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INTRODUCTION
Hepatocytes are polarized cells and represent 80% 
of  the liver mass. The basolateral and canalicular 
membranes differ in their composition and functions 
and are separated by tight junctions that seal off  the bile 
canaliculi. The basolateral membrane is in contact with the 
sinusoidal blood. The canalicular membrane represents 
the excretory pole of  hepatocytes. Bile formation is largely 
dependent on active transport of  solutes such as bile 
acids, glutathione and bicarbonate through the canalicular 
membrane followed by the passive movement of  water. 
Canalicular excretion is the rate-limiting step of  bile 
formation since biliary constituents are secreted into bile 
against concentration gradients. The canalicular primary 
bile is further modified by absorptive and secretory 
processes along the biliary tree. Considerable species 
specific differences in bile formation exist, including the 
contribution of  ductular bile and bile acid composition[1]. 
In mammals, bile is essential for solubilization and 
digestion of  dietary lipids. 

The sinusoidal uptake and canalicular excretion of  
most biliary constituents is mediated by several transport 
systems expressed at the two polar surface domains of  
liver cells. Basolateral transport systems are responsible 
for the translocation of  molecules across the sinusoidal 
membrane, whereas active canalicular transport systems 
are in charge of  the biliary excretion. Numerous trans-
port proteins involved in basolateral transport have been 
identified including the Na+-taurocholate co-transporting 
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Abstract
The canalicular membrane represents the excretory pole 
of hepatocytes. Bile is an important route of elimina-
tion of potentially toxic endo- and xenobiotics (including 
drugs and toxins), mediated by the major canalicular 
transporters: multidrug resistance protein 1 (MDR1, 
ABCB1), also known as P-glycoprotein, multidrug re-
sistance-associated protein 2 (MRP2, ABCC2), and the 
breast cancer resistance protein (BCRP, ABCG2). Their 
activities depend on regulation of expression and proper 
localization at the canalicular membrane, as regulated 
by transcriptional and post-transcriptional events, re-
spectively. At transcriptional level, specific nuclear re-
ceptors (NR)s modulated by ligands, co-activators and 
co-repressors, mediate the physiological requirements 
of these transporters. This complex system is also re-
sponsible for alterations occurring in specific liver pa-
thologies. We briefly describe the major Class Ⅱ NRs, 
pregnane X receptor (PXR) and constitutive androstane 
receptor (CAR), and their role in regulating expression 
of multidrug resistance proteins. Several therapeutic 
agents regulate the expression of relevant drug trans-
porters through activation/inactivation of these NRs. We 
provide some representative examples of the action of 
therapeutic agents modulating liver drug transporters, 
which in addition, involve CAR or PXR as mediators.
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polypeptide (NTCP, SLC10A1), organic anion trans-
porting polypeptides (OATPs: SLCO family), multidrug 
resistance-associated proteins 1, 3 and 4 (MRP1, 3 and 4; 
ABCC1, 3 and 4), and organic anion and cation transport-
ers (OATs, OCTs: SLC22A family). Canalicular transport 
of  osmotically active solutes, contributing to bile forma-
tion, is mediated by MRP2 (ABCC2), the bile salt export 
pump (BSEP, ABCB11), and the organic anion 2 (AE2, 
SLC4A2), which are involved in biliary excretion of  glu-
tathione and glucuronide conjugates, monoanionic bile 
salts, and bicarbonate, respectively[1-4]. Biliary elimination 
of  drugs is mediated by the multidrug resistance pro-
tein 1 (MDR1, ABCB1), also known as P-glycoprotein, 
MRP2, and the breast cancer resistance protein (BCRP, 
ABCG2)[5-11]. Though they all belong to the superfamily 
ABC, in contrast to the majority of  its members, BCRP 
is present as a monomer and consists of  only one ATP-
binding site and 6 transmembrane regions.

In this review we focus our attention only on the 
hepatic drug transporters and their regulation by nuclear 
receptors activated by compounds habitually used as 
therapeutic agents.

