
into upregulation of hepcidin, reinforcing the concept 
that the liver is the major regulatory site for systemic 
iron homeostasis, and not merely an iron storage depot. 
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Physiology and pathophysiology 
of iron homeostasis 
Iron is essential for various physiological and metabolic 
pathways. However, unshielded iron is toxic, as a catalyst 
of  free radical generation[1,2]. The adult human body 
contains a pool of  3-5 g of  iron (about 55 mg and 44 
mg per kilogram body weight in males and females, 
respectively), the majority of  which (> 70%) is utilized 
by erythroid cells for heme synthesis and integration into 
hemoglobin[3]. A daily requirement of  about 20-30 mg iron 
for erythropoiesis is mainly covered by recycling of  the 
metal from senescent erythrocytes via reticuloendothelial 
macrophages. These cells metabolize heme and release 
iron into the circulation, where it is scavenged by plasma 
transferrin and delivered to tissues. A considerable 
amount of  iron (about 1 g) is stored in the liver. Dietary 
iron absorption by duodenal enterocytes compensates for 
losses through bleeding or desquamation; a physiological 
rate of  1-2 mg/d suffices to maintain the body iron pool. 
This is subjected to feedback regulation and may adjust to 
fluctuations in iron demands. 

In hereditary hemochromatosis (HH), disruption of  
this homeostatic loop leads to unrestricted dietary iron 
absorption at a rate that may reach 8-10 mg/d[4,5]. This 
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Abstract
Hereditary hemochromatosis (HH) is caused by 
chronic hyperabsorption of dietary iron. Progressive 
accumulation of excess iron within tissue parenchymal 
cells may lead to severe organ damage. The most 
prevalent type of HH is linked to mutations in the HFE 
gene, encoding an atypical major histocompatibility 
complex classⅠmolecule. Shortly after its discovery in 
1996, the hemochromatosis protein HFE was shown 
to physically interact with transferrin receptor 1 (TfR1) 
and impair the uptake of transferrin-bound iron in 
cells. However, these findings provided no clue why 
HFE mutations associate with systemic iron overload. 
It was later established that all forms of HH result 
from misregulation of hepcidin expression. This liver-
derived circulating peptide hormone controls iron efflux 
from duodenal enterocytes and reticuloendothelial 
macrophages by promoting the degradation of the iron 
exporter ferroportin. Recent studies with animal models 
of HH uncover a crucial role of HFE as a hepatocyte 
iron sensor and upstream regulator of hepcidin. Thus, 
hepatocyte HFE is indispensable for signaling to 
hepcidin, presumably as a constituent of a larger iron-
sensing complex. A working model postulates that the 
signaling activity of HFE is silenced when the protein 
is bound to TfR1. An increase in the iron saturation of 
plasma transferrin leads to displacement of TfR1 from 
HFE and assembly of the putative iron-sensing complex. 
In this way, iron uptake by the hepatocyte is translated 
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is accompanied by a gradual increase in the saturation 
of  transferrin with iron (from physiological 30% up to 
100%), a buildup of  non-transferrin-bound iron and 
excessive accumulation of  the metal in parenchymal 
cells of  the liver, pancreas, pituitary, heart, joints and 
skin. Notably, macrophages and absorptive duodenal 
enterocytes are spared from iron loading and exhibit 
increased rates of  iron release. Excessive iron deposition 
in the liver constitutes a risk factor for fibrosis, cirrhosis 
and hepatocellular cancer[6-8], and may exacerbate other 
types of  liver disease[9,10]. Iron overload may also lead 
to cardiomyopathy, diabetes mellitus, hypogonadism, 
arthritis and skin pigmentation[3]. HH is efficiently 
treated by phlebotomy. 

Hormonal regulation of iron 
traffic by hepcidin 
The discoveries of  the divalent metal transporter (DMT1), 
the iron exporter ferroportin, and the iron regulatory 
hormone hepcidin provided a framework to understand 
the molecular mechanisms for systemic iron traffic and 
homeostasis[11,12]. DMT1 accounts for the absorption of  
ferrous ions across the apical membrane of  duodenal 
enterocytes, but also for intracellular transport of  
transferrin-derived iron across the endosomal membrane in 
many cell types. Ferroportin mediates efflux of  ferrous iron 
from enterocytes and macrophages to plasma transferrin. 
The transport of  iron by DMT1 requires its reduction by 
ferric reductases (such as Dcytb or the Steap proteins), 
while its export by ferroportin is coupled by re-oxidation 
via ferroxidases (such as ceruloplasmin or hephaestin). 

