
in TER would collapse in IBD. In short, more attention 
should be paid to tight junction and cell volume 

regulation as important contributing factors in IBD.
It should be evident from this review that SPAK 

occupies an important intracellular position, integrating 
extra-cellular pro-inflammatory signals and converting 
them into pro-inflammatory cellular responses. Given its 
unique position at the crossroads of  multiple pathways, 
SPAK appears to represent an attractive target for 
developing effective and efficient strategies to treat IBD. 
Continuing work along the lines suggested above could 
make important contributions to the effort to realize the 
potential of  this therapeutic approach.  
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