APICAL DRUG TRANSPORTERS AND 
NUCLEAR RECEPTORS
Drug transporters are constitutively expressed in several 
organs playing an important role in the efflux of  xenobi-
otics and their metabolites; the apical membrane of  epi-
thelial secretory tissues, and particularly the liver, being 
the most relevant sites. Substrates recognized by P-gly-
coprotein, MRP2 and BCRP represent a wide spectrum 
of  endo- and xenobiotics, including contaminants and 
therapeutic drugs, either neutral, cationic or anionic, and 
of  hydrophobic or hydrophilic nature. P-glycoprotein 
is a member of  the ABC superfamily of  transporters 
originally described in cancer cell lines, conferring resist-
ance to therapeutic agents. It was the first ABC trans-
porter identified in canalicular membranes of  normal 
hepatocytes. MDR1 functions as an efflux pump for a 
wide range of  amphiphilic, bulky type Ⅱ cationic drugs 
together with other hydrophobic compounds, includ-
ing endogenous and exogenous metabolites or toxins, 
steroid hormones, hydrophobic peptides and even gly-
colipids[12]. MRP2 mediates the biliary elimination of  dif-
ferent organic anions, including glutathione-S-conjugates 
(e.g. of  leukotriene C4), glucuronides (e.g. of  bilirubin 
and estrogens), and oxidized glutathione[2,13]. MRP2 also 
mediates the canalicular transport of  glucuronidated and 
sulfated bile salts[14]. In addition, MRP2 was found to 
transfer reduced glutathione, though with very low af-
finity. MRP1 but not MRP2 was the first member of  the 
superfamily of  ABC (ATP Binding Cassette) transport-
ers dependent on ATP hydrolysis, and was initially iden-
tified in a human lung cancer cell line[15]. BCRP that was 
initially found to confer resistance to breast cancer treat-
ment was more recently found to be expressed normally 
in epithelial tissues and transport sulfated metabolites of  
drugs with high specificity[16-18].

Expression of  these canalicular drug transporters 
are subject to transcriptional and post-transcriptional 
regulation in response to endogenous and exogenous 
compounds and different pathologic situations. The 
short-term changes in transporter activity and expression 
are generated at post-transcriptional level. An intensive 
regulation mediated by second messenger and protein-
kinases modulates the recruitment of  the transporters 
from intracellular reservoirs to plasmatic membrane or 
alters the activity by phosphorylation-dephosphorylation 
and protein-protein interactions. All these factors 
act in association to regulate the functional state of  
drug transporters, which were found to be affected 
to different degrees by liver disease[1,4,19]. Particular 
interest has been given recently to proper localization 
of  BSEP and MRP2 in the normal situation, which is 
disrupted in cholestatic disease as a consequence of  their 
internalization and abnormal localization to subapical 
membrane. This was observed not only in experimental 
animals such as the rat, but also in humans[20,21].

At transcriptional level, a wide variety of  nuclear re-
ceptors (NR)s activated by ligands, co-activators and co-
repressors, mediate the physiological requirements of  
these transporters. This complex system is also respon-
sible for alterations occurring in specific liver patholo-
gies. The biotransformation systems (phaseⅠand Ⅱ 
reactions) that act in coordination with efflux proteins 
are also regulated by this same network of  NRs[22,23]. 
Transcriptional regulation of  drug transporters by NRs 
is a complex process involving: (1) ligand binding, (2) the 
association of  NRs with regulatory sites in the genome 
through their DNA sites, (3) co-regulator recruitment, 
(4) the regulation of  polymerase Ⅱ binding and activity 
at target promoters, and (5) the ending or attenuation of  
NR-dependent signaling[24-26].

Co-activators and co-repressors represent key fac-
tors in modulation of  NR activity. Co-activators are 
implicated in chromatin relaxation due to their intrinsic 
histone acetyltransferase or methyltransferase activity. 
After binding to the activated (agonist-bound) NR, co-
activators contribute to the full activation of  expression 
of  the target genes. Several co-activators were shown to 
cooperate with nuclear receptors: the p160 family (SRC-1, 
TIF-2, GRIP, ACTR), p/CIP and CBP/p300. On the 
other hand, co-repressors, such as NcoR and SMRT, 
preferentially bind to inactivated receptors (absence of  
ligand, antagonist-bound, reverse agonist-bound) and re-
cruit various forms of  histone deacetylases, thus leading 
to chromatin condensation and ultimately, to repression 
of  the target gene expression[27].

As anticipated above, NRs comprise a superfamily of  
transcription factors activated by ligands which can both 
activate and repress gene expression. According to their 
dimerization and DNA binding properties, NRs can be 
classified into four groups. ClassⅠcomprises the classi-
cal receptors of  steroid hormones (estradiol, testoster-
one, progesterone, cortisol). These form homodimers 
before binding to response elements in the promoter 
regions of  target genes. NRs belonging to Class Ⅱ, such 
as pregnane X receptor (PXR), constitutive androstane 



receptor (CAR), and farnesoid X receptor (FXR), form 
heterodimers with the retinoid X receptor (RXR), prior 
to interacting with target genes. Since RXR is the ob-
ligated partner in the heterodimer formation, its low 
availability may result in a trans-repressive effect. Recep-
tors with no ligand can exist, and have been found to 
bind DNA as homodimers. They belong to Class Ⅲ (e.g. 
RXR, and the nuclear hepatic factor 4, HNF4). Class IV 
consists of  NRs that act as monomers, like the liver re-
ceptor LRH1[28].