The ferroportin-mediated eff lux of  iron from 
enterocytes and macrophages defines a key regulatory 
checkpoint for iron homeostasis. This process is negatively 
controlled by hepcidin, a cysteine-rich peptide hormone 
that binds to ferroportin and promotes its internalization 
and lysosomal degradation[13]. Hepcidin is synthesized in 

hepatocytes as a pro-peptide, which undergoes proteolytic 
processing to form a bioactive molecule of  25 amino 
acids[14]. The mature peptide is secreted into plasma and 
orchestrates homeostatic responses to iron, erythropoiesis, 
hypoxia and inflammation. An increase in hepcidin levels, 
commonly encountered following dietary iron intake or 
in inflammation[15,16], impairs iron absorption by duodenal 
enterocytes and promotes retention of  the metal within 
macrophages (Figure 1), limiting its availability for 
erythropoiesis. Excessive hepcidin expression, in response 
to prolonged inflammation, contributes to the anemia of  
chronic disease[17]. On the other hand, low hepcidin levels 
triggered by iron deficiency, hypoxia or phlebotomy[18] 

facilitate duodenal iron absorption and iron release 
from macrophages (Figure 1). Importantly, HH patients 
fail to mount an appropriate upregulation of  hepcidin 
expression, despite high transferrin saturation and elevated 
body iron stores[19,20]. Thus, HH is largely based on the 
loss of  feedback control in dietary iron absorption due to 
defects in the hepcidin pathway. 

Juvenile hemochromatosis, a rare but severe form of  
hereditary iron overload results from genetic inactiva-
tion of  the hepcidin gene[21] or mutations in hemojuvelin 
(HJV) associated with profound hepcidin deficiency[22]. 
The most prevalent form of  HH is linked to mutations 
in HFE[23], while another less common but phenotypi-
cally indistinguishable HH subtype is caused by muta-
tions in transferrin receptor 2 (TfR2)[24]. Iron overload 
patients with either HFE or TfR2 mutations exhibit in-
appropriately decreased hepcidin levels or blunted hepci-
din responses[19,20,25,26]. Similar results were obtained with 
mouse models of  iron overload, bearing targeted disrup-
tions of  the HFE[27-30], HJV[31,32] or TfR2[33] genes. These 
findings suggest that HFE, HJV and TfR2 are upstream 
regulators of  hepcidin expression. 

Regulation of hepcidin expression 
Hepcidin is transcriptionally activated by distinct iron-

Figure 1 Regulation of iron efflux 
from enterocytes and macrophages 
by hepcidin. Duodenal enterocytes 
absorb dietary iron via DMT1 and 
reticuloendothelial macrophages 
phagocytose iron-loaded senescent 
red blood cel ls.  Both cel l  types 
release ferrous iron (Fe2+) into plasma 
via ferroportin, which is incorporated 
into transferrin following oxidation into 
the ferric form (Fe3+) via hephaestin 
or ceruloplasmin. The secretion of the 
iron-regulatory hormone hepcidin from 
the liver in response to high body iron 
stores or inflammatory signals results 
in internalization and degradation 
of ferroportin, and retention of iron 
within enterocytes and macrophages. 
A decrease in body iron stores, a 
requirement of iron for erythropoiesis, 
or hypoxia, inhibit hepcidin expression, 
permitting dietary iron absorption by 
enterocytes and iron release from 
macrophages.
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and cytokine-dependent pathways. The latter is mediated 
by IL-6 (and IL-1) via STAT3[34-36]. The iron-dependent 
pathway is less well characterized and involves proximal 
and distal promoter elements[37,38]. The lack of  hepcidin 
expression, accompanied by iron overload, in mice 
carrying a hepatocyte-specific disruption of  SMAD4[39] 

has linked iron-sensing with bone morphogenetic protein 
(BMP) signaling. In fact, BMP-2, -4 and -9 are potent 
inducers of  hepcidin transcription, while hemojuvelin 
stimulates this pathway as a BMP co-receptor[40-42]. The 
CCAAT/enhancer-binding protein α (C/EBPα) appears 
necessary for basal hepcidin transcription[43]. 

Hepcidin expression is suppressed in anemia by a 
mechanism that requires erythropoietic activity[44,45]. At 
least in thalassemia patients, the silencing of  hepcidin is 
mediated by overexpression of  growth differentiation 
factor 15 (GDF15), a member of  the transforming growth 
factor β (TGFβ) superfamily[46]. Erythropoietin (EPO) 
directly reduces the binding of  C/EBPα to the hepcidin 
promoter via EPO receptor signaling[47]. Hepcidin is also 
negatively regulated by hypoxia[18]. Experiments in mice 
with hepatic disruption of  HIF-1α provided evidence 
for the involvement of  this transcription factor in the 
underlying pathway[48]. However, other reports suggested 
that the hypoxic downregulation of  hepcidin is HIF-
independent[49,50] and involves oxidative stress-mediated 
repression of  C/EBPα and STAT3[49], or inhibition 
of  2-oxoglutarate dependent oxygenases[50]. Recent 
work revealed that the transmembrane serine protease 
TMPRSS6 negatively regulates signaling to hepcidin[51-55], 
by a yet unknown mechanism. 

What is the role of  HFE in hepcidin regulation? 

Discovery of HFE as the 
hemochromatosis gene 
The HFE gene was elucidated by linkage disequilibrium 
and haplotype analysis from a large group of  HH 
patients[23], culminating lengthy efforts to map the 
hemochromatosis locus. It encodes an atypical major 
histocompatibility complex (MHC) classⅠprotein, which 
is processed via the Golgi network to the cell surface, 
following interaction with β2-microglobulin. Structural 
analysis revealed that in contrast to typical MHC  
classⅠhomologues, HFE formed a smaller groove 
between the α1 and α2 subunits, which was predicted to 
preclude peptide antigen presentation[56]. The majority 
of  HH patients carry an HFE C282Y substitution. This 
abrogates a disulphide bridge and prevents the association 
of  HFE with β2-microglobulin, a necessary step for its 
processing and transport to the plasma membrane[57,58]. 
Unprocessed HFE C282Y undergoes proteasomal 
degradation following retention in the endoplasmic 
reticulum (ER), which promotes ER stress[59]. An HFE 
H63D mutation may also lead to HH, especially in the 
compound heterozygous state with C282Y. Homozygosity 
for the HFE C282Y genotype is highly prevalent (1:200) 
in populations of  Northern European ancestry; however, 
the clinical penetrance is lower and remains a matter of  
debate[4-6,60,61]. It appears that HH is a multifactorial disease 

and the development of  iron overload in individuals 
bearing disease-associated HFE mutations requires the 
contribution of  additional, yet incompletely understood 
environmental, genetic and/or epigenetic factors[62]. 
Nevertheless, mice with either targeted disruption of  the 
HFE[63,64] or β2-microglobulin[65,66] genes, or expressing 
orthologues of  the HFE C282Y[67] or H63D[68] mutants, 
develop progressive iron overload, the degree of  which 
depends on the genetic background of  the animals[69-71]. 
Collectively, these findings underlie the significance of  
HFE in the control of  body iron homeostasis. 

Early models for the function of 
HFE 
Biochemical[72,73] and crystallographic[74] studies revealed 
that HFE interacts with TfR1 (Kd about 60 nmol/L) and 
competes for the binding of  transferrin to its receptor, 
which has a Kd of  about 1 nmol/L[75]. However, 
considering that the physiological concentration of  
plasma diferric holotransferrin is about 5 μmol/L[76], 
HFE is unlikely to affect the rate of  TfR1 endocytosis 
in vivo. In transfected cell lines, overexpressed HFE 
reduced the efficiency of  the transferrin cycle[77] and 
promoted an iron-deficient phenotype[78-81], without or 
with co-expression of  β2-microglobulin[82]. Notably, a 
similar phenotype was observed with an HFE W81A 
mutant that is unable to bind to TfR1, suggesting that 
the HFE-mediated decrease of  intracellular iron levels is 
independent of  the HFE/TfR1 interaction[83]. 

The above data did not shed much light on how HFE 
controls systemic iron homeostasis and rather created 
some confusion. The immunohistochemical detection of  
HFE in precursor enterocytes of  the intestinal crypts[84] 

and its association with TfR1 in these cells[85] laid the 
foundation for the “crypt-programming model”[86]. This 
postulates that iron absorption is regulated by signals 
that are sensed by precursor enterocytes, which undergo 
maturation and migrate along the crypt-villus axis. An 
iron deficient status in the crypt cells would program 
mature enterocytes to absorb more dietary iron from 
the lumen. According to the crypt-programming model, 
HFE would serve to promote iron retention within 
crypt cells, possibly by increasing the uptake of  plasma 
transferrin[87] and/or inhibiting iron efflux[88]. The model 
is supported by the iron deficient status manifested in 
duodenal biopsies from HH patients[89,90]. Experimental 
evidence has been provided that HFE may also facilitate 
iron accumulation[91] or retention[92] within macrophages, 
which are likewise iron-deficient in HH patients[93]. In 
the pre-hepcidin era, these findings have highlighted the 
enterocytes and macrophages as possible primary sites 
of  the HFE regulatory function. Nonetheless, HFE is 
expressed in multiple cell types, including hepatocytes[94], 
the major producers of  hepcidin. 