We will focus on class Ⅱ receptors since they repre-
sent the best characterized. More specifically, we will brief-
ly describe those receptors involved in regulating drug 
transporters, i.e. PXR and CAR. Originally, these NRs 
were identified as sensors able to respond to a wide variety 
of  environmental xenobiotics to promote detoxification 
by phaseⅠCYP450 genes[29]. Lehmann et al[30] showed that 
hPXR receptor binds to the rifampicin/dexamethasone 
response element in the CYP3A4 promoter region as a 
heterodimer with the 9-cis-retinoic acid receptor (RXR). 
They also reported that hPXR is activated by many 
CYP3A4 inducers, including several steroids, lovastatin, 
clotrimazole, rifampicin and phenobarbital. Increasingly at 
present, data reveals the involvement of  NRs in the regu-
lation of  PhaseⅠand Ⅱ enzymes, along with the proteins 
effluxing their metabolites[31].

PXR
In 1998, Kliewer et al[32] identified a new member of  the 
nuclear hormone receptor family activated primarily by 
pregnanes: PXR (NR1I2). It was principally cloned from 
mouse liver and later from rabbit, rat and human. PXR 
is predominantly expressed in liver and intestine, and to 
a lower extent, in lung and kidney[32,33]. PXR dimerizes 
with RXRα immediately after its activation by ligand 
binding. It was originally believed to be localized mainly 
at the nucleus, but later it was found that it is present 
at the cytoplasm, interacting with a protein complex 
and that, after activation, it translocates to the nucleus 
to regulate gene transcription[34]. One relevant feature 
of  this receptor is that it recognizes a wide variety of  
xenobiotics such as ligands, dexamethasone, rifampicin, 
spironolactone, and pregnenolone 16α-carbonitrile being 
among the best characterized. It can also bind some 
specific bile acids such as litocholic, 3-ketolitocholic, 
cholic and deoxycholic acids[32-34]. PXR regulates genes 
involved in phaseⅠmetabolism (e.g. CYP3A) and several 
genes associated with drug transport such as MDR1, 
OATP2, MRP2, and MRP3[35-37]. PXR is remarkably 
divergent between species, with the rabbit, rat and 
human receptors sharing only approximately 80% of  
the amino acid identity in their ligand-binding domains. 
This feature is reflected by marked pharmacological 
differences in PXR activation profiles. PXRs from 
different species are differentially activated by specific 
compounds, thus cor relat ing wel l with species-
specific induction of  CYP3A gene expression. For 
example, the hypocholesterolemic drug SR12813, the 
macrolide antibiotic rifampicin and the antidiabetic 
drug troglitazone are effective activators of  the human 

and rabbit PXR but have modest activity on the rat and 
mouse PXR. On the contrary, pregnane 16α-carbonitrile 
is a more potent activator of  the rat and mouse than 
the human and rabbit receptor[33]. In addition, PXR 
polymorphism has been described and it is assumed to 
contribute to the observed interindividual variability 
of  gene expression and atypical responses to drugs or 
altered sensitivity to carcinogens[38,39].

CAR
Also known as NR1I3, this NR was identified in 1994 
as a receptor interacting with a subset of  retinoic acid 
response elements[40]. It was originally defined as a con-
stitutively activated receptor since it forms a heterodimer 
with RXR and binds to retinoic acid response element 
in the absence of  ligand[41]. It was demonstrated more 
recently that CAR activation is a multistep process. The 
initial step is translocation to the nucleus and interaction 
with RXRα, a process that can be independent of  ligand 
binding[37,42]. It is known that CAR participates in regula-
tion of  transcription of  drug transporter genes such as 
MRPs (MRP2, 3, and 4) and Oatp2[23,43,44].