Lessons from animal models I: The 
site of HFE regulatory function 
Definite clues as to the site of  HFE regulatory function 
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in the context of  systemic iron homeostasis were 
recently provided by experiments with genetically 
engineered mice, bearing a targeted, tissue-specific 
disruption of  the HFE gene. The technology is based 
on the generation of  animals carrying a “floxed” HFE 
allele, surrounded by loxP sites, which are specific 
targets of  the Cre recombinase. Crossing of  “floxed” 
HFE mice with a transgenic line expressing the Cre 
recombinase under the control of  the villin promoter 
resulted in intestinal-specific disruption of  HFE in the 
progeny[95]. Importantly, mice lacking HFE expression 
in the intestine did not show any signs of  abnormal 
iron metabolism, at least with regard to liver iron 
content, serum iron parameters and serum ferritin levels. 
Moreover, they exhibited physiological expression of  
the mRNAs encoding liver hepcidin and the intestinal 
iron transporters DMT1 and ferroportin[95]. By showing 
that intestinal HFE expression is dispensable for the 
regulation of  body iron homeostasis, these data challenge 
the validity of  the “crypt-programming model” and raise 
the possibility for a critical role of  HFE in the liver. 

In a follow-up study, “floxed” HFE mice were 
crossed with transgenic animals expressing the Cre 
recombinase under the control of  either the hepatocyte-
specif ic albumin promoter, or the macrophage-
specific lysozyme M promoter[96]. While HFE ablation 
in macrophages did not affect body iron metabolism, 
the disruption of  HFE in hepatocytes recapitulated 
the hemochromatosis phenotype of  null HFE-/-mice. 
Thus, mice lacking HFE expression in hepatocytes 
exhibited hyperabsorption of  dietary iron, increased 
serum iron, transferrin saturation and iron deposition 
in the liver[96]. Taken together, the tissue-specific knock-
out experiments demonstrate that hepatocyte HFE is 
necessary to promote appropriate hepcidin responses 
and thereby prevent iron overload. 

These data also corroborate clinical findings, show-
ing that the iron status of  recipients of  a liver transplant 
was largely dependent on the HFE genotype of  the 
donors[97,98]. Nevertheless, a contribution of  macro-
phage HFE to hepcidin regulation cannot be completely 
ruled out. While macrophages are dispensable for hep-
cidin expression in response to iron or inflammatory 
signals[99,100], bone marrow transplantation from wild type 
mice into irradiated HFE-/-counterparts corrected iron 
parameters and significantly increased hepcidin levels in 
the recipients[101]. Conceivably, this could be the result of  
intercellular communication and signaling to hepatocytes 
and/or HFE-mediated autocrine production of  hepcidin 
in macrophages[102]. 

Lessons from animal models II: 
The role of TfR1 in the control of 
HFE activity 
How does HFE modulate signaling to hepcidin? 
Biochemical work showed that HFE not only interacts 
with TfR1, but also with TfR2[103]. Moreover, the HFE/
TfR2 interaction leads to an increase in TfR2 levels[104]. 

TfR2 is primarily expressed in hepatocytes[105] and 
stabilized by diferric holo-transferrin[106,107]. While TfR1 
mediates cellular iron uptake from circulating transferrin, 
TfR2 is thought to function as an upstream regulator 
of  hepcidin, and possibly an iron sensor[14]. A testable 
prediction arising from the capacity of  HFE to interact 
with both TfR1 and TfR2 would be that the choice 
of  its binding partner is regulated by transferrin and, 
furthermore, this event is crucial for signaling to hepcidin. 

This hypothesis was explored in a recent study, based 
on the idea to induce or abolish HFE/TfR1 interactions 
in vivo[108]. To this end, transgenic mice were engineered 
for expression of  TfR1 mutants that prevent the binding 
of  either transferrin (R654A) or HFE (L622A). In light 
of  the early embryonic lethality of  TfR1-/-mice[109], 
indicating an utmost importance for the interaction 
of  TfR1 with transferrin, a TfR1 R654A cDNA was 
integrated by homologous recombination into the 
heterologous ROSA26 locus, maintaining endogenous 
wild type TfR1 expression (thus, the transgenic 
product did not disrupt the transferrin cycle, excluding 
abnormalities of  erythropoiesis). In contrast, the L622A 
mutation was introduced by homologous recombination 
within the TfR1 locus (“knock-in”). 

TfR1 R654A, that is unable to bind to transferrin, 
would be expected to constitutively associate with HFE. 
Transgenic mice expressing TfR1 R654A developed iron 
overload, associated with decreased hepcidin mRNA 
levels, closely resembling the HFE-/-phenotype. On the 
other hand, TfR1 L622A, that is unable to bind to HFE, 
would be expected to be highly efficient in the uptake 
of  transferrin-bound iron. Interestingly, transgenic mice 
expressing TfR1 L622A developed a mild hypochromic 
microcytic anemia, and exhibited decreased serum 
iron and elevated hepcidin mRNA levels. These results 
suggest that HFE stimulates hepcidin expression 
when it is free of  TfR1. In support of  this notion, 
the hepatocyte-specific transgenic overexpression of  
an HFE cDNA in HFE-/-mice substantially induced 
hepcidin mRNA expression to the extent that it not 
only corrected hepatic iron overload, but also promoted 
hypochromic microcytic anemia. 

A model for the iron regulatory 
function of HFE 
A model accommodating the above findings postulates 
that under low serum iron conditions, hepatocyte 
HFE is predominantly bound to TfR1 (Figure 2A). An 
increase in transferrin saturation triggers the release 
of  HFE from TfR1 and concomitantly stabilizes 
TfR2[106,107]. In that way, TfR1 becomes accessible for the 
binding and endocytosis of  holo-transferrin, resulting in 
cellular iron uptake. At the same time, HFE associates 
with stabilized TfR2 and possibly other proteins, such 
as hemojuvelin and BMPs and their receptor (BMPR), 
to form a putative iron signaling complex that induces 
hepcidin transcription via Smad proteins (Figure 2B). 
Thus, an increase in the iron content of  the hepatocyte is 
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indirectly translated into a systemic regulatory response 
via hepcidin. Iron-dependent degradation of  TfR1 
mRNA by iron regulatory proteins[110] would terminate 
this process in a feedback loop. According to this model, 
HFE serves to sense alterations in transferrin saturation. 

Considering that a number of  HH patients with HFE 
C282Y mutations[25] and some HFE-/-mice[29] express 
normal (or close to normal) basal hepcidin mRNA 
levels but exhibit blunted hepcidin responses to dietary 
iron, it is conceivable that the role of  HFE is somehow 
restricted to the fine-tuning of  iron-dependent signaling 
to hepcidin. Along these lines, BMP-2, -4 and -9 can 
induce hepcidin mRNA transcription in HFE-/-and 
TfR2-/-hepatocytes[41]. Several reports have also shown 
that HFE is dispensable for signaling to hepcidin via the 
inflammatory pathway[29,41,111,112], even though opposing 
views exist[113]. 

Recent animal studies[95,96,108] have not entirely solved 
the mystery of  HFE function, but have significantly 
advanced our understanding on how this protein regulates 
systemic iron homeostasis. First, they uncovered HFE as a 
hepatocyte iron sensor, necessary to prevent iron overload 
and sufficient to control hepcidin expression (at least at 
the mRNA level). And second, they demonstrated that 
HFE-dependent signaling to hepcidin is regulated by the 
interaction of  HFE with TfR1. 

Outlook and perspectives 
Several outstanding issues remain to be addressed. For 

example, the proposed function of  HFE as a sensor of  
transferrin saturation requires experimental validation. 
The functional significance of  the interaction between 
HFE and TfR2, as well as the role and composition 
of  the putative iron-sensing complex await further 
investigation. It will be interesting to explore a potential 
functional redundancy between HFE and classical 
MHC classⅠmolecules with regard to iron regulation, 
considering that mice lacking such molecules develop 
iron overload[114]. Conversely, the proposed capacity 
of  HFE to engage into immune responses, following 
recognition by cytotoxic T lymphocytes[115], deserves 
additional attention, especially in light of  immunological 
abnormalities of  HH patients[116]. A possible connection 
between the unfolded protein response, caused by 
defective processing of  HFE C282Y, and the hepcidin 
pathway would not be totally unexpected[117]. Finally, it 
will be important to examine whether HFE may also 
affect the maturation of  hepcidin; this would necessitate 
analytical methods for direct measurement of  the 
peptide in plasma[118,119] and in cell culture. 
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