CAR is found mainly in liver and it is also detected 
in certain extrahepatic tissues such as the intestine[40,45]. 
Pathophysiological conditions such as trauma, sepsis, 
inflammation[46] or drugs[47] can modify CAR expression. 
In vivo, CAR is sequestered in the cytoplasm forming 
a complex with proteins such as heat shock protein 
90 (HSP90) and CAR cytoplasmic retention protein 
(CCRP)[48]. In addition, phosphatase 2A (PP2A) is 
recruited to the HSP90-CCRP-CAR complex[49]. 
Translocation of  CAR to the nucleus, most likely 
dependent on the activity of  PP2A, is followed by 
association with RXR and binding to the phenobarbital 
responsive enhancer modules (PBREM). Thus, CAR 
activation can imply direct binding of  an agonist, 
recruitment of  co-activators, dissociation of  co-
repressors, and the subsequent nuclear translocation and 
heterodimerization with RXRα[50], prior to DNA binding 
and induction of  gene expression[51]. CAR co-activators 
so far identified are GRIP1/TIF2, PGC-1, SRC-1, 
Sp1, ASC-2 and SMC-1. CAR transcriptional activity 
correlates well with its concentration in the nucleus. The 
blockage of  phenobarbital-mediated induction of  CYP2B 
gene in rodents by okadaic acid, a protein phosphatase 
inhibitor, has provided an additional indication of  the 
importance of  CAR nuclear accumulation in the increase 
of  transcription rate[52]. Some ligands of  CAR like 
androstenol act as inverse agonists, affecting the protein in 
such a way that co-repressors instead of  co-activators are 
recruited, and the transcriptional activity of  the receptor is 
decreased[53]. Estrogen derivatives display both agonist and 
antagonist nature by inducing the recruitment of  both 
SRC-1 and NcoR after binding to CAR[54]. Alternatively, 
some CAR activators are not ligands in vitro. Among 
others, phenobarbital and bilirubin can modulate CAR 
activity by indirect activation, promoting the nuclear 
translocation of  the receptor without binding to the 
ligand domain, although the mechanism is not totally 
understood[49,55].
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MODULATION OF DRUG TRANSPORTERS 
BY THERAPEUTIC AGENTS: ROLE OF 
NUCLEAR RECEPTORS
Synthetic drugs, natural products, endogenous substanc-
es, and environmental toxicants are chemicals known to 
modulate the activity of  major Class Ⅱ nuclear recep-
tors, CAR and PXR[56,57]. It is widely recognized that 
CAR and PXR are major determinants in the regulation 
of  an extensive spectrum of  genes involved in the me-
tabolism and disposition of  xeno- and endobiotics[37,58-60]. 
Thus, among other factors, drug exposure can influence 
the activity of  these NRs, affecting the metabolism, 
toxicity and drug-drug interactions of  many xenobiotics 
or endogenous substances. The following paragraphs 
describe some representative examples of  the action of  
therapeutic agents modulating drug transporters and in-
volving CAR or PXR as mediators.

Pharmaceutical agents that are agonists of  PXR and 
CAR had been used for treatment of  human diseases long 
before their mechanism of  action was clarified. Rifampi-
cin, a human PXR agonist, was found to be effective in 
the treatment of  pruritus in cholestatic disorders[61,62]. Fur-
thermore, administration of  rifampicin to healthy human 
volunteers significantly induced UDP-glucuronosyltrans-
ferase 1A1 (UGT1A1), involved in bilirubin glucuronida-
tion, and MRP2 expression, leading to reduction in serum 
bilirubin levels[63]. Certain traditional Chinese herbs are 
powerful CAR activators and have been used extensively 
for management of  neonatal jaundice[64]. Phenobarbital, in 
addition to rifampicin, has been empirically used to treat 
hyperbilirubinemia[65,66] due to its inductive properties on 
UGTs. These compounds are activators of  PXR and CAR 
and the identification of  the UGT locus as a direct target 
for hPXR and hCAR has relevance in both xenobiotic/
endobiotic metabolism and disposition in human disease. 
Simultaneous induction of  biotransformation and trans-
port systems by these same agents was also effective in 
increasing the disposition of  a variety of  carcinogens, as 
well as estrogen and thyroxin[67]. MRP2 is one of  the best 
characterized drug transporters to act in coordination with 
biotransformation systems to increase drug elimination[22]. 
This is in part due to its universal capacity to respond to 
NR activators, which in turn activate a wide spectrum of  
phaseⅠand Ⅱ reactions. Indeed, Kast et al[36] have report-
ed that MRP2/Mrp2 genes are modulated by PXR, FXR 
and CAR in human and rodents. Interestingly, these three 
distinct nuclear receptor signaling pathways converge on 
a common response element in the 5’-flanking region of  
these same genes.

Glucocorticoids are also well known inducers of  
several biotransformation and transport systems. In acute 
cholestasis, as well as in chronic cholestatic disorders 
such as primary biliary cirrhosis, the beneficial effects 
of  steroids could be attributed not only to their anti-
inflammatory and immune-modulatory actions but also to 
the effects mediated by alterations in biotransformation 
enzymes and transporters, these latter systems being 
regulated by NRs[68]. CAR seems to act as a primary 

glucocorticoid receptor (GR)-response gene, since the 
CAR gene promoter harbors a GR response element[69]. In 
addition, glucocorticoids such as dexamethasone induce 
CAR nuclear translocation. Glucocorticoids also induce 
PXR expression and nuclear translocation and thus induce 
target genes expression like CYP3A4, BSEP and MRP2. 
These latter findings explain the improvement of  liver 
cholestatic diseases such as that induced experimentally by 
endotoxin administration[70].

As was demonstrated for the steroids pregnenolone 
16α-carbonitrile, 5 β-pregnane-3, 20-dione and dexam-
ethasone[71], spironolactone, widely used as a diuretic, also 
binds to PXR[72]. Rats treated with spironolactone, exhibit 
up-regulation of  Mrp2 and P-gp in liver[73,74] along with 
increased phase Ⅱ biotransformation reactions[75,76]. Data 
on increased expression of  Mrp2 (protein and mRNA) 
are consistent with transcriptional regulation of  the tar-
get genes and with spironolactone-PXR interaction. The 
potentiality of  spironolactone to counteract alterations in 
biliary secretory function emerges from studies demon-
strating that this steroid was able to prevent the decrease 
in bile flow and biliary secretion of  Mrp2 substrates in-
duced by the cholestatic ethynylestradiol[77]. It is interest-
ing to note that spironolactone also leads to up-regulation 
of  PXR mRNA and protein levels (ML Ruiz, SSM Villan-
ueva, MG Luquita, AD Mottino, and VA Catania, unpub-
lished results), reinforcing a role for this nuclear receptor 
as a modulator of  the action of  spironolactone. This find-
ing also suggests that an adaptive response to prolonged 
treatment with therapeutic drugs may result from changes 
in expression of  the NR gene, and consequently from its 
availability for binding to the respective ligands. Clearly, 
the binding of  an agonist or antagonist to NRs can direct-
ly translate physiological and pathophysiological require-
ments into alterations of  gene expression[1,78,79]. These 
effects can be additionally modulated by transcriptional or 
post-transcriptional regulation of  the transcription factor 
itself[80,81].

Acetaminophen is a widely used therapeutic drug 
which can produce hepatotoxicity when administered 
at high doses. CAR is a key regulator of  acetaminophen 
metabolism and hepatotoxicity. CAR activators, as well as 
high doses of  acetaminophen, induce expression of  key 
drug metabolizing enzymes in wild-type but not in Car-/- 
mice, and administration of  the inverse agonist ligand 
androstanol after treatment with acetaminophen blocks 
hepatotoxicity in wild-type but not in Car-/- mice[82]. In 
addition, Car-/- mice are resistant to acetaminophen hep-
atotoxicity. In contrast, mice deficient in Nrf2 are highly 
susceptible to acetaminophen hepatotoxicity and were un-
able to increase the hepatic basolateral drug transporters 
Mrp3 and Mrp4, as detected in wild type animals[83]. These 
transporters may represent an attractive target to reduce 
acetaminophen hepatotoxicity. Indeed, pretreatment of  
rats with acetaminophen was shown to increase Mrp3 
expression, and thereby induced a shift from biliary to uri-
nary elimination of  acetaminophen glucuronide; the sub-
sequent decreased enterohepatic recirculation was postu-
lated to decrease exposure of  the liver to acetaminophen 
and thereby protect against hepatoxicity[84]. Whether CAR 
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or PXR, in addition to NrF, are involved in modulation of  
key drug transporters regulating acetaminophen toxicity, 
at toxic or subtoxic doses, needs further exploration.

Whereas a number of  drugs targeting different NRs, 
which form heterodimers with RXR, have been ap-
proved for treatment of  metabolic diseases[85], finding 
new therapeutic compounds that could modulate drug 
efflux in a similar way still represents a major challenge. 
Our increasing understanding of  the molecular regula-
tion of  transport and detoxification systems, including 
mediation of  NRs, should help significantly.

CONCLUSION
Major drug transporters in the liver, either at the 
apical or basolateral level, are extensively regulated by 
therapeutic agents, and likely involve mediation of  NRs. 
Targeting NRs such as CAR and PXR to improve liver 
diseases, particularly those involving alterations in biliary 
secretory function, represents a promising perspective. 
Most of  the studies referenced in this current review, 
which clearly support this possibility, were performed 
either in rodents or in human cell lines. To what extent 
the results obtained in these experiments apply to 
humans is poorly known and needs further exploration.